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Key points:  
 
Questions: Is cerebellar morphology associated with sub-clinical psychiatric symptoms in 

adolescence? Do such associations show symptom domain specificity or do they rather 

constitute a marker of general psychopathology? 
 
Findings: Machine learning utilizing cerebellar morphology features significantly predicted 

the severity of prodromal psychotic symptoms, norm-violating behavior and anxiety, but 

not attention deficits, depressive, manic or obsessive-compulsive sub-clinical symptoms. 

Associations with prodromal psychotic symptoms were stronger for the cerebellum than for 

cerebral subcortical and cerebro-cortical regions, and remained significant when adjusting 

for several potentially confounding factors.  

 
Meaning: The cerebellum appears to play a key role in the development of severe mental 

illness.  
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Abstract: 
Importance: Accumulating evidence supports cerebellar involvement in mental disorders 

such as schizophrenia, bipolar disorder, depression, anxiety disorders and attention-deficit 

hyperactivity disorder. However, little is known about cerebellar involvement in the 

developmental stages of these disorders. In particular, whether cerebellar morphology is 

associated with early expression of specific symptom domains remains unclear.  

Objective: To determine the robustness and specificity of associations between cerebellar 

morphology, general cognitive function, general psychopathology and sub-clinical 

psychiatric symptom domains in adolescence.  
Design, setting and participants: Assessment of parametric structure-function 

associations between MR-based brain morphometric features and data-driven cognitive 

and clinical phenotypes in the Philadelphia Neurodevelopmental Cohort (N=1401, age-

range: 8 - 23).  
Main outcomes and measures: Robust prediction of cognitive and clinical symptom 

domain scores from cerebellar, subcortical and cerebro-cortical brain features using 

machine learning with 10-fold internal cross-validation and permutation-based statistical 

inference.  
Results: Cerebellar morphology predicted both general cognitive function and general 

psychopathology (mean Pearson correlation coefficients between predicted and observed 

values: r = .20 and r = .13, respectively; corrected p-values < .0009). Analyses of specific 

sub-clinical symptom domains revealed significant associations with rates of norm-

violating behavior (r = .17; p < .0009), prodromal psychotic symptoms (r = .12; p < .0009) 

and anxiety symptoms (r = .09; p =.0117). In contrast, we observed no significant 

associations between cerebellar features and the severity of attention deficits, depressive, 

manic or obsessive-compulsive symptoms (all rs =< .03, all ps => .1). Associations with 

norm-violating behavior and prodromal psychotic symptoms were stronger for the 

cerebellum than for subcortical and cerebro-cortical regions, while anxiety and general 

cognitive function were related to more global brain morphology patterns. The association 

between cerebellar volume and prodromal psychotic symptoms, and to a lesser extent 

norm violating behavior, remained significant when adjusting for potentially confounding 

factors such as general cognitive function, general psychopathology, parental education 

level and use of psychoactive substances. 

Conclusions and relevance: The robust associations with sub-clinical psychiatric 

symptoms in the age range when these typically emerge highlight the cerebellum as a key 

brain structure in the development of severe mental disorders.   
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Introduction 
A growing body of research reports cerebellar involvement across a wide range of mental 

disorders, including schizophrenia1,2, bipolar disorder3, depression4-7, anxiety disorders8, 

attention-deficit hyperactivity disorder9,10 and autism11. However, while the majority of 

these conditions are conceptualized as neurodevelopmental disorders12,13, most studies 

investigating the role of the cerebellum in mental health research have targeted adult 

populations14-16. Hence, it is largely unknown whether cerebellar changes can be detected 

already in adolescence, when initial symptoms typically first present13,17,18, or only emerge 

later in the disease process. Moreover, whether cerebellar alterations in adolescence are 

indicative of general psychopathology19, or are associated with specific symptom 

domains9, remains unclear. Finally, it is unknown how cerebellar associations with 

psychiatric symptoms in adolescence compare against such associations in other brain 

regions. Answering these questions will be crucial for determining the relative importance 

of the cerebellum during this critical period for the development of mental disorders.  

Here, we used machine learning with 10-fold internal cross-validation to test 

whether cerebellar morphometric features could predict sub-clinical psychiatric symptoms 

in a large and well-characterized developmental community sample centered on 

adolescence20,21. Consistent with NIMHs Research Domain Criteria framework22, we 

followed a diagnostically agnostic and dimensional approach23,24, extracting clusters of 

correlated symptoms from a comprehensive set of clinical assessment data using blind 

source separation methods25. A similar data-driven and anatomically agnostic approach 

was used to decompose cerebellar grey matter maps into spatially independent 

components, before testing for structure-function associations using multivariate machine 

learning.  To confirm convergence across methodological approaches, we also tested for 

structure-function associations at the resolution levels of cerebellar lobules and voxels. We 

further evaluated the specificity of any cerebellar effects by comparing these to effects 

across brain-wide regions-of-interest (ROIs), and controlled for potentially confounding 

variables such as general level of cognitive function26,27, general psychopathology19, 

parental education level28 and use of psychoactive substances29.    

Based on the existing literature on adults, we hypothesized that cerebellar 

morphology during adolescence would be associated with both cognitive function26,30,31 

and general psychopathology19, but remained agnostic as to whether such associations 

would show specificity across different psychiatric symptom domains.  
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Methods 
Participants  

The main structure-function analyses were based on data from 1401 participants (52.8% 

female, mean age: 15.12 years, age range: 8.2 to 23.2) included in the publicly available 

Philadelphia Neurodevelopmental Cohort (PNC)20,21(see Supplementary Methods for 

inclusion criteria and demographic information). The institutional review boards of the 

University of Pennsylvania and the Children’s Hospital of Philadelphia approved all study 

procedures, and written informed consent was obtained from all participants.  

 

Collection and processing of cognitive and clinical measures 

As reported previously25, we included performance scores from the full PNC sample 

(n=6,487) on 12 computerized cognitive tests21 and 129 questionnaire items assessing 

symptoms of anxiety, mood, behavioral, eating and psychosis spectrum disorders, with 

collateral informants for individuals below 18 years of age21. We derived general measures 

of cognitive performance (gF) and psychopathology (pF) by extracting the first factor 

scores from principal component analyses (PCA) of all cognitive and clinical scores, 

respectively. Next, in order to examine specific symptom domains, all clinical item scores 

were submitted to independent component analysis (ICA) using ICASSO32, decomposing 

them into seven independent components. Effects of gender and age on all 

cognitive/clinical measures were tested using generalized additive models (GAMs) as 

implemented in the r-package "mgcv"33, and a set of adjusted cognitive/clinical scores 

were computed by regressing out main effects of age and sex (see Supplementary 

Methods). 

 

Collection and processing of MRI data:  

As previously described20,34,35, all data were acquired on the same 3 Tesla scanner using 

the same MRI sequence (See Supplementary Methods). All images were first processed 

using FreeSurfer version v5.3 (http://surfer.nmr.mgh.harvard.edu), yielding estimates of 

total intracranial volume (eTIV)36, volumes of eight subcortical structures37 and mean 

cortical thickness of 34 cortical regions-of-interest (ROIs) per hemisphere38. Next, the bias-

corrected images from the FreeSurfer pipeline were subjected to cerebellum-optimized 

voxel-based morphometry (VBM) using the SUIT-toolbox (v3.239,40), running on MATLAB 

2014a. In brief, SUIT isolates the cerebellum and brainstem, segments images into grey 

and white matter maps and normalizes these maps to a cerebellar template using Dartel41, 

ensuring superior cerebellar alignment compared with whole-brain procedures40. 
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Normalized cerebellar grey matter maps were modulated by the Jacobian of the 

transformation matrix to preserve absolute grey matter volume, and the volumes of 28 

cerebellar lobules were extracted using the SUIT probabilistic atlas. Next, maps were 

smoothed using a 4 mm FWHM Gaussian kernel before being subjected to ICA or voxel-

wise general linear models. Finally, a mask for these analyses was constructed by 

thresholding the mean unmodulated cerebellar grey matter map at .01 and multiplying it 

with the SUIT grey matter template (also thresholded at .01).  

 

Data-driven parcellation of cerebellar grey matter  

Since cerebellar parcellations based on gross anatomical features (e.g., lobules) only 

partially overlap with functional maps of the cerebellum42-50, we used a data-driven 

approach in our primary analyses. Specifically, we subjected the modulated cerebellar 

grey matter maps to ICA using FSL MELODIC51, testing model orders from 5 to 20.  

In order to characterize the resulting cerebellar VBM-components, we used 

NeuroSynth52 to map the full-brain functional connectivity of each components peak voxel,  

and decoded these full-brain connectivity maps in terms of their similarity to (i.e., spatial 

correlation with) meta-analytic maps generated for the 2911 terms in the NeuroSynth52 

database, reporting the top five functional terms (see Supplementary Methods).  

 

Analysis of brain-behavior associations  

Before inclusion in statistical models, all volumetric features were adjusted for effects of 

age, sex and eTIV, using GAMs to sensitively model and adjust for potentially non-linear 

effects of age53-55 and eTIV56,57 (see Supplementary Methods).  

 In our primary analyses, we tested whether subject weights on cerebellar 

independent components could predict cognitive and clinical scores, by using shrinkage 

linear regression58 (implemented in the R-package 'care') with 10-fold internal cross-

validation (i.e., based on iteratively using 90% of the sample to predict the remaining 

10%), repeated 10,000 times on randomly partitioned data. Model performance was 

evaluated by computing the Pearson correlation coefficient between predicted and 

observed cognitive/clinical scores (taking the mean across iterations as our point 

estimate). Statistical significance was determined by comparing these point estimates to 

empirical null distributions of correlation coefficients under the null hypothesis (computed 

by running the models 10,000 times on randomly permuted clinical/cognitive scores). 

Results were considered significant at p < .05 (one-tailed), Bonferroni-adjusted for the 9 

tested associations. In order to determine the relative importance of the anatomical 
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features included in each prediction model, we computed correlation-adjusted marginal co-

relation (CAR) scores59 for each iteration, and used the mean CAR scores as measures of 

relative feature importance. 

To complement these multivariate prediction models, we performed a set of 

univariate analyses, correlating the (age- and sex-adjusted) subject weights on each 

cognitive/clinical component with the (eTIV- age- and sex-adjusted) anatomical subject 

weights (see Supplementary Methods).  

In order to facilitate comparison with previously published research, we also report 

results from prediction models and correlation analyses using 28 cerebellar lobules as 

features and general linear models performed at the voxel level. The voxel-wise analyses 

tested for effects of cognitive/clinical scores while controlling for effects of sex, age, and 

eTIV using FSLs randomise60 with 10,000 permutations per contrast. 

 Next, to allow for a direct comparison of cerebellar and cerebral structure-function 

associations, all prediction models were also performed on volumetric estimates of eight 

bilateral subcortical structures, and estimates of cortical thickness from 34 bilateral ROI 

based the Desikan-Killany atlas in FreeSurfer. We chose thickness as our cortical feature 

of interest, due to its generally stronger and more consistent associations with 

psychopathology than surface area61,62. All anatomical indices were adjusted for effects of 

age and sex (and eTIV for volumetric indices), as described above. Prediction models 

were also fitted using z-normalized versions of all morphometric features, in order to 

directly compare the relative feature importance of all anatomical measures.  

 Finally, on subjects with available information, we ran a set of univariate control 

analyses examining potentially confounding variables, such as general cognitive function, 

general psychopathology, parental education and use of psychoactive substances (see 

Supplementary Methods).  

 
Results 
Cognitive function and clinical symptoms 

Results from the PCA and ICA decompositions of clinical item scores are shown in Figure 

1a. As reported previously25, the ICA yielded seven components, primarily reflecting 

symptoms of attention deficit hyperactivity disorder (IC01 ADHD), various anxiety 

disorders (IC02 Anxiety), norm violating behavior/conduct problems (IC03 Conduct), 

prodromal psychotic symptoms (IC04 Psychosis), depression (IC05 Depression), mania 

(IC06 Mania) and obsessive-compulsive disorder (IC07 OCD).  
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Figure 1: a: Loadings of 129 clinical items from 18 questionnaires on the general psychopathology 
factor (pF) and the seven clinical independent components (IC01-IC07). Clinical conditions 
targeted by each questionnaire are listed on the y-axis, while Supplementary Table 2 lists all 129 
individual items; b: Effects of age and sex on cognitive/clinical scores (asterisks denote significant 
sex differences; * < .05, *** <.001); c: correlations between all cognitive/clinical scores before 
(upper triangle) and after (lower triangle) correcting for effects of age and sex.   
 

Effects of age and sex on all cognitive and clinical summary scores are displayed in Figure 

1b and Supplementary Results. In brief, general cognitive function (gF) showed the 

expected strong positive association with age, with slightly higher mean scores in males 

than in females. Mean levels of general psychopathology also increased over the sampled 

age span, but did not differ between males and females. All clinical scores varied as a 

function of age. Specifically, ADHD scores decreased with increasing age, whereas 

various increasing trends were observed for all other clinical components. Largely in line 

with population-based estimates13,63,64, males scored higher on components reflecting 

ADHD, conduct problems, psychosis and mania, while females had higher scores on 

components reflecting various anxiety disorders and OCD. No significant sex differences 

were observed for the component reflecting depression.  
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MRI-based morphometry 

Data-driven decomposition of cerebellar grey matter maps using a model order of 10 

yielded a set of bilateral components (Figure 2a), which tended to split into unilateral 

components at higher model orders (see Supplementary Figures 1-3 for results using 

model orders of 5, 15 and 20). We consequently chose this decomposition for all further 

analyses. Of note, the Neurosynth analyses revealed that voxels at the peak coordinates 

of each cerebellar component (marked with an asterisk in Fig.2a) showed distinct patterns 

of whole-brain functional connectivity (Fig 3b-c), which were associated with different 

functional terms in the neuroimaging literature (Fig 2d). In brief, the connectivity maps of 

four components (IC02, IC05, IC06 and IC09) were most closely associated with motor 

control, while the remaining connectivity networks showed stronger associations with 

various cognitive functions. See Supplementary Figures and Tables 4-7 for estimated 

effects of age, sex and eTIV for all cerebellar and cerebral anatomical features.  

 

 
Figure 2: a: The ten independent components resulting from data-driven decomposition of 
cerebellar grey matter maps projected onto flat-maps of the cerebellar cortex92. Asterisks denote 
the peak voxel for each component. b-c: Cerebellar and cerebro-cortical functional connectivity 
maps (determined using NeuroSynth44,93) for each of the peak voxels  shown in a. d: Top 5 
functional terms associated with each of the full-brain cerebellar connectivity maps shown in b and 
c.  
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Structure-function associations 

Results from the main structure-function analyses are presented in Figure 3.  

 
Figure 3: a: Distributions of correlations between predicted and actual cognitive/clinical scores 
across 10,000 iterations of the 10-fold cross-validated model. White dots denote the mean, used 
as point estimates for comparison with each model’s empirical null distribution (computed by fitting 
the predictive models to randomly permuted cognitive/clinical data, across 10,000 iterations). For 
illustrative purposes we here plot the empirical null-distribution summed across all prediction 
models. The dotted grey line represents the one-tailed .05 threshold, Bonferroni-adjusted for 9 
tests. b: Feature importance weights (CAR-scores) for the five significant models (color code as in 
a); c: Univariate correlations between cerebellar ICs and cognitive/clinical scores. Colored tiles 
mark significant associations (corrected for multiple comparisons across the matrix); d: T-statistics 
from the voxel-wise general linear models, thresholded at p < .05, two-tailed (based on 10.000 
permutations).  
 

As hypothesized, cerebellar morphological features predicted both general cognitive 

function (mean correlation between observed and predicted scores: r = .20; p < .0009) and 

general psychopathology (r = .12, p < .0009). When using cerebellar features to predict 
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clinical components, we observed significant results for IC03 Conduct (r = .16; p < .0009), 

IC04 Psychosis (r = .12; p < .0009) and IC02 Anxiety (r = .09; p = 0.0117), but not for IC01 

ADHD (r = .01; ns), IC05 Depression (r = -.02; ns), IC06 Mania (r = .03; ns) or IC07 OCD (r 

= -.01; ns). The relative feature importance (i.e., CAR-score) for each cerebellar 

component used in the five significant prediction models is presented in Figure 3b. Briefly, 

IC03 contributed most strongly to the prediction of cognitive function (gF), general 

psychopathology (pF) and prodromal psychotic symptoms whereas IC01 was the most 

important feature when predicting conduct problems.  

This pattern was confirmed in the univariate analyses (Figure 3c). Specifically, 

general cognitive function (gF) was positively correlated with subject weights on IC01, 

IC03, and IC05, while overall psychopathology (pF) was negatively correlated with subject 

weights on IC03. Of the seven clinical ICs, IC03 Conduct was negatively correlated with 

cerebellar IC01 and IC09, while IC04 Psychosis was negatively correlated with cerebellar 

IC03. No other associations survived correction for multiple comparisons. Prediction 

models and univariate analyses using cerebellar lobular volumes yielded very similar 

results (Supplementary Figure 8).  

Results from the voxel-based analyses are given in Figure 3d and Supplementary 

Table 8. In line with the main findings, we observed anatomically widespread positive 

associations with general cognitive function, while general psychopathology scores were 

associated with a more restricted pattern of cerebellar grey matter volume reduction, 

encompassing bilateral lobule VI and Crus I. Prodromal psychotic symptoms were 

associated with a largely overlapping pattern, while  conduct problems were associated 

with a partially overlapping region in left Crus I, as well as additional clusters in more 

inferior and midline regions. Anxiety was negatively associated with a small cluster in left 

lobule VI (11 voxels, not shown). No other clinical component yielded significant voxel-

wise results.  

 

Prediction models using cerebral anatomical features 

Figures 4 a-c present the performance of prediction models using volumetric estimates of 

8 bilateral subcortical structures, cortical thickness estimates from 34 bilateral cerebral 

ROIs and scaled versions of all anatomical measures, respectively (see Supplementary 

Figures 9-10 for CAR-scores). In brief, the subcortical model performed worse than the 

cerebellar model, with a notable exception for IC07 OCD (r = .08; p = .0423), where 

pallidum volume emerged as the most predictive feature. The cortical thickness model 

performed better than the cerebellar model for general cognitive function (r = .26; p < 
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.0009) and yielded comparable results for IC02 Anxiety (r = .09; p = .0225), but performed 

worse than the cerebellar model in predicting general psychopathology, IC03 Conduct and 

IC04 Psychosis (all rs < .0.08; all ps => .072). Models using all anatomical features 

significantly predicted general cognitive function (gF: r = .29; p < .0009), general 

psychopathology (pF: r = .13; p < .0009), IC02 Anxiety (r =.10; p = .0153), IC03 Conduct (r 

=.14; p < .0009) and IC04 Psychosis (r =.10; p = .0162). 

 

 
Figure 4: a: Predictive performance of machine learning models using a: Subcortical volumes; b: 
Mean thickness for 34 bilateral cerebrocortical ROIs; and c: Z-normalized versions of all 
anatomical features.  
 

 Figure 5 gives the feature importance weights for significant models using all 

anatomical features. Of note, cerebellar features emerged as the most important in several 

of these models (Fig 5 b-f), especially general psychopathology (pF), IC03 Conduct and 

IC04 Psychosis. 

bSubcortical	volumes Cortical	thicknessa c All	 anatomical	features
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Figure 5: Feature importance weights (CAR-scores) for the five significant prediction models using 
all anatomical features. CAR-scores were computed for each of 10,000 iterations of the model on 
randomly 10-fold partitioned data, yielding 100,000 estimates for each model. Colors indicate the 
location of each feature, while error bars denote 2 standard deviations from the mean of these 
CAR-score distributions. 
 

Control analyses 

See Supplementary Results for details. In brief, the negative correlation between 

cerebellar IC03 and prodromal psychotic symptoms remained significant when controlling 

for general cognitive function, general psychopathology, parental education level, as well 

as in the subset of participants with no evidence of substance abuse (all corrected p-

values < .05). The negative correlation between cerebellar IC01 and conduct problems 

was no longer significant when controlling for parental education level or substance abuse.  

 
Discussion  
The current machine learning approach utilizing 10-fold internal cross-validation in a large 

developmental MRI sample yielded three main findings. First cerebellar morphological 

features could significantly predict both general cognitive function and general 

psychopathology in adolescence. Second, structure-symptom associations showed 

diagnostic specificity, in that significant results were observed for sub-clinical symptoms of 

psychosis and rates of norm violating behavior (i.e., conduct problems) and to a lesser 
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extent anxiety, whereas symptoms of ADHD, depression, mania and OCD were unrelated 

to cerebellar morphology. We also observed a pattern of cerebellar anatomical specificity, 

with volume reductions in bilateral lobules VI/Crus I most strongly related to psychosis 

symptoms and volume reductions in more inferior cerebellar regions (lobules VIIb and VIII) 

most highly correlated with norm-violating behavior. Third, associations with prodromal 

psychotic symptoms and norm-violating behavior were stronger for the cerebellum than for 

subcortical volumes or regional cortical thickness. Together, these findings provide 

evidence for the cerebellum as a key brain structure underlying the development of core 

phenotypes of severe mental illness.    
 The associations with general cognitive function and general psychopathology were 

expected based on previous research in adults26,30,31, and add to the growing database 

supporting a cerebellar role in cognition and affect65.  Although the majority of structural 

MRI-studies on psychosis have focused on cerebral structures66, our findings on sub-

clinical psychotic symptoms are in general agreement with an emerging body of research. 

For instance, we have recently shown that cerebellar volume reductions is one of the 

strongest and most consistent morphological alterations in a large multi-site sample of 

schizophrenia patients (N = 983) and healthy controls (N = 1349)1. Of note, both in our 

previous patient study1 and in the current study of premorbid symptoms, the strongest 

effects of the psychosis domain converged on cerebellar regions that show functional 

connectivity with the frontoparietal cerebral network, a cerebellar region that also emerged 

as one of the strongest predictors of transition to psychosis in a recent study of high-risk 

populations67.  Moreover, functional neuroimaging studies consistently report reduced 

cerebello-cerebral connectivity in schizophrenia patients68-71 and high-risk groups72,73, 

while behavioral studies find impaired cerebellar learning in both patients with 

schizophrenia74-76 and their first-degree relatives77.   

 Our findings differ in some respects from a previous study of structural brain 

alterations in a partially overlapping sample of psychosis spectrum youth34, which reported 

the strongest group effects in medial temporal, posterior cingulate and frontal regions. We 

highlight two possible sources of these discrepancies. First, only the current study 

employed analysis pipelines optimized for both the cerebellum78 and the cerebrum79. 

Second, whereas the previous study employed an extreme group design34, we tested 

parametric associations across the full phenotypic range.  

 The associations between cerebellar volume and rates of norm-violating behavior 

are consistent with some recent reports of altered cerebellar white matter microstructure80 

and functional activation81 in conduct disorder. However, since our control analyses 
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suggested that these associations might be partially confounded by parental education 

level and substance abuse, they should be interpreted with caution.  

 While the current results do not allow inferences regarding underlying 

neurobiological processes, we observe that cerebellar volume - like hippocampal volume82 

- has previously been shown to be very sensitive to stress hormone exposure, especially 

during infancy83,84 but also in adults with very high levels due to Cushing´s disease85-87. 

This may provide a potential link, to be tested in future research, between our findings and 

the well-documented role of stressful life events in the development of psychopathology88.  

 A notable strength of the current study is the use of internal cross-validation, which 

should reduce the risk of overfitting, and thus ensure more generalizable effect 

estimates89. Its main limitation is the cross-sectional design, which prevents tests of causal 

relationships. Further, although the reported structure-function associations were robust 

and highly significant, cerebellar morphology explains only a limited part of the variance in 

clinical scores. While not surprising, given the multiple factors that influence the 

expression of psychiatric symptoms88,90,91, this caveat must be kept in mind when 

interpreting the results. 
 
Conclusions 
In conclusion, our findings highlight the cerebellum as a key brain structure for 

understanding the development of mental disorders, in particular psychosis.  
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