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Abstract: We present PromoterPredict, a dynamic multiple regression 
approach to predict the strength of Escherichia coli promoters binding the 
σ70 factor of RNA polymerase. σ70  promoters are ubiquitously used in 
recombinant DNA technology, but characterizing their strength is 
demanding in terms of both time and money. Using a well-characterized set 
of promoters, we trained a multivariate linear regression model and found 
that the log of the promoter strength is significantly linearly associated with
a weighted sum of the –10 and –35 sequence profile scores. It was found 
that the two regions contributed almost equally to the promoter strength. 
PromoterPredict accepts –10 and –35 hexamer sequences and returns the 
predicted promoter strength. It is capable of dynamic learning from user-
supplied data to refine the model construction and yield more confident 
estimates of promoter strength. 

Availability: Open source code and a standalone executable with both 
dynamic model-building and prediction are available (under GNU General 
Public License 3.0) at https://github.com/PromoterPredict, and require 
Python 2.7 or greater. PromoterPredict is also available as a web service at 
https://promoterpredict.com. 

Contact: apalania@scbt.sastra.edu
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INTRODUCTION

The primary E. coli promoter-specificity factor and the one widely used in 
recombinant DNA technology is the σ70 factor. Promoters recognized by σ70-
containing RNA polymerase are called core promoters and share the 
following features: two conserved hexamer sequences, separated by a non-
specific spacer of ideally 17 nucleotides. The two hexamers are located ~10 
bp and ~35 bp upstream of the transcription start site, and are called the –
10 and –35 sequences respectively (Paget and Helmann, 2003; Kadonaga, 
2012). Promoters with –10 and –35 sequences matching the consensus motif
of the hexamers are typically stronger, meaning they initiate more 
transcripts per unit time than promoters with less canonical –10 and –35 
regions. It is known that the conserved hexamer regions are vital for 
recognizing and optimizing the interactions between DNA and the RNA 
polymerase (Hook-Barnard et al., 2006; Feklistov and Darst, 2011; Basu et 
al., 2014). 

Theory has yielded a linear relationship between the total promoter score 
and the natural log of promoter strength (Berg and von Hippel, 1987). 
Strength of E. coli σE RNA polymerase promoters  were studied by  Rhodius 
and Mutalik (2010), who suggested that a study of core (i.e., σ70 ) promoters 
of housekeeping genes could be complicated by the additional role of 
transcription activators and limited data on promoter strengths. The 
complexity of E. coli σ70 promoter sequences has been treated from an 
information theoretic standpoint by Shultzaberger et al. (2007). Many 
resources are available to predict the location of promoters in a genomic 
seqeunce mainly by identifying the –10 and –35 regulatory sequences (for 
example, de Jong et al. (2012)), but there is no (freely) available tool to 
predict the strength of such sequences. Here we provide a web based 
platform as well as a standalone tool for the predictive modelling of the 
strength of σ70 core promoters, with the option to dynamically include user 
data into the predictive model.   

MATERIALS AND METHODS 

Generative model of promoter sequences. A generative model of the –10
and –35 promoter sequences is constructed using two Position Weight 
Matrices (PWM–10 and PWM–35) in the following manner. The training set is 
drawn from the well-characterised Anderson collection of 19 activator-
independent promoters maintained at the Registry of standard biological 
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parts (http://parts.igem.org/Promoters/Catalog/Anderson). Nucleotide-wise 
counts at each position of the hexamer motifs were augmented by a pseudo-
count prior to correct for E. coli GC content of 50.8% and the resulting 
frequency matrices were converted into log-odds matrices using Biopython 
(www.biopython.org).

Linear modelling of promoter strength. Following Berg and von Hippel 
(1987), we modelled the relationship between the promoter sequences and 
the ln of the promoter strength using multiple linear regression. Each 
promoter sequence is scored with respect to the generative models of the    
–10 and –35 motifs (i.e., the PWM–10 and PWM–35 matrices) and the two 
scores obtained formed the feature space of the regression modelling. The 
regression coefficients to be determined represent the weights of the -10 
and -35 regions in the regression analysis.  The Anderson promoter library 
provided promoter strengths normalized in the range 0.00 to 1.00 with 
respect to the strongest promoter. It was noted that the normalisation step 
would not affect a linear relationship, altering only the constant of the 
regression. The normalised strength values were log-transformed to obtain 
the required response variable values. Since the ln function rapidly 
descends towards – Inf with decreasing promoter strength, we capped the 
infimum of promoter strength at 0.01 prior to log-transformation. The least-
squares cost function was minimized using iterative gradient descent. The 
model parameters were assessed using t-statistics, and the overall model 
was assessed using F-statistic and the adjusted multiple coefficient of 
determination given by:

Adj. R2 =  1 – {(1-R2)*[(n-1)/(n-m-1)]} …(1)

The model was validated using leave-one-out cross-validation (LOOCV) . 

RESULTS AND DISCUSSION

The conservation profile of the –35 and –10 hexamer sequences of the promoters in 
the Anderson library was visualized using sequence logos and shown in Fig. 1.  The 
site scores of each promoter sequence were regressed on the ln of the 
promoter strength. A summary of this process with the training data, log-
transformation of the promoter strength and predicted response values is 
presented in Table 1. The modelling process converged within 105 iterations
by tuning the gradient descent  to a learning rate (α) of 0.015, and the 
following model was obtained:

ln (promoter strength) = -17.111 + 1.015*(PWM–35) + 0.949*(PWM–10) …(2)
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It is observed that the weight coefficients of the two PWM features are 
almost equal. We derived an independent solution of the multiple regression
using R (www.cran.org) and obtained a correlation coefficient of 0.998 
between the fitted values of the two models.  The interval estimates of the 
coefficients of the regression were computed in R using confint(fit, 
level=0.95), and obtained the following 95% confidence intervals: 

Intercept : (24.05737951, 9.625336)

–35 : (0.59755850, 1.377074)

–10 :     (0.07977664 , 1.814886)

(a) –35 motif:

(b) –10 motif:

Figure 1. Sequence logos of the –35 and –10 hexamer sequences of the promoters 
in the Anderson library. Figure was made using WebLogo (Crooks et al., 2004).  

The interval estimates did not include zero, and this implied that the 
coefficients were significant at the 0.05 level. The p-value of the PWM–35 
coefficient was < 10-4 and that of PWM–10 ≈ 0.03. The intercept was 
significant at a p-value ≈10-4. The F-statistic of the overall regression was 
significant at < 10-4 and adj. R2 was ≈ 0.65. The plane of best fit 
corresponding to the above model is visualized in Fig. 2. 
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 Table 1. The promoter activities (strengths) are seen to span the range [0.0, 1.0]. 
* indicates promoter strength capped at 0.01. The promoters follow the naming in 
the Anderson dataset. 

Promoter PWM-35 

score
PWM-10 score Promoter 

Activity
ln(Promoter 
Activity)

Predicted 
ln(promoter 
activity)

BBa_J23100 8.80192196 7.05252226 1 0 -1.4669153
BBa_J23101 8.50436801 8.65655364 0.7 -0.35667494 -0.25855671
BBa_J23102 8.94341939 7.79025811 0.86 -0.15082289 -0.62881141
BBa_J23103 5.76111212 7.60539274 0.01 -4.60517019 -4.0308767
BBa_J23104 8.94341939 8.22340587 0.72 -0.32850407 -0.22100527
BBa_J23105 8.36287058 8.22340587 0.24 -1.42711636 -0.80989265
BBa_J23106 8.36287058 7.48567002 0.47 -0.75502258 -1.50446674
BBa_J23107 8.36287058 8.65655364 0.36 -1.02165125 -0.40208651
BBa_J23108 7.16328158 7.91881778 0.51 -0.67334455 -2.31347961
BBa_J23109 8.50436801 6.73909721 0.04 -3.21887582 -2.06383098
BBa_J23110 8.36287058 7.48567002 0.33 -1.10866262 -1.50446674
BBa_J23111 8.80192196 7.48567002 0.58 -0.54472718 -1.05910916
BBa_J23112 5.76111212 7.60539274 0.00* -4.60517019 -4.0308767
BBa_J23113 5.76111212 7.60539274 0.01 -4.60517019 -4.0308767
BBa_J23114 6.96070112 7.48567002 0.1 -2.30258509 -2.92677594
BBa_J23115 7.10219855 7.48567002 0.15 -1.89711998 -2.78324614
BBa_J23116 8.94341939 7.17224497 0.16 -1.83258146 -1.21066725
BBa_J23117 8.94341939 7.17224497 0.06 -2.81341072 -1.21066725
BBa_J23118 8.80192196 8.22340587 0.56 -0.5798185 -0.36453507

In addition to their independent contributions to promoter strength, we 
were interested in exploring if any interactions between –35 and –10 sites 
could contribute to promoter strength. To this end , we tested this 
possibility in R using the following command:

lm(logStrength ~ PWM35 * PWM10)

where PWM35 and PWM10 represent the corrresponding site scores. This 
model resulted in an adj. R2 value lesser than that without any interactions. 
Further, all the four p-values of the regression parameters (intercept, 
PWM35, PWM10 and interaction) were not significant. The F-statistic was 
also not significant, thus discounting any interaction between the sites in 
the present dataset. On this basis, the null hypothesis of absence of any 
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Figure 2. The regression surface (blue) of the estimated model with the training 
data points(red). X- and y-axes represent PWM scores and the z-axis (vertical) 
represents the predicted ln(promoter strength).  

interaction could not be rejected, and we concluded that there is little 
evidence for interaction between the –35 and –10 sites in determining 
promoter strength.

Our model assumed that both the predictors carried independent 
information about the promoter strength, and together they are able to 
provide sufficient information about the strength. The basis of this 
assumption was probed to determine if both predictors are necessary to the 
model. Could one predictor provide sufficient information about the 
promoter strength in the absence of the other? There are at least three 
angles to address this question, and all of them were considered to interpret
the model better. 

(1) Comparing the multiple coefficient of determination with the adjusted 
multiple coefficient of determination. For the original model:

R2 = 0.69

Adj. R2 ≈ 0.65
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Since there is not much difference between R2 and adj. R2, we could say that
both predictors contribute substantially to the response variable (promoter 
strength) and account for more than 65% of its variance.

(2) Since the p-values of both predictors are significant, it would be 
interesting to observe their effect on the response variable in more detail. 
This was performed using the effects package in R:

library(effects)

fit = lm(logStrength~ PWM35+ PWM10, data)

plot(allEffects(fit))

The results are shown in Fig. 3. Confidence in the effect of –35 site 
increases with the –35 score, as evidenced by  decreasing uncertainty in 
logStrength. Such an effect is however not observed for –10 hexamer: the 
uncertainty widens at both the ends due to edge effects. The effect of the –
35 sequence is also steeper than the effect of the –10 sequence.

Figure 3. Effects plot of –35 and –10 promoter sites on promoter strength.
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(3) Another robust method to address the question is to compute the 
correlation coefficients between all the variables of interest, including a 
variable with the combined effects of –35 and –10 sites. This is shown in Fig.
4. Three features were used, namely PWM—10 score, PWM—35 score, and the 
combined score. These feature variables were correlated with two response 
variables, namely promoter strength and its corresponding log 
transformation. It was first observed that the PWM—10 and PWM—35 scores 
were uncorrelated (with a correlation coefficient of just ~0.05). 
Significantly, the highest correlation between the features and response 
variable was observed between the combined score and log of the promoter 
strength (~0.83). This validated our modelling process and was in keeping 
with similar observations for the strength of σE promoters (Rhodius and 
Mutalik, 2010). It was further observed that the combined score showed a 
relatively moderate correlation with the promoter strength prior to log 
transformation (about 0.66). This underscored the logarithmic dependence 
between the promoter strength and sequence, and provided independent 
validation of Berg and von Hippel's theoretical model.   

Figure 4. Correlation matrix of features and response variables. Lack of correlation 
between the predictor variables is highlighted in red. High correlation between 
features and the response variable is in green. 

Finally, the assumptions of linear modelling were investigated with 
reference to our problem. Model diagnostics of four basic assumptions were
plotted (shown in Fig. 5). Specifically:

Plot 1: The residuals were plotted against the fitted values. No trend was 
visible in the plot, indicating the residuals did not increase with the fitted 
values and followed a random pattern about zero. This validated the 
assumption that the errors were independent.
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Plot 2: The square root of the relative error (standardized residual) was 
plotted against the fitted value. No distinct trend was observed, indicating 
that the standardized residual was not a function of the fitted value.  This 
further validated the assumption that the errors were independent. 

Plot 3: To test the assumption that the errors were normally distributed, the
standardized residuals were plotted against the theoretical quantiles of a 
normal distribution. The residual distribution did not significantly deviate 
from the theoretical quantiles. 

Figure 5. Model diagnostics plots for investigating the assumptions underlying  
linear modelling. Please see text for discussion. 
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Plot 4: Since the least-squares cost function is sensitive to outliers, the 
number of outliers should be kept to a minimum. This was investigated by 
plotting the standardized residual against the corresponding instance's 
model leverage. This plot showed that there were no significant outliers in 
the dataset that could exert an undue influence on the regression 
parameters. 

Table 2.  Cross-validation results. In each trial, a random observation was chosen 
as a test instance for prediction based on a model built with the rest of the dataset. 
This process was repeated 19 times, once for each test instance and the cross-
validation (CV) residuals were obtained.  

Fold Observation Log(strength) Predicted CV Pred CV Residual

1 3 -4.600 -3.995 -3.771 -0.729

2 15 -1.897 -2.745 -2.829 0.932

3 1 -0.357 -0.255 -0.220 -0.136

4 10 -1.109 -1.501 -1.530 0.422

5 12 -4.600 -3.955 -3.771 -0.729

6 2 -0.151 -0.635 -0.686 0.535

7 4 -0.329 -0.228 -0.210 -0.118

8 00  0.00 -1.47 -1.78 1.780

9 14 -2.303 -2.884 -2.948 0.646

10 5 -1.427 -0.800 -0.717 0.710

11 13 -4.600 -3.955 -3.771 -0.729

12 7 -1.022 -0.393 -0.185 -0.837

13 17 -2.813 -1.222 -0.936 -1.877

14 8 -0.673 -2.279 -2.440 1.766

15 9 -3.22 -2.07 -1.68 -1.540

16 11 -0.545 -1.067 -1.120 0.576

17 16 -1.83 -1.22 -1.11 -0.720

18 6 -0.755 -1.501 -1.557 0.802

19 18 -0.580 -0.366 -0.332 -0.248
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The assumptions of linear modelling were found to be valid, and the model 
was then cross-validated using a 19-fold LOOCV (similar to jack-knife). 
Cross-validation yielded a high correlation coefficient of 0.75 (Table 2). 

An alternative univariate regression model using only the combined PWM 
scores found the coefficient to be significant (p-value <10-4). However, the 
weights of the PWMs were slightly different in the model equation  (eq. (2)),
further the uncertainty in their effects were different. The original multiple 
linear regression model was retained for the estimation of the promoter 
strength. 

We implemented our model in Python (www.python.org). Since the 
modelling results are dependent on the dataset, our implementation 
provides a facility to augment the learning based on user-provided inputs. A
web service for the same has been initiated. The web interface is based on 
Python web module (web.py) and nginx server. The computational layer is 
based on numpy, Biopython and matplotlib. The user is provided with an 
option to add any number of promoter instances with –10 and –35 
sequences and the corresponding strengths to augment the training data of 
the supervised model. The goodness of fit of the updated model is re-
computed, along with a 3D plot of the regression surface. Based on the 
trained model, the user could predict the strength of any uncharacterised 
promoter given its –10 and –35 hexamers. 

CONCLUSION

The following important conclusions were drawn from our study. (1) 
Sequence-based modelling yielded a logarithmic dependence between 
promoter strength and sequence. (2) The –10 and –35 sites were equally 
important in determining promoter strength. (3) The combined sum of the 
scores (PWM–35 + PWM–10) emerged as the single most important predictor 
of the promoter strength. It is straighforward to extend our methodology to 
the study of promoters of other sigma factors. Our implementation and web 
service could be useful in characterizing unknown promoters of newly 
sequenced genomes as well in the selection of promoters for synthetic 
biology experiments. The dynamic feature of our implementation would 
enable users with own data to obtain more reliable estimates of promoter 
strength. The service will be periodically updated based on the availability 
of new training instances, user input data and/or models for promoters of 
other sigma factors. 
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