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Abstract (248 of 250 words). People who score higher on intelligence tests tend to have larger 
brains. Twin studies suggest the same genetic factors influence both brain size and intelligence. 
This has led to the hypothesis that genetics influence intelligence partly by contributing to 
development of larger brains. We tested this hypothesis with molecular genetic data using 
discoveries from a genome-wide association study (GWAS) of educational attainment, a 
correlate of intelligence. We analyzed genetic, brain imaging, and cognitive test data from the 
UK Biobank, the Dunedin Study, the Brain Genomics Superstruct Project (GSP), and the Duke 
Neurogenetics Study (DNS) (combined N=8,271). We measured genetics using polygenic scores 
based on published GWAS. We conducted meta-analysis to test associations among participants’ 
genetics, total brain volume (i.e., brain size), and cognitive test performance. Consistent with 
previous findings, participants with higher polygenic scores achieved higher scores on cognitive 
tests, as did participants with larger brains. Participants with higher polygenic scores also had 
larger brains. We found some evidence that brain size partly mediated associations between 
participants’ education polygenic scores and their cognitive test performance. Effect-sizes were 
larger in the population-based UK Biobank and Dunedin samples than in the GSP and DNS 
samples. Sensitivity analysis suggested this effect-size difference partly reflected restricted range 
of cognitive performance in the GSP and DNS samples. Recruitment and retention of population-
representative samples should be a priority for neuroscience research. Findings suggest promise 
for studies integrating GWAS discoveries with brain imaging data to understand neurobiology 
linking genetics with individual differences in cognitive performance. 
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Introduction 

People who score higher on tests of intelligence tend to have larger brains, as measured 

by ex-vivo brain weight and in-vivo magnetic resonance imaging (MRI)1–4. Twin studies indicate 

this relationship partly reflects genetic factors that influence both brain size (i.e., volume) and 

intelligence5–8. These findings suggest the hypothesis that one path through which genetic 

differences between people influence individual differences in intelligence is by contributing to 

the development of larger brains. This hypothesis can now be tested using molecular genetic 

data.  

A recent genome-wide association study (GWAS) of educational attainment identified 

dozens of genetic variants that showed substantial enrichment for genes expressed during brain 

development9. Follow-up studies further identified associations between an aggregate measure of 

GWAS-discovered influences on education, called a polygenic score, and intelligence, including 

in young children who had not yet entered school10,11. These findings implicate brain 

development and intelligence in the pathway connecting people’s genetics to their educational 

outcomes. Further, GWAS research has discovered polygenic variants associated with brain size 

(inferred through intracranial volume)12 that also overlap with variants associated educational 

attainment9. Now, studies are needed to test if genetics discovered in GWAS of education are 

associated with in-vivo intermediate phenotypes, like brain size, that could constitute a biological 

pathway linking genetic variation to differences in intelligence and educational attainment.  

We analyzed data from four imaging genetics studies from the United Kingdom (UK 

Biobank), New Zealand (Dunedin Study), and the United States (Brain Genomics Superstruct 

Project (GSP) and Duke Neurogenetics Study), including 8,271 participants, to test associations 

among a polygenic score for educational attainment, cognitive test performance, and brain size. 
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We hypothesized that, consistent with previous findings, (1) participants with higher education 

polygenic scores would have higher cognitive test scores; and (2) that participants with larger 

brains as measured by total brain volume would have higher cognitive test scores. We further 

posed the novel hypotheses that (3) participants with higher education polygenic scores would 

have larger brains and that brain size would mediate the association between the education 

polygenic score and cognitive test performance. We combined results across our four imaging 

genetics datasets using random-effects meta-analysis. We also examined heterogeneity between 

the datasets under the hypothesis that effect-sizes might differ between the population-based UK 

Biobank and Dunedin Study samples and the GSP and DNS samples, for which range in 

cognitive performance is more restricted. 

 

Methods 

Participants. We analyzed data from European-descent participants in the United Kingdom-

based UK Biobank13,14 a population-based volunteer sample (N=6117), the New Zealand-based 

Dunedin Study, a birth cohort (N=476)15, and two studies in the United States consisting 

primarily of university students, the Brain Genomics Superstruct Project16 (GSP, N=1163), and 

the Duke Neurogenetics Study17 (DNS, N=515). Sample sizes reflect participants with available 

structural MRI, cognitive testing, and genetic data (Table 1). Samples are described in detail in 

the supplement.  

 

Education Polygenic Score. We computed our polygenic score based on GWAS of educational 

attainment rather than GWAS of cognitive performance because educational attainment is a 

proxy phenotype for cognitive performance18 and the polygenic score for educational attainment 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/287490doi: bioRxiv preprint 

https://doi.org/10.1101/287490
http://creativecommons.org/licenses/by/4.0/


Elliott et al. Education Genetics & Brains   03/22/17 

 6 

is more predictive of cognitive performance than polygenic scores from GWAS of cognitive 

performance19. Education polygenic scores were computed from genome-wide single-nucleotide 

polymorphism (SNP) data based on GWAS results published by the Social Science Genetics 

Association Consortium9 following methods described by Dudbridge20 according to the 

procedure used in our previous work10. Briefly, for each study, we matched SNPs in the study’s 

genetic database with published educational attainment GWAS results9. We then multiplied the 

education-associated allele of each SNP by the GWAS-estimated effect-size and computed the 

average of these products across all SNPs. Polygenic scores were standardized within each study 

to have M=0, SD=1 for analysis. 

 

Cognitive Performance. Cognitive performance was measured in the UK Biobank using 13 

reason and logic puzzles21 and in the Dunedin Study, GSP, and DNS studies using intelligence 

tests (the Wechsler Adult Intelligence Scale (WAIS-IV)22 in the Dunedin Study, the Shipley 

Institute of Living Scale23 in GSP and the Wechsler Abbreviated Scale of Intelligence (WASI)24 

in the DNS). 

 

Total Brain Volume. Total brain volume was measured from high resolution, T1-weighted MRI 

images. In the UK Biobank total brain volume was estimated using SIENAX25. In the Dunedin 

Study, GSP, and DNS studies, images were processed using the Freesurfer processing pipeline26.  

 

Statistical Analyses. We tested associations using linear regression models. Models were 

adjusted for sex. Models including the polygenic score were adjusted for the first 10 principal 

components estimated from the genome-wide SNP data to account for any residual population 
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stratification within the European-descent samples analyzed27. Models of UK biobank and GSP 

data were adjusted for age. (The Dunedin Study is a single-year birth cohort and DNS 

participants vary in age by only by 1-2 years.). In addition to age, models in the GSP were also 

adjusted for scanner, console version and head coil (12 versus 32 channel) because the GSP was 

collected across multiple sites. Analyses of individual studies were conducted in R (version 

3.4.0). Linear regressions were performed using the lm function. Mediation analyses were 

performed using a system of equations approach28 implemented with the mediation package29 in 

R, using nonparametric bootstrapping with 1000 iterations. We combined estimates across 

studies using random effects meta-analysis30 implemented using STATA (version 15). 

 

Results 

Participants with higher polygenic scores performed better on cognitive tests. As 

anticipated, participants with higher polygenic scores performed better on cognitive tests. Meta-

analysis estimated the cross-study effect size as r=.18 (p<.001; 95% CI [.12, .24]) with evidence 

of heterogeneity in effect sizes across studies (I-squared 80%, p=.002). Effect sizes were 

statistically significant in UK Biobank (r=.20, p<.001), Dunedin Study (r=.28, p<.001) and GSP 

(r=.19, p<.001) but not in the DNS (r=.05, p=.220).  

 

Participants with larger brains had higher cognitive test scores. We next tested if participants 

with larger brains performed better on cognitive tests. As anticipated, participants with larger 

brains (i.e., those with higher total brain volume) performed better on cognitive tests. Meta-

analysis estimated the cross-study effect size as r=.20 (p<.001; 95% CI [.12, .28]) with evidence 

of heterogeneity in effect sizes across studies (I-squared=75.8%, p=.006). Effect-sizes were 
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statistically significant in all studies (UK Biobank r=.21, p<.001; Dunedin Study r=.35, p<.001; 

GSP r=.12, p=.002; DNS r=.16, p=.004).  

 

Participants with higher polygenic scores for educational attainment had larger brains in 

two samples. Finally, we tested if participants with higher polygenic scores tended to have larger 

brains. Meta-analysis estimated the cross-study effect-size as r=.05 (p=.002; 95% CI [.02, .09]). 

The test for evidence of heterogeneity in effect sizes across studies was not statistically 

significant at the alpha=.05 level (I-squared=51.9%, p=.101). Participants with higher polygenic 

scores had larger brains in the UK Biobank (r=.08, p<.001) and the Dunedin Study (r=.08, 

p=.033). Effect-sizes were smaller and not statistically significant in the GSP r=.02, p=.380 and 

DNS r=.04, p=.288.  

 

Brain size was a weak mediator of the polygenic-score associations with cognitive test 

scores in two study samples. To test the hypothesis that larger brains mediated the polygenic 

score association with intelligence, we used the system of equations described by Baron and 

Kenny31 and the methods described by Preacher et al.28 Meta-analysis estimated the cross-study 

indirect effect to be b=.01, 95% CI [.00, .02], p=.055, with evidence of heterogeneity in effect 

sizes across studies (I-squared=79.5%, p=.002). The mediation effect was statistically significant 

in the UK Biobank (b=.01, 95% CI [.01, .02], p < .001) and the Dunedin Study (b=.02, 95% CI 

[.00, .05], p=.042). We did not find evidence of a mediation effect in the GSP b=.00, 95% CI 

[.00, .01], p=.36) or DNS b=.01, 95% CI [-.00, .02], p=.24. 
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Sensitivity analysis: Associations among polygenic scores, brain size, and cognitive test 

scores were attenuated in a sample of UK Biobank participants restricted to those with 

cognitive test scores 1 SD above the sample mean. UK Biobank and Dunedin Study 

participants’ polygenic scores, brain size, and cognitive test performance were positively 

correlated, with similar effect-sizes (Dunedin-study effect-sizes for analyses including IQ were 

somewhat larger, possibly reflecting greater measurement precision of the WAIS as compared to 

the UK Biobank reason-and-logic-puzzle test). By comparison, effect-sizes for these associations 

were smaller among GSP and DNS participants. To test if this difference could reflect the 

relatively restricted range of cognitive test performance in the GSP and DNS samples relative to 

the population-based UK Biobank and Dunedin samples, we conducted sensitivity analysis. 

Cognitive test scores were on average, 1-1.5 SDs higher in the GSP and DNS samples as 

compared to the general population and 30-50% less variable, indicating restricted range (Table 

1). Sensitivity analysis restricted the UK Biobank sample to participants with cognitive test 

scores 1 SD above the full-sample mean (i.e. scores of 9-13; n=1,401), for which the variance 

was approximately 45% of the full-sample variance. In the restricted-sample sensitivity analysis, 

associations among participants’ polygenic scores, brain size, and cognitive test performance 

were attenuated by roughly 1/3 to 1/2 relative to the full-sample estimates (Supplemental Table 

S3).  

 

Discussion 

We analyzed data from four imaging genetics studies in the UK, NZ, and US to test if 

genetic associations with cognitive performance were mediated by differences in brain size. As 

anticipated, we found that participants with higher educational-attainment polygenic scores 
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tended to score higher on tests of cognitive performance, as did those with larger brains. We also 

found new information, that participants with higher education polygenic scores tended to have 

larger brains. In mediation analysis, brain size accounted for only a small fraction of the 

association between participants’ educational attainment polygenic scores and their cognitive 

performance, and this mediation effect was statistically significant in the population-based UK 

Biobank and Dunedin samples, but not in the GSP and DNS samples.  

Effect-size variation across the samples we analyzed followed a consistent pattern; effect-

sizes were larger in the population-based UK Biobank and Dunedin Study samples than in the 

GSP and DNS samples. One reason for these differences may be the more restricted range of 

variation in cognitive performance in the GSP and DNS samples arising from, e.g. 

overrepresentation of university educated individuals. Such range restriction biases association 

estimates32,33 and has previously been shown to bias brain imaging research34,35. In the these 

relatively high IQ and restricted range samples, average cognitive performance was 1-1.5 

standard deviations above the general-population mean and the variance was reduced by 30-

50%. We conducted sensitivity analysis in a UK Biobank subsample selected to have high 

cognitive performance similar to the GSP and DNS samples. In this sample with restricted range 

of cognitive test performance, effect-sizes were attenuated by roughly 30-50%. Selective 

observation of high-cognitive-performance individuals in the GSP and DNS samples may have 

contributed to the lower effect-size estimates in these samples and to overall heterogeneity across 

samples in our meta-analysis. 

 We acknowledge limitations of our current analyses, which can be addressed in future 

research. First, analyses were restricted to European-descent participants. We focused on 

European-descent participants to match the population studied in the GWAS of educational 
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attainment8. Application of GWAS results from European-descent samples to compute polygenic 

scores for samples of different ancestry has uncertain validity36. As GWAS of education and 

related phenotypes in non-European samples become available, replication in additional 

populations will be needed. Second, polygenic scores were measured with substantial error. 

Genetic effect-sizes thus represent lower-bound estimates. As larger-sample GWAS become 

available, error in polygenic score measurement will decline and effect-sizes can be expected to 

increase37. Third, total brain volume is only one route through which the genetics linked with 

educational attainment could affect cognitive performance. We studied this specific phenotype 

because it is the best-replicated neural correlate of cognitive function2. As more refined neural 

phenotypes of cognitive function are developed, including measures of cortical thickness, surface 

area, gyrification, and brain function, it will be important to test their potential mediating role in 

linking genetics with cognitive performance. Finally, we cannot rule out age differences as a 

potential explanation for the difference in findings between the population-based UK Biobank 

and Dunedin Study samples as compared to the GSP and DNS samples. UK Biobank and 

Dunedin Study participants were measured in midlife, whereas GSP and DNS samples primarily 

included young adults. Among midlife UK Biobank participants, restricting the range of 

cognitive performance to be similar to the GSP and DNS samples reduced effect-sizes for 

associations among polygenic scores, brain size, and cognitive test performance. Population-

based samples including both young and midlife individuals with DNA, MRI, and cognitive 

testing are needed to evaluate whether genetic associations with brain volume and cognitive 

performance vary with age. A final concern is potential reverse causation between brain size and 

cognitive function. Higher cognitive ability and related educational and socioeconomic 
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attainments may be protective of age-related decline in brain volume. Longitudinal studies with 

repeated measures of brain volume and cognition are needed to establish causal direction.  

 Within the bounds of these limitations, our findings contribute to evidence that genetics 

discovered in GWAS of educational attainment influence brain development and cognitive 

function. Bioinformatic analysis of education GWAS results have identified enrichment of 

variants near genes expressed in brain development, specifically neural proliferation, neural 

development, and dendrite formation9. Epidemiologic analysis of an education-GWAS-based 

polygenic score found that children who carried more education-associated genetic variants 

scored higher on cognitive tests as early as age 5 and that polygenic-score-associated differences 

in cognitive test scores grew larger from middle childhood through adolescence10. Several 

studies have reported that an education-GWAS-based polygenic score is predictive of cognitive 

test performance in adolescents and adults11,19,38. Here, we show that adults with higher 

education-GWAS-based polygenic scores have larger brains and score higher on cognitive tests 

as compared to peers with lower polygenic scores. Evidence for larger brains as a statistical 

mediator of polygenic score associations with cognitive performance was mixed in our analysis. 

But findings suggest promise for future neuroscientific investigation of education-linked 

genetics. One design to complement formal mediation analysis is gene-environment interaction 

analysis to test if exposures that slow brain growth or restrict brain size, e.g., Zika virus39, 

diminish associations between genetics and cognitive performance.  

Our finding that genetics associated with educational and socioeconomic attainments are 

also related to brain volume has implications for research on effects of poverty on the developing 

brain. Childhood poverty exposure is associated with smaller brain volumes40,41. Education 

polygenic scores also tend to be lower in children growing up in poorer families, a gene-
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environment correlation that presumably reflects effects of education-linked genetics on parents 

economic attainments, which children inherit along with their genotypes10,30. Studies that include 

controls for education genetics could complement intervention studies42 to help rule out potential 

confounding in associations between poverty and brain development.  

A challenge facing research on how genetics affect the brain is the lack of population-

representative samples with available brain imaging data. Human brain-imaging research has 

typically been conducted in samples similar to those in the GSP and DNS whose data we 

analyzed43,44. Our findings illustrate how studies of samples pre-selected for high levels of 

cognitive functioning and related characteristics impose limitations on analysis of cognition-

related neurobiology. Opportunities to understand the brain afforded by 21st Century 

measurement technologies must still reckon with 20th Century discoveries about selection 

bias45,46. Efforts to recruit more representative samples that reflect the full range of cognitive 

functioning in the population are needed. 

Individual differences in cognitive performance have a partial genetic etiology19,47. This 

genetic etiology should be evident in individual differences in brain biology. As GWAS 

discoveries for intelligence and related traits clarify genetic etiology, follow-up in genetically-

informed brain imaging studies can shed light on the neurobiological correlates of this genetic 

variation. Our findings encourage enthusiasm for this research, but also highlight limitations of 

existing data resources. Recruiting and retaining samples that are representative of the general 

population must be a priority in neuroscience research.  
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Tables 
Table 1. Samples and measures included in analysis. Polygenic scores for all samples were computed based on the most recent 
GWAS of educational attainment9 following established methods. 

Sample Cognitive Test Total Brain Volume (cm3)  
United Kingdom Biobank (UK Biobank)13: An ongoing general 
population-based cohort of volunteers that was recruited from 
the UK National Health Service records beginning in 2006.  
 
N = 6117 
53% female. 
Age M = 61.39, SD = 7.00 

13 verbal-numeric reasoning puzzles completed during 
a 2-minute time test21.  
Scored as number of correct responses. 
 
M = 6.95, SD = 2.10 

Total brain volume was derived 
from T1 weighted structural MRI 
images processed with Sienax25 
 
M = 1170.86, SD = 111.14 

Dunedin Multidisciplinary Health and Development Study 
(DMHDS)15: a population representative birth cohort born 
1972-3 in Dunedin, New Zealand. Note: Here we report the 
available N, as of 2.2018, while data collection is ongoing.  
 
N = 476  
51% female 
Intelligence testing age = 38, MRI testing age = 45 

Wechler Adult Intelligence Scale-IV (WAIS-IV):22  
Scored against a population norm with mean of 100 
and standard deviation of 15. 
 
M = 99, SD = 15 

Total brain volume was derived 
from the recon-all pipeline in 
Freesurfer26 using T1 and T2 
weighted structural MRI images.  
 
M = 1218.32, SD = 121.36  

Brain Genomics Superstruct Project (GSP)16: a convenience 
sample of Boston area healthy volunteers primarily recruited 
from local universities and medical centers. 
 
N = 1163 
53% Female 
Age M = 22.23, SD = 5.53 

Shipley Institute of Living Scale23. 
Scored against a population norm with mean of 100 
and standard deviation of 15. 
 
M = 113, SD = 9 

Total brain volume was derived 
from the recon-all pipeline in 
Freesurfer26 using T1 and T2 
weighted structural MRI images. 
 
M = 1174.58, SD = 110.64 

Duke Neurogenetics Study (DNS): A convenience sample of 
university students primarily from Duke University.  
 
N = 515  
53% female 
Age M = 20.26, SD = 1.20  
 

Matrix reasoning and vocabulary subtests of the 
Wechsler Abbreviated Scale of Intelligence24 (WASI)  
Scored against a population norm with mean of 100 
and standard deviation of 15. 
 
M= 124, SD = 7 

Total brain volume was derived 
from the recon-all pipeline in 
Freesurfer26 using T1 weighted 
structural MRI images. 
 
M = 1162.40, SD = 110.34  
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Figures  
 
Figure 1. Educational attainment polygenic score associations with cognitive test scores. 
The figure shows a graph of effect-sizes for analyses of the UK Biobank, Dunedin Study 
(Dunedin), Brain Genomics Superstruct Project (GSP) and Duke Neurogenetics Study (DNS) 
samples (solid blue diamonds) and the cross-study effect-size estimated from random-effects 
meta-analysis (open blue diamond). Gray boxes around the solid-blue diamonds show the 
weighting of study-specific estimates in the meta-analysis (larger gray boxes indicate higher 
weights). 95% CIs for estimates are shown as error bars for the study-specific estimates and as 
the left- and right-extremes of the diamond for the meta-analysis effect-size. The meta-analysis 
estimate of between-study heterogeneity (I-squared) is listed to the left of the open blue diamond 
showing the meta-analysis effect-size. The table to the right of the effect-size graph reports 
values for effect-sizes, 95% CIs, and meta-analysis weights.  
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Figure 2. Associations between brain size and cognitive test scores. The figure shows a graph 
of effect-sizes for analyses of the UK Biobank, Dunedin Study (Dunedin), Brain Genomics 
Superstruct Project (GSP) and Duke Neurogenetics Study (DNS) samples (solid blue diamonds) 
and the cross-study effect-size estimated from random-effects meta-analysis (open blue 
diamond). Gray boxes around the solid-blue diamonds show the weighting of study-specific 
estimates in the meta-analysis (larger gray boxes indicate higher weights). 95% CIs for estimates 
are shown as error bars for the study-specific estimates and as the left- and right-extremes of the 
diamond for the meta-analysis effect-size. The meta-analysis estimate of between-study 
heterogeneity (I-squared) is listed to the left of the open blue diamond showing the meta-analysis 
effect-size. The table to the right of the effect-size graph reports values for effect-sizes, 95% CIs, 
and meta-analysis weights.  
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Figure 3. Educational attainment polygenic score associations with brain size. The figure 
shows a graph of effect-sizes for analyses of the UK Biobank, Dunedin Study (Dunedin), Brain 
Genomics Superstruct Project (GSP) and Duke Neurogenetics Study (DNS) samples (solid blue 
diamonds) and the cross-study effect-size estimated from random-effects meta-analysis (open 
blue diamond). Gray boxes around the solid-blue diamonds show the weighting of study-specific 
estimates in the meta-analysis (larger gray boxes indicate higher weights). 95% CIs for estimates 
are shown as error bars for the study-specific estimates and as the left- and right-extremes of the 
diamond for the meta-analysis effect-size. The meta-analysis estimate of between-study 
heterogeneity (I-squared) is listed to the left of the open blue diamond showing the meta-analysis 
effect-size. The table to the right of the effect-size graph reports values for effect-sizes, 95% CIs, 
and meta-analysis weights. 
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Figure 4. Mediation effect of brain size on the association between the polygenic score for 
educational attainment and cognitive test scores. The figure shows a graph of effect-sizes for 
analyses of the UK Biobank, Dunedin Study (Dunedin), Brain Genomics Superstruct Project 
(GSP) and Duke Neurogenetics Study (DNS) samples (solid blue diamonds) and the cross-study 
effect-size estimated from random-effects meta-analysis (open blue diamond). Gray boxes 
around the solid-blue diamonds show the weighting of study-specific estimates in the meta-
analysis (larger gray boxes indicate higher weights). 95% CIs for estimates are shown as error 
bars for the study-specific estimates and as the left- and right-extremes of the diamond for the 
meta-analysis effect-size. The meta-analysis estimate of between-study heterogeneity (I-squared) 
is listed to the left of the open blue diamond showing the meta-analysis effect-size. The table to 
the right of the effect-size graph reports values for effect-sizes, 95% CIs, and meta-analysis 
weights.  
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