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 2 

Abstract 18 

 19 

Negative interspecific mating interactions, known as reproductive interference, can hamper 20 
species coexistence in a local patch and promote niche partitioning or geographical 21 
segregation of closely related species. Conspecific sperm precedence (CSP), which occurs 22 
when females that have mated with both conspecific and heterospecific males preferentially 23 
use conspecific sperm for fertilization, might contribute to species coexistence by mitigating 24 
the costs of interspecific mating and hybridization. We examined whether two closely related 25 
species exhibiting CSP can coexist in a local environment in the presence of reproductive 26 
interference. First, using a behaviourally explicit mathematical model, we demonstrated that 27 
two species characterized by negative mating interactions are unlikely to coexist because the 28 
costs of reproductive interference, such as loss of mating opportunity with conspecific 29 
partners, are inevitably incurred when individuals of both species are present. Second, we 30 
experimentally demonstrated differences in mating activity and preference in two Harmonia 31 
ladybird species known to exhibit CSP. According to the developed mathematical model of 32 
reproductive interference, these behavioural differences should lead to local extinction of H. 33 
yedoensis because of reproductive interference by H. axyridis. This prediction is consistent 34 
with field observations that H. axyridis uses various food sources and habitats whereas H. 35 
yedoensis is confined to a less preferred prey item and a pine tree habitat. Finally, by a 36 
comparative approach, we showed that niche partitioning or parapatric distribution, but not 37 
sympatric coexistence in the same habitat, is maintained between species with CSP belonging 38 
to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial 39 
environments. Taken together, these results lead us to conclude that reproductive interference 40 
generally destabilizes local coexistence even in closely related species that exhibit CSP. 41 

 42 

Key words: community dynamics, competitive exclusion, host specialization, niche 43 

partitioning, reproductive interference, reproductive isolation, resource competition 44 
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 3 

Introduction 47 

 48 

Restrictions to local coexistence among phylogenetically related species are closely related to 49 

niche partitioning and the diversification of resource use traits, which help to determine 50 

community assemblages at both local and regional scales (Schluter 2000, Grant and Grant 51 

2011, Losos 2011). Therefore, understanding the mechanisms that restrict local coexistence is 52 

of fundamental importance in ecology and evolution. Negative interspecific mating 53 

interaction, that is, reproductive interference, is one mechanism that can drive species 54 

exclusion at local scale and subsequent niche partitioning among species (Gröning and 55 

Hochkirch 2008). Reproductive interference has been theoretically demonstrated to hamper 56 

species coexistence in a homogeneous environment even in ecologically neutral species with 57 

similar growth rates and abilities to compete for shared resources (Kuno 1992, Konuma and 58 

Chiba 2007, Crowder et al. 2011, Nishida et al. 2015, Kyogoku and Sota 2017). Moreover, 59 

empirical studies have also reported that reproductive interference contributes to niche 60 

partitioning between congeneric species with overlapping mating signals, including in frogs 61 

(Ficetola and Bernardi 2005), birds (Vallin et al. 2012), mites (Takafuji et al. 1997), and 62 

insects (butterflies, Friberg et al. 2013; grasshoppers, Hochkirch et al. 2007; ladybirds, 63 

Noriyuki et al. 2012). Therefore, reproductive interference is a determinant of local and 64 

regional species diversity in a wide range of animal taxa in nature, though its significance in 65 
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 4 

community ecology has been underestimated for decades (Gröning and Hochkirch 2008, 66 

Kyogoku 2015). 67 

 A number of mechanisms, however, are reported to mitigate the negative impacts of 68 

reproductive interference on the coexistence of species occupying the same niche, including 69 

plastic responses in reproductive traits (Otte and Hilker 2016), continued dispersal to new sets 70 

of ephemeral resource patches (Ruokolainen and Hanski 2016), and reinforcement of 71 

reproductive isolation (Bargielowski et al. 2013). One possible mitigating mechanism is 72 

conspecific sperm precedence (CSP), where females that have mated with both conspecific 73 

and heterospecific males preferentially use conspecific sperm for fertilization (Howard 1999). 74 

Such females might experience fewer costs associated with interspecific mating and 75 

hybridization (i.e., waste of gametes), because most or all of their offspring will be pure 76 

conspecifics (Nakano 1985, Veen et al. 2001, Marshall et al. 2002). In addition, in various 77 

animals, mating order has been shown to have no influence on whether a female us able to 78 

preferentially use conspecific sperm (Howard et al. 1998, Marshall et al. 2002), suggesting 79 

that complete CSP can largely eliminate the negative impact of interspecific mating provided 80 

that females have mated with at least one conspecific male before the onset of oviposition or 81 

birthing (Marshall et al. 2002). CSP has been reported in a variety of animal taxa, including 82 

sea urchins (Geyer and Palumbi 2005), mussels (Klibansky and McCartney 2013), crickets 83 

(Howard et al. 1998), fruit flies (Price 1997), beetles (Fricke and Arnqvist 2004, Rugman-84 
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Jones and Eady 2007), fishes (Yeates et al. 2013), and mice (Dean and  Nachman 2009), and 85 

thus potentially plays an important role in species coexistence. Although CSP has attracted 86 

much attention as a driver of speciation through post-mating and pre-zygotic reproductive 87 

isolation (Howard et al. 1998; Howard 1999), it is still unclear whether CSP can sufficiently 88 

ameliorate the cost of reproductive interference to promote stable coexistence of closely 89 

related species in the same local environment. 90 

CSP may not fully function as a barrier against reproductive interference. Under 91 

imperfect species discrimination, individual females may incur a variety of costs as a result of 92 

interactions with heterospecific males during the reproductive process, such as reduced 93 

longevity and oviposition rates (Kawatsu and Kishi 2017), physical damage caused by 94 

interspecific copulation (Kyogoku and Sota 2015), and loss of opportunity to mate with 95 

conspecific partners (Thum 2007, Noriyuki et al. 2012, Ramiro et al. 2015), as well as the 96 

production of unviable hybrid offspring (Todesco et al. 2016). CSP alone might be insufficient 97 

to compensate all of these potential costs of reproductive interference. In addition, adaptive 98 

behaviours of females and males can prevent multiple matings by females and consequently 99 

make the CSP mechanism useless. For example, studies on sexual conflict have shown that 100 

females are likely to avoid multiple matings when the benefit is low (Eberhard 1996, Arnqvist 101 

and Rowe 2005). Moreover, to prevent sperm competition, males often try to prevent females 102 

from mating multiple times, for example, by mate guarding after copulation (Alcock 1994), 103 
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by placing a physical plug in female reproductive organs (Matsumoto and Suzuki 1992, Polak 104 

et al. 2001), or by insertion of a chemical that inhibits remating receptivity (Scott 1986, 105 

Gillott 2003, Himuro and Fujisaki 2008). Therefore, to evaluate the ecological role of CSP in 106 

species coexistence, various behavioural and physiological mechanisms affecting the 107 

reproductive process must be taken into account. 108 

 In this study, we examined whether CSP can mitigate the effect of reproductive 109 

interference in two closely related species so that they are able to coexist in a local 110 

environment. We adopted a tripartite approach. First, we developed a behaviourally explicit 111 

mathematical model to analyse behavioural and demographic factors affecting local species 112 

coexistence, with a focus on the multiple copulation rate, mating preference toward 113 

conspecific or heterospecific partners, and the initial population densities of the two species. 114 

Second, we conducted mating experiments with two predatory ladybird species, Harmonia 115 

axyridis and Harmonia yedoensis, to test the predictions of the mathematical model. CSP has 116 

been detected in both these species (Noriyuki et al. 2012), and they occupy different niches in 117 

nature; H. axyridis is a generalist that feeds on various species of preferred aphids, whereas H. 118 

yedoensis specializes on the giant pine aphid, which is a highly elusive prey item and 119 

nutritionally poor for larval development (Noriyuki et al. 2011, Noriyuki and Osawa 2012). In 120 

addition, the reproductive success of H. yedoensis females is strongly decreased in the 121 

presence of H. axyridis males, suggesting that H. yedoensis might utilize the less preferred 122 
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food and habitat to avoid reproductive interference from H. axyridis (Noriyuki et al. 2012). 123 

Third, we investigated the general consequences of CSP on species coexistence in nature by 124 

compiling published data on pairs of species in which CSP has been detected and found that 125 

such species pairs generally show niche separation (habitat and food source) or 126 

geographically separate distributions. We concluded from our results that CSP does not reduce 127 

the overall cost of reproductive interference sufficiently to allow the interacting species to 128 

coexist in the same local environment. 129 

 130 

Materials and methods 131 

 132 

Mathematical model 133 

 134 

We modelled a community of two species (X and Y), with density !"($) and !&($), 135 

respectively, in generation $, inhabiting a single patch. The two species interact through 136 

resource competition as well as through reproductive interference, but they are ecologically 137 

neutral in terms of the total number of offspring per capita that survive to maturation (denoted 138 

r), density-dependent regulation (denoted '), and interspecific competitive strength (denoted 139 

b). We assumed a sex ratio of 1:1 (though we found that the ratio does not affect the results; 140 

see Kyogoku and Sota 2017), and, for the sake of simplicity, at most two instances of 141 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 23, 2018. ; https://doi.org/10.1101/287482doi: bioRxiv preprint 

https://doi.org/10.1101/287482
http://creativecommons.org/licenses/by-nc/4.0/


 8 

copulation per female. Finally, we assumed that females are not always capable of correctly 142 

assessing the species identity of their mating partner; as a result, interspecific mating can 143 

occur even after intraspecific mating (as is the case in H. yedoensis and H. axyridis). 144 

Species X and Y can differ with respect to the rate at which females accept males as 145 

mates (Fig. 1). Specifically, a virgin X-female (i.e., a female of species X) accepts a mating 146 

attempt by an X-male with probability ("|" and a Y-male with probability ("|&, and a once-147 

mated female accepts a mating attempt by an X-male with probability *"|" and with a Y-male 148 

with probability *"|&. Similarly, the probabilities of a Y-female accepting a mating attempt by 149 

a male in the corresponding situations are (&|&, (&|", *&|&, and *&|". 150 

The frequencies of X-males and Y-males (among all males in the community) are as 151 

follows: 152 

[Equation 1] 153 

,X =
./

./0.1
, ,Y =

.1

./0.1
	.            (1) 154 

We denote the expected reproductive output by a single X-female or a single Y-female by 3" 155 

or 3&, respectively. Parameter 4 tunes the intensity of reproductive interference (0 < 4 < 1) 156 

and reflects the degree of interspecific overlap in the reproductive niche; thus, the expected 157 

reproductive output of an X- or Y-female is calculated as: 158 

[Equation 2] 159 

3" = (1 − 4) + 4 ⋅
;/|/0;/|1⋅</|/=1 =/

=/⋅;/|/0=1⋅;/|1
>,         (2) 160 
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3& = (1 − 4) + 4 ⋅
;1|10;1|/⋅<1|1=/ =1

=1⋅;1|10=/⋅;1|/
>, 161 

(see Appendix A). Within the parentheses on the right side of each Eq. (2), (1 − 4) represents 162 

reproductive success independent of density and frequency, and the second term represents 163 

the product of reproductive interference intensity (c) and the conditional probability that, 164 

given a non-virgin, a single female mates with a conspecific male at least once. 165 

 To model the population dynamics under intra- and interspecific competition, we used 166 

the Beverton–Holt model of community dynamics (Beverton and Holt 1957, May and Oster 167 

1976, Ackleh and Salceanu 2014). Specifically, we assume that regulation occurs among 168 

adults, followed by reproduction. Under this assumption, the dynamics are as follows: 169 

[Equation 3] 170 

!" $ + 1 =
./ ? @/(?)

A0B./ ? 0BC.1 ?
,           (3) 171 

!& $ + 1 =
.1 ? @1(?)

A0BC./ ? 0B.1 ?
, 172 

where $ represents the generation, > ≥ 1 represents the life-time survival rate (subsuming the 173 

total number of eggs per capita), ' ≥ 0 tunes density dependence in regulation, and b (0 ≤174 

F ≤ 1) tunes the strength of interspecific resource competition. Throughout this analysis, we 175 

set ' = 1, which does not cause any loss of generality (Ackleh and Salceanu 2014). By using 176 

the underlying link between a continuous-time logistic equation and the discrete-time 177 

Beverton–Holt model (May and Oster 1976), we approximate the dynamics by the following 178 

ordinary differential equations (ODE): 179 
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[Equation 4] 180 

G./(?)

G?
=

./ ? @/(?)

A0 ./ ? 0C.1 ?
− !" $ ,           (4) 181 

G.1(?)

G?
=

.1 ? @1(?)

A0 C./ ? 0.1 ?
− !&($). 182 

All variables and parameters are defined in Table 1. The community equilibrium is obtained 183 

by setting Eqs. (4) to zero. We also carry out a basic local stability analysis of the equilibrium 184 

of the dynamical system to determine possible equilibrium states. Specifically, we identified 185 

conditions leading to species exclusion (i.e., only one species persists) or coexistence (i.e., 186 

both species coexist). 187 

We also visualized the steady states by a numerical approach, first (i) evaluating the 188 

eigenvalues of the Jacobi matrix of equilibria and then (ii) depicting the phase portraits (using 189 

Mathematica 11.2.0; Wolfram Research 2017). For the eigenvalue analyses, we first checked 190 

the number of feasible equilibria (!",!& ≥ 0) given the community dynamics and then 191 

numerically evaluated the real part of the eigenvalues associated with the corresponding 192 

equilibria. 193 

 194 

Experiment 195 

We collected adults of two ladybird species from Japanese red pine (Pinus densiflora Sieb. et 196 

Zucc.) at the University of Tokyo Tanashi Forest (139°32'E, 35°44'N), Tanashi city, Tokyo, 197 

during April 2014, and at the Kumagaya campus of Rissho University (139°36'E, 36°10'N) 198 
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and the Hirose Wild Birds Forest (139°35'E, 36°14'N), Kumagaya city, central Japan, during 199 

April 2015. In the laboratory, we maintained females individually in plastic Petri dishes (9 cm 200 

in diameter by 1.5 cm high) at 25 °C, and fed them each day with a surplus of frozen Ephestia 201 

kuehniella Zeller eggs (Beneficial Insectary, Ontario, Canada) to ready them for reproduction. 202 

In total, 15 H. yedoensis and 8 H. axyridis females in 2014 and 10 H. yedoensis and 9 H. 203 

axyridis females in 2015 produced a sufficient number of egg clutches for our experiments. In 204 

addition, in 2015, we collected 32 H. yedoensis egg clutches and 41 H. axyridis egg clutches 205 

that had been oviposited on the leaves and branches of Japanese red pine trees at the Hirose 206 

Wild Birds Forest. We fed the hatched offspring from both laboratory-laid and wild-collected 207 

egg clutches with a mixture of sucrose, dried yeast, and powdered drone honeybee (following 208 

Niijima et al. 2000) to the adult stage in plastic cases (each 12.5 cm in diameter by 9.5 cm 209 

high) containing wood wool as a substrate on which they could walk. We recorded the date of 210 

emergence, body length (to the nearest 0.01 mm), and elytra colour (black or red) of all newly 211 

emerged adults as possible factors affecting mating preference, and used these virgin 212 

individuals for the following behavioural experiments to standardize the mating experience. 213 

Because it takes approximately 1 month for most individuals of both H. yedoensis and H. 214 

axyridis to mature sexually after they emerge as adults (Okada, Nijima & Toriumi 1978), we 215 

reared the newly emerged adults individually in plastic Petri dishes for at least 30 days, 216 

providing them with frozen E. kuehniella eggs every other day, before using them in mating 217 
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experiments. In addition, we excluded egg clutches from the wild-caught mothers that 218 

produced only female offspring (two H. yedoensis females in 2014 and one H. axyridis female 219 

in 2015) because they were likely to be infected with male-killing bacteria (Noriyuki et al. 220 

2014, 2016), to avoid any confounding effects of male-killing bacteria on the host mating 221 

behaviour (Majerus 2003). 222 

In the mating experiment, we kept one female (H. yedoensis or H. axyridis) and one male 223 

(H. yedoensis or H. axyridis) together in a small Petri dish (5 cm in diameter) on a laboratory 224 

bench at room temperature (25 °C) under constant fluorescent lighting. We never placed 225 

females with sibling males (i.e., individuals produced by the same wild-caught mother or 226 

from the same wild-collected clutch) to preclude any effects of inbreeding avoidance on 227 

mating behaviour. We observed the occurrence of male mating attempts, female rejection 228 

behaviour, and successful copulation in each experimental session (see Noriyuki et al. 2012 229 

for the definition of these behaviours). In 2014, we visually observed mating activities during 230 

15-min sessions. In 2015, we used videocameras (HC-V480, Panasonic, Osaka, Japan) to 231 

record experimental sessions for at least 6 hours (up to 20 hours) and then watched the videos 232 

to analyse mating behaviours. In the 2014 experiments, each pair was allowed to mate after 233 

the 15-min session until copulation was completed. In the 2015 experiments, multiple 234 

copulations were allowed in the same experimental session. Note that Noriyuki et al. (2012) 235 

reported that the mean duration of copulation was 228 min in H. yedoensis and 124 min in H. 236 
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axyridis under similar experimental conditions. In both 2014 and 2015, we reused virgin and 237 

non-virgin individuals after the experimental session for other sessions to analyse the effects 238 

of mating experience on subsequent mating behaviour. 239 

 To examine the effect of mating experience in virgins and non-virgins on the copulation 240 

rate in each species, we analysed the proportion of experimental sessions that included 241 

successful copulation (at least one in the 2015 experiments) by a generalized linear mixed 242 

model with a binomial error structure using the glmer function of the lme4 library (Bates et al 243 

2015) of the R software package (version 3.4.2, R Core Team 2017). Similarly, we compared 244 

the mating rate between intra- and interspecific mating trials in virgin and non-virgin females. 245 

Moreover, we analysed mating preferences of both males and females to determine factors 246 

responsible for the copulation rate. First, we evaluated male preference by the proportion of 247 

experimental sessions that included at least one male mating attempt, whether or not it was 248 

followed by successful mating. Second, we examined the female preference by calculating the 249 

proportion of male mating attempts that elicited female rejection behaviour. In all analyses, 250 

we also incorporated the date of emergence, body length, and elytra colour of females and 251 

males as fixed effects, and the identity of the mother of the female and that of the male as a 252 

random term. We analysed data from the experiments in 2014 and 2015 separately because of 253 

the differences in the source populations and the specific experimental conditions. 254 

Furthermore, we applied signal detection theory (Green and Swets 1966) to disentangle 255 
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the mechanism of decision making in males and females who need to choose conspecific 256 

mating partner over heterospecifics. We computed two statistics, d′ and H, where d′ is signal 257 

strength (a higher value indicates that the mating signal from conspecifics is more readily 258 

detected), and H reflects an individual’s mating strategy. H » 1.0 indicates unbiased decision 259 

making; H » 0.0 indicates a bias towards mating with either a conspecific or heterospecific 260 

individual (i.e., a liberal strategy); and H > 1.0 indicates a bias towards rejection of mating 261 

with either a conspecific or heterospecific individual (i.e., a conservative strategy). d′ and H in 262 

response to signals (male mating attempt and female rejection behaviour) in each species were 263 

computed by using the dprime function of the neuropsychology library for the R software 264 

package (Makowski 2017). To visualize the decision-making performance in response to both 265 

male mating attempts and female rejection behaviour, we calculated the receiver operating 266 

characteristic (ROC) curve, which compares the sensitivity (the true positive rate, plotted on 267 

the y-axis) with the specificity (the false positive rate, plotted on the x-axis), for the signal 268 

detection results by using the ROCR package for R (Sing et al. 2005). Essentially, the closer 269 

an ROC curve is to the upper left corner, the better the decision-making accuracy, and the 270 

closer the curve is to the diagonal line of the panel (i.e., y = x), the more likely that the result 271 

is owing to chance alone (Carter et al. 2016). In addition, we used the DeLong method in the 272 

pROC package for R (Robin et al. 2011) to statistically compare the area under the ROC 273 

curve (AUC) between species in each experiment year. 274 
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 275 

Comparative study 276 

We performed a literature survey, using the ISI Web of Science 277 

(https://webofknowledge.com/) on 30 November 2017 and the key phrase “conspecific sperm 278 

precedence”, to identify congeneric pairs of animal species in which CSP had been detected in 279 

at least one of the pair. In addition, we screened the reference lists of two review papers for 280 

CSP (Howard 1999, Marshall et al. 2002) to locate additional pairs. We classified the 281 

geographic distributions and niches of each pair into one of four categories: (1) sympatry, 282 

geographical distribution of the two species largely overlaps with little if any niche separation 283 

in the sympatric area; (2) niche partitioning, geographical distributions of the two species 284 

overlap with niche partitioning at local scale (e.g., separation by food, habitat, or seasonality) 285 

especially at the reproductive stage; (3) parapatry, geographical distributions of the two 286 

species do not overlap but are adjacent with a narrow contact (hybridization) zone; or (4) 287 

allopatry, geographical distributions of the two species do not overlap and are not adjacent. 288 

We excluded species with cosmopolitan, human-mediated distributions (e.g., Drosophila 289 

simulans, Tribolium flour beetles, and Callosobruchus bean weevils) from the analysis 290 

because their habitats and distributions in the natural environment are unclear. In total, we 291 

analysed 24 species pairs of marine invertebrates, terrestrial insects, and vertebrates. 292 

 293 
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Results 294 

 295 

Mathematical model 296 

Equilibria 297 

We found dynamic population equilibria, designated by an asterisk (*), on (i) the !"-axis (i.e., 298 

!I
∗ > 0,!&

∗ = 0), (ii) the !&∗-axis (i.e., !I∗ = 0,!"
∗ > 0), or (iii) in the interior (i.e., !I∗ >299 

0, !&
∗ > 0). The boundary equilibria (as a result of competitive exclusion) are given by 300 

L" = > − 1, 0 , L& = 0, > − 1  301 

whereas the interior equilibrium did not have analytical formula (note that because we assume 302 

> > 1, boundary equilibria were always feasible). 303 

Stability analyses 304 

The stability conditions for the equilibria (species exclusion or coexistence) were determined 305 

from the eigenvalues of a Jacobi matrix around the focal equilibrium (more details are given 306 

in Appendix B). The necessary condition for a stable equilibrium resulting in extinction of one 307 

of the two species is given by:  308 

[Equation 5] 309 

F + 4
M

MNA
> 1.             (5) 310 

In particular, 4 = 1 (i.e., reproductive niches of the species overlap completely) necessarily 311 

leads to competitive exclusion given the parameter set for p and q used in our analysis (Fig. 312 
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2), even in the absence of interspecific resource competition (i.e., b = 0). See Appendix C for 313 

the numerical procedures for basins of attraction. 314 

 We note here that, if the two species are highly symmetric in terms of p and q values, 315 

then more outcomes become possible; in particular, species exclusion and coexistence states 316 

can be stable simultaneously (“bi-stable”), in agreement with Kishi and Nakazawa (2013) and 317 

Kyogoku and Sota (2017). Our particular intention here, however, is to explore the effects of 318 

asymmetry in mating behaviour (p and q values) on the community dynamics in our 319 

experimental system. For more details about the consequences of symmetric p and q values, 320 

see Appendix D. Also, it is possible to incorporate differences in the number of mating 321 

attempts in a given time period (i.e., mating activity) such that the encounter rate with an X- 322 

or Y-male can be biased towards either species relative to their frequency i the community (," 323 

and ,&); however, changes in the encounter rate did not change the results dramatically, 324 

although species exclusion became more likely (see Appendix D for more information). 325 

 326 

Experiment 327 

Mating experience did not have a significant effect on the rate of copulation in either the 2014 328 

or the 2015 experiment (Fig. SI 4, Table S1); therefore, virgin and non-virgin females were 329 

pooled in the following analyses. The copulation rate was higher in H. axyridis females than 330 

in H yedoensis females, especially in the 2014 experiments, although the difference was not 331 
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statistically significant (Fig. 3, Table S2). In the 2015 experiment, H. axyridis was more likely 332 

to mate with conspecifics, whereas no such assortative mating pattern was observed in H. 333 

yedoensis; that is there was a significant interaction effect between female species and species 334 

identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the 335 

2014 and 2015 experiments, H. axyridis males more frequently attempted to mate with 336 

conspecific females, whereas H. yedoensis males did not show a significant preference 337 

towards conspecific females (Table S3). Harmonia axyridis females were more likely than H. 338 

yedoensis females to refuse mating attempts by conspecific males, especially in the 2014 339 

experiment (Table S4); however, both coercive mating and copulation failure occurred in both 340 

species following female rejection behaviour. 341 

In the signal detection analysis results, d′ in response to male mating attempts was higher 342 

in H. axyridis than in H. yedoensis in both 2014 and 2015 (Table S5). Further, the AUC for 343 

male mating attempts was significantly higher in H. axyridis than in H. yedoensis in both 344 

2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 345 

behaviour was detected between species or years in the signal detection analysis, probably in 346 

part because of the small sample size (Table S6). The AUC results for female rejection 347 

behaviour was also not significantly different between species in either experiment year (Fig. 348 

4, Table 2). 349 

 350 
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(c) Comparative study 351 

We found spatial separation at both local (niche partitioning) and regional scales (parapatry or 352 

allopatry) among species pairs exhibiting CSP, including in marine abalones, freshwater 353 

fishes, terrestrial insects, birds, and mice (Table 3). We observed parapatry mainly in 354 

Orthoptera (crickets and grasshoppers). We detected sympatry without apparent niche 355 

partitioning in 6 of 24 species pairs, especially in aquatic invertebrates such as mussels, 356 

starfishes, and sea urchins. 357 

 358 

Discussion 359 

 360 

Our results suggest that reproductive interference is likely to hamper stable species 361 

coexistence in a local patch even when the interacting species exhibit CSP. Our experimental 362 

results for two species in which CSP has been detected showed that the mating rate in a given 363 

period was higher in H. axyridis females than in H. yedoensis females (Fig. 3), and that H. 364 

axyridis, but not H. yedoensis, was more likely to copulate with a partner of its own species 365 

(Figs. 3 and 4). Our mathematical model indicated that these observed behavioural differences 366 

between these Harmonia species have a community-level consequence: namely, H. yedoensis 367 

becomes extinct in a local patch because of reproductive interference from H. axyridis (Figs. 368 

SI 2 and SI 3). Furthermore, our comparative study of species pairs exhibiting CSP 369 
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demonstrated that parapatric distribution or niche partitioning, but not sympatric coexistence 370 

in the same habitat, can be maintained between two closely related species of a wide range of 371 

taxa, including both vertebrates and invertebrates living in either aquatic or terrestrial 372 

environments (Table 3). Taken together, these results lead us to conclude that CSP does not 373 

generally promote local coexistence between closely related species with overlapping 374 

reproductive niches. 375 

 Our experiment using Harmonia ladybirds, combined with our theoretical analysis, 376 

clarified the behavioural mechanisms of species exclusion. The rate of copulation was not 377 

significantly different between virgin and non-virgin females in the two Harmonia species 378 

(Fig. SI 4), suggesting that mating experience did not affect the reproductive success of 379 

individuals or the subsequent population dynamics in these species. However, the results of 380 

our signal detection analysis indicated that H. axyridis males easily distinguish and choose 381 

conspecific females over heterospecific females (Fig. 4, Table 2), whereas mating rates with 382 

conspecifics was low in H. yedoensis (Fig. 3). Our mathematical model demonstrated that, in 383 

the situations examined by our experiments, H. axyridis is likely to mate with a conspecific 384 

partner at least once before oviposition begins, whereas H. yedoensis females, even though 385 

they exhibit CSP, are incapable of producing viable offspring in the presence of H. axyridis 386 

males, with the result that H. axyridis is predicted to exclude H. yedoensis from the local 387 

patch (Fig. 2). This prediction is consistent with the niche partitioning observed in the field, 388 
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where H. axyridis feeds on preferred prey items on various types of trees and H. yedoensis 389 

specializes in highly elusive prey on only pine trees. The pine habitat may function as a refuge 390 

for H. yedoensis, where it can avoid reproductive interference from H. axyridis (Noriyuki et 391 

al. 2012). 392 

 Our mathematical model highlighted the behavioural mechanisms that affect the 393 

asymmetry of reproductive interference and subsequent species exclusion. Although the 394 

classic theory of interspecific competition postulates that species exclusion occurs through 395 

exploitative competition for shared resources (Chesson 2000), our model results demonstrated 396 

that interference interactions during the reproductive stage hamper the coexistence of two 397 

species even when they demonstrate equal competitive strength for resources. In addition, our 398 

model results showed that slight differences in mating activity, mating preference, and 399 

remating acceptance determine which of two interacting species is superior with respect to 400 

reproductive interference (Figs. SI 2 and SI 3), whereas previous theoretical studies on 401 

reproductive interference did not fully take into account the consequences of behavioural 402 

processes on population dynamics and species' fates (Yoshimura and Clark 1994, Kishi and 403 

Nakazawa 2013, Kyogoku and Sota 2017). In addition, we found that species exclusion is 404 

more likely to occur for a wide range of initial population densities of the two species when 405 

the intensity of reproductive interference is high (Fig. 2). This finding means that closely 406 

related species are unlikely to coexist in the same environment if they have similar mating 407 
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signals or if they share a reproductive niche in space and time; as a result, niche partitioning 408 

or geographical segregation of the species is likely to occur. 409 

Our comparative study found a separation of niche use or geographical distributions 410 

between species pairs with CSP in a range of taxa (Table 3). This finding suggests that CSP 411 

alone does not allow these species pairs to coexist in the same local environment. The pattern 412 

corresponds found in our comparative study is consistent with the prediction of our 413 

mathematical model that two interacting species are unlikely to coexist when c (intensity of 414 

reproductive interference) is high (Fig. 2). However, sympatric coexistence without apparent 415 

niche separation was also detected, especially in free-spawning marine invertebrates such as 416 

mussels, starfishes, and sea urchins (Table 3). There are several possible reasons that can 417 

account for the discrepancy between our model prediction and the actual pattern in nature in 418 

these cases. First, niche separation might actually exist, but, perhaps because of limited field 419 

survey data, it may not have been recognized. In fact, fine-scale differences in adult habitat 420 

and the timing of spawning have been detected in closely related marine invertebrate species 421 

(Lindberg 1992, Fogarty 2012). Therefore, it is possible that niche separation has actually 422 

occurred to mitigate the cost of reproductive interference in such species. Second, dispersal to 423 

new patches can allow overlapping niche use at a local scale even when two species engage in 424 

competitive interactions. Especially in marine sessile invertebrates that have high dispersal 425 

ability in the larval stage and a sedentary life style in the adult stage, source–sink dynamics 426 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 23, 2018. ; https://doi.org/10.1101/287482doi: bioRxiv preprint 

https://doi.org/10.1101/287482
http://creativecommons.org/licenses/by-nc/4.0/


 23 

(Mouquet and Loreau 2003) and stochastic processes (Paine and Levin 1981) likely promote 427 

local species coexistence. Third, in sessile animals, decision making at the pre-mating stage 428 

may not be important; females may be likely to accept sperm from conspecific as well as from 429 

heterospecific males, which means that CSP makes it possible for them to produce viable 430 

offspring. In this situation, therefore, CSP can indeed mitigate the cost of interspecific mating 431 

and thus promote species coexistence in the same niche. Clearly, it is important to incorporate 432 

life-history characteristics when considering the community-level consequences of 433 

behavioural decision making in animals. 434 

By including plants, it would be possible to extend our model to more general scenarios 435 

of interacting species under imperfect species recognition. Reproductive interference occurs 436 

in flowering plants when the stigma receive heterospecific as well as conspecific pollen 437 

grains, for example when flowering phenology and pollinators overlap (Matsumoto et al. 438 

2010, Runquist and Stanton 2013, Takakura 2013, Nishida et al. 2014). In some cases, 439 

however, conspecific pollen tubes preferentially grow and fertilize the ovules (Baldwin and 440 

Husband 2010, reviewed in Howard 1999). This phenomenon is called conspecific pollen 441 

precedence, and is considered a mechanism of reproductive isolation that prevents 442 

hybridization, and consequently, speciation in plants (Howard 1999). Therefore, it is 443 

suggested that conspecific pollen precedence in plants, similar to CSP in animals, can mitigate 444 

the cost of reproductive interference and lead to species coexistence in the same habitat. 445 
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Alternatively, as our model predicted, conspecific pollen precedence may be insufficient to 446 

allow interacting species to coexist in the same local environment. In fact, in three species of 447 

Iris, conspecific pollen precedence has been detected together with habitat differences 448 

(Carney et al. 1996; Emms et al. 1996), suggesting that reproductive interference destabilizes 449 

local coexistence of these species. In future, it would be interesting to examine whether our 450 

model is applicable to plant species by investigating reproductive success in species pairs 451 

exhibiting conspecific pollen precedence. 452 

 In conclusion, our study clarified the ecological significance of CSP by identifying 453 

conditions that lead to local species exclusion despite the presence of CSP. This finding is in 454 

contrast to those of previous studies of CSP, which have focused on its evolutionary 455 

significance, that is, speciation through post-mating pre-zygotic reproductive isolation. 456 

Moreover, many CSP studies have not quantified pre-mating behaviours that can affect the 457 

reproductive success of females but have instead examined the functioning of CSP by 458 

focusing on post-mating, pre-zygotic mechanisms. Importantly, however, it has been 459 

documented that the overall costs of reproductive interference, including loss of mating 460 

opportunity and decreases in the oviposition rate due to male interference, can lead to the 461 

extinction of one of the interacting species even if interspecific mating and insemination does 462 

not occur (Kishi et al. 2009, Friberg et al. 2013, Carrasquilla and Lounibos 2015). Therefore, 463 

to understand individual reproductive success and community structure of closely related 464 
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species, pre-mating behaviours should not be neglected. 465 
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Figures 837 

 838 

 839 

 840 

Fig. 1. Schematic mating decision-making tree for a female of species X according to our 841 

mathematical model. Here, (P, Q) means a female with i intraspecific matings and j 842 

interspecific matings (1	 ≤ 	P	 + 	Q	 ≤ 	2). A virgin female has state (0, 0), and she accepts a 843 

given X-male or Y-male with a probability ("|" and ("|&, respectively. Subsequently, the non-844 

virgin female with state (0, 1) or (1, 0) accepts an X-male or Y-male with probability *"|" or 845 

*"|&, respectively. The corresponding mating decision-making tree for a Y-female can be 846 

obtained by exchanging X and Y. The female states after the second mating that include at 847 
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least one intraspecific mating (i ≥ 1) are shaded red; in this case, the female can produce 848 

offspring of her own species through CSP. The states of females that failed to copulate with a 849 

conspecific male before producing offspring (i = 0) are shaded grey. 850 

  851 
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a 852 

 853 

b 854 

 855 

Fig. 2. Phase portraits of the population dynamics according to the original, time-discrete 856 

dynamics and the approximated, time-continuous dynamics (i.e. ODE), for varying intensities 857 

of reproductive interference (RI; tuned by 4). (a) Co-existence is possible when RI intensity is 858 
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weak (4	 = 	0.5). (b) Competitive exclusion occurs when RI intensity is very strong (4	 = 	1). 859 

Dotted curves, isoclines; arrows: approximated vector fields based on the ODE; open circles, 860 

unstable equilibria; and closed circles, stable equilibria. The procedure used to produce the 861 

figures is described in Appendix C. Probability parameter values: ("" 	= 0.4, *"" 	=862 

	0.4, ("& 	= 	0.8, (&& 	= 	0.8, (&" 	= 0.4, *&& 	= 	0.8; other parameters, default values (see 863 

Table 1).  864 
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 865 

 866 

 867 

Fig. 3. Mating rates with conspecific (white) and heterospecific (black) males in the (a) 2014 868 

and (b) 2015 experiments. The number of individuals in each category is shown above each 869 

bar. 870 
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 872 

 873 

 874 

Fig. 4. Receiver operating characteristic curves for (a) mating attempts by males and (b) 875 

rejection behaviour in females. In each panel, red and blue lines indicate H. yedoensis and H. 876 

axyridis, respectively, and dashed and solid lines indicate the 2014 and 2015 experiments, 877 

respectively. 878 
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Table 1. Parameters included in the model. 881 

 882 

Parameter/Variable	 Definition	 Default	value	(if	any)	

X	or	Y	 Species	label	 –	

!",!&	 Density	of	X	or	Y	 Dynamic	variable	

t	 Generation	(t	≥	0)	 –	

r	 Egg	production	(per	capita)	 25	

v	 Density	 dependence	 of	 resource	

competition	(v	>	0)	
1	

b	 Strength	of	 interspecific	competition	(b	>	
0)	

0.3	

4	 Strength	of	reproductive	interference	(0	<	

c	<	1);	probability	that	a	female	is	subject	
to	a	possible	heterospecific	mating	

Varied	

(W|X	 Probability	that	a	virgin	female	of	species	

i)	 accepts	 a	mating	 attempt	 by	 a	male	 of	
species	j,	where	i	and	j	can	be	either	X	or	Y	

See	Fig.	2	

*W|X	 Probability	 that	 a	 non-virgin	 female	 of	

species	 i	 accepts	 a	 mating	 attempt	 by	 a	
male	 of	 species	 j,	 where	 i	 and	 j	 can	 be	
either	X	or	Y	

See	Fig.	2	

,"	 = !"/(!" + !&) 	 Frequency	of	species	X	in	the	population	 Dynamic	variable	

3", 3&	 Expected	reproductive	output	(per	capita),	

calculated	 based	 upon	 the	 mating	

decision-making	 tree	 (see	 Fig.	 1),	 for	

species	X	or	Y	

–	

 883 

  884 
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Table 2. Comparison of the area under curve (AUC) values between species. Statistically 885 

significant results are shown in boldface. 886 

 887 

  888 

Behaviour Year AUC  Statistic   
  H. yedoensis H. axyridis D df P 

Male mating attempt 2014 0.429  0.635  –3.738  298.130  < 0.001 
 2015 0.512  0.630  –2.247  220.750  0.026  
Female rejection 2014 0.571  0.421  1.648  87.723  0.103  

 2015 0.519  0.485  0.481  52.513  0.632  
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Table 3. Summary of comparative study results. 1 

 2 

Group Common name Species pair Category Description Reference 

Marine invertebrate Abalone Haliotis corrugata and H. rufescens Sympatry Niche overlap in terms of water depth and habitat 1–3 

  Haliotis cracherodii and H. rufescens Niche partitioning Intertidal zone versus kelp forest habitat 3, 4 

  Haliotis fulgens and H. rufescens Niche partitioning Shallow versus deep water habitats 2, 3, 5 

 Blue mussel Mytilus trossulus and M. edulis Sympatry Hybrid zone is not narrow 6, 7 

 Starfish Asterias forbesi and A. rubens Sympatry Similar habitats, food resources, and spawning time 8, 9 

 Coral Montastraea annularis and M. franksi Niche partitioning Separation in (slightly overlapped) spawning time 10 

 Sea urchin Echinometra mathaei and E. oblonga Sympatry Slight ecological differences 11 

  Echinometra oblonga and E. sp. C Sympatry Slight difference in habitat but similar spawning time 12 

Terrestrial invertebrate Cricket Allonemobius fasciatus and A. socius Parapatry  13, 14 

  Gryllus firmus and G. pennsylvanicus Parapatry  15, 16 

  Gryllus bimaculatus and G. campestris Parapatry  17, 18 

 Grasshopper Chorthippus p. parallelus and C. p. erythropus Parapatry  19, 20 

  Podisma pedestris races Parapatry  21, 22 

 Ladybird Epilachna pustulosa and E. vigintioctomaculata Niche partitioning Host plant separation 23, 24 

  Harmonia yedoensis and H. axyridis Niche partitioning Difference in prey item and habitat 25 

 Fruit fly Drosophila yakuba and D. santomea Parapatry Lowland versus highland distributions 26, 27 

 Stalk-eyed fly Teleopsis dalmanni diverged populations Allopatry  28, 29 

 Damselfly Ischnura graellsii and I. elegans Niche partitioning The two species are rarely found in the same localities 30–33 

Vertebrate Darter fish Etheostoma barrenense and E. zonale Sympatry Not closely related within the genus 34 

  Etheostoma hopkinsi and E. luteovinctum Allopatry  35 
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 3 

1: Vacquier et al. (1990); 2: Cox (1962);  3: Lindberg (1992);  4: Vacquier and Lee (1993); 5: Kresge et al. (2000); 6: Klibansky and McCartney 4 

(2014); 7: Gaitán-Espitia et al. (2016); 8: Harper and Hart (2005); 9: Menge (1979); 10: Fogarty et al. (2012); 11: Metz et al. (1994); 12: Geyer 5 

and Palumbi (2005); 13: Howard et al. (1998); 14: Howard and Waring (1991); 15: Larson et al. (2012); 16: Harrison and Arnold (1982); 17: 6 

Tyler et al. (2013); 18: Veen et al. (2013); 19: Butlin (1998); 20: Butlin and Hewitt (1985); 21: Hewitt et al. (1989); 22: Hewitt (1975); 23: 7 

Nakano (1985); 24: Matsubayashi and Katakura (2009); 25: Noriyuki et al. (2012); 26: Chang (2004); 27: Lachaise et al. (2000); 28: Rose et al. 8 

(2014); 29: Christianson et al. (2005); 30: Sanchez-Guillen et al. (2011a); 31: Sánchez-Guillén et al. (2011b); 32: Sánchez-Guillén et al. (2013a); 9 

33: Sánchez-Guillén et al. (2013b); 34: Williams and Mendelson (2014); 35: Mendelson et al. (2007); 36: Yeates et al. (2013); 37: Heggberget et 10 

al. (1988); 38: Jonsson and Jonsson (2009); 39: Immler et al. (2011); 40: Osenberg et al. (1992); 41: Veen et al. (2001); 42: Qvarnström et al. 11 

(2009); 43: Vallin et al. (2012); 44: Dean and Nachman (2009); 45: Payseur et al. (2004).12 

 Salmonid Salmo salar and S. trutta Niche partitioning Spatial and temporal segregation in spawning activities 36–38 

 Sunfish Lepomis macrochirus and L. gibbosus Niche partitioning Differences in nesting and breeding habits 39, 40 

 Bird Ficedula hypoleuca and F. albicollis Niche partitioning Separation in breeding habitat 41–43 

�  Mouse Mus domesticus and M. musculus Parapatry �  44, 45 
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