```
Title: Reproductive interference hampers species coexistence despite
 1
     conspecific sperm precedence
 2
 3
     Authors (Alphabetically ordered):
 4
     Ryosuke IRITANI<sup>1, 2, 4</sup> & Suzuki NORIYUKI<sup>3, 4</sup>*
 5
 6
 7
      <sup>1</sup>Department of Integrative Biology, University of California, Berkeley, USA
 8
     <sup>2</sup>Biosciences, College of Life and Environmental Science, University of Exeter, Cornwall
 9
     Campus, Penryn, Cornwall TR10 9EZ, the United Kingdom
10
     <sup>3</sup>Faculty of Agriculture and Marine Science, Kochi University, Japan
     <sup>4</sup>Both authors contributed equally.
11
12
13
14
     *Author for correspondence
15
     E-mail: fvgnoriyuki@gmail.com
16
17
```

18 Abstract

19

20 Negative interspecific mating interactions, known as reproductive interference, can hamper 21 species coexistence in a local patch and promote niche partitioning or geographical 22 segregation of closely related species. Conspecific sperm precedence (CSP), which occurs 23 when females that have mated with both conspecific and heterospecific males preferentially 24 use conspecific sperm for fertilization, might contribute to species coexistence by mitigating 25 the costs of interspecific mating and hybridization. We examined whether two closely related 26 species exhibiting CSP can coexist in a local environment in the presence of reproductive 27 interference. First, using a behaviourally explicit mathematical model, we demonstrated that 28 two species characterized by negative mating interactions are unlikely to coexist because the 29 costs of reproductive interference, such as loss of mating opportunity with conspecific 30 partners, are inevitably incurred when individuals of both species are present. Second, we 31 experimentally demonstrated differences in mating activity and preference in two Harmonia 32 ladybird species known to exhibit CSP. According to the developed mathematical model of 33 reproductive interference, these behavioural differences should lead to local extinction of H. 34 vedoensis because of reproductive interference by H. axyridis. This prediction is consistent 35 with field observations that *H. axvridis* uses various food sources and habitats whereas *H. vedoensis* is confined to a less preferred prey item and a pine tree habitat. Finally, by a 36 37 comparative approach, we showed that niche partitioning or parapatric distribution, but not 38 sympatric coexistence in the same habitat, is maintained between species with CSP belonging 39 to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial 40 environments. Taken together, these results lead us to conclude that reproductive interference 41 generally destabilizes local coexistence even in closely related species that exhibit CSP.

42

43 **Key words:** community dynamics, competitive exclusion, host specialization, niche

44 partitioning, reproductive interference, reproductive isolation, resource competition

45

47 Introduction

48

49	Restrictions to local coexistence among phylogenetically related species are closely related to
50	niche partitioning and the diversification of resource use traits, which help to determine
51	community assemblages at both local and regional scales (Schluter 2000, Grant and Grant
52	2011, Losos 2011). Therefore, understanding the mechanisms that restrict local coexistence is
53	of fundamental importance in ecology and evolution. Negative interspecific mating
54	interaction, that is, reproductive interference, is one mechanism that can drive species
55	exclusion at local scale and subsequent niche partitioning among species (Gröning and
56	Hochkirch 2008). Reproductive interference has been theoretically demonstrated to hamper
57	species coexistence in a homogeneous environment even in ecologically neutral species with
58	similar growth rates and abilities to compete for shared resources (Kuno 1992, Konuma and
59	Chiba 2007, Crowder et al. 2011, Nishida et al. 2015, Kyogoku and Sota 2017). Moreover,
60	empirical studies have also reported that reproductive interference contributes to niche
61	partitioning between congeneric species with overlapping mating signals, including in frogs
62	(Ficetola and Bernardi 2005), birds (Vallin et al. 2012), mites (Takafuji et al. 1997), and
63	insects (butterflies, Friberg et al. 2013; grasshoppers, Hochkirch et al. 2007; ladybirds,
64	Noriyuki et al. 2012). Therefore, reproductive interference is a determinant of local and
65	regional species diversity in a wide range of animal taxa in nature, though its significance in

66 community ecology has been underestimated for decades (Gröning and Hochkirch 2008,

67 Kyogoku 2015).

68	A number of mechanisms, however, are reported to mitigate the negative impacts of
69	reproductive interference on the coexistence of species occupying the same niche, including
70	plastic responses in reproductive traits (Otte and Hilker 2016), continued dispersal to new sets
71	of ephemeral resource patches (Ruokolainen and Hanski 2016), and reinforcement of
72	reproductive isolation (Bargielowski et al. 2013). One possible mitigating mechanism is
73	conspecific sperm precedence (CSP), where females that have mated with both conspecific
74	and heterospecific males preferentially use conspecific sperm for fertilization (Howard 1999).
75	Such females might experience fewer costs associated with interspecific mating and
76	hybridization (i.e., waste of gametes), because most or all of their offspring will be pure
77	conspecifics (Nakano 1985, Veen et al. 2001, Marshall et al. 2002). In addition, in various
78	animals, mating order has been shown to have no influence on whether a female us able to
79	preferentially use conspecific sperm (Howard et al. 1998, Marshall et al. 2002), suggesting
80	that complete CSP can largely eliminate the negative impact of interspecific mating provided
81	that females have mated with at least one conspecific male before the onset of oviposition or
82	birthing (Marshall et al. 2002). CSP has been reported in a variety of animal taxa, including
83	sea urchins (Geyer and Palumbi 2005), mussels (Klibansky and McCartney 2013), crickets
84	(Howard et al. 1998), fruit flies (Price 1997), beetles (Fricke and Arnqvist 2004, Rugman-

85	Jones and Eady 2007), fishes (Yeates et al. 2013), and mice (Dean and Nachman 2009), and
86	thus potentially plays an important role in species coexistence. Although CSP has attracted
87	much attention as a driver of speciation through post-mating and pre-zygotic reproductive
88	isolation (Howard et al. 1998; Howard 1999), it is still unclear whether CSP can sufficiently
89	ameliorate the cost of reproductive interference to promote stable coexistence of closely
90	related species in the same local environment.
91	CSP may not fully function as a barrier against reproductive interference. Under
92	imperfect species discrimination, individual females may incur a variety of costs as a result of
93	interactions with heterospecific males during the reproductive process, such as reduced
94	longevity and oviposition rates (Kawatsu and Kishi 2017), physical damage caused by
95	interspecific copulation (Kyogoku and Sota 2015), and loss of opportunity to mate with
96	conspecific partners (Thum 2007, Noriyuki et al. 2012, Ramiro et al. 2015), as well as the
97	production of unviable hybrid offspring (Todesco et al. 2016). CSP alone might be insufficient
98	to compensate all of these potential costs of reproductive interference. In addition, adaptive
99	behaviours of females and males can prevent multiple matings by females and consequently
100	make the CSP mechanism useless. For example, studies on sexual conflict have shown that
101	females are likely to avoid multiple matings when the benefit is low (Eberhard 1996, Arnqvist
102	and Rowe 2005). Moreover, to prevent sperm competition, males often try to prevent females
103	from mating multiple times, for example, by mate guarding after copulation (Alcock 1994),

104	by placing a physical plug in female reproductive organs (Matsumoto and Suzuki 1992, Polak
105	et al. 2001), or by insertion of a chemical that inhibits remating receptivity (Scott 1986,
106	Gillott 2003, Himuro and Fujisaki 2008). Therefore, to evaluate the ecological role of CSP in
107	species coexistence, various behavioural and physiological mechanisms affecting the
108	reproductive process must be taken into account.
109	In this study, we examined whether CSP can mitigate the effect of reproductive
110	interference in two closely related species so that they are able to coexist in a local
111	environment. We adopted a tripartite approach. First, we developed a behaviourally explicit
112	mathematical model to analyse behavioural and demographic factors affecting local species
113	coexistence, with a focus on the multiple copulation rate, mating preference toward
114	conspecific or heterospecific partners, and the initial population densities of the two species.
115	Second, we conducted mating experiments with two predatory ladybird species, Harmonia
116	axyridis and Harmonia yedoensis, to test the predictions of the mathematical model. CSP has
117	been detected in both these species (Noriyuki et al. 2012), and they occupy different niches in
118	nature; <i>H. axyridis</i> is a generalist that feeds on various species of preferred aphids, whereas <i>H.</i>
119	yedoensis specializes on the giant pine aphid, which is a highly elusive prey item and
120	nutritionally poor for larval development (Noriyuki et al. 2011, Noriyuki and Osawa 2012). In
121	addition, the reproductive success of <i>H. yedoensis</i> females is strongly decreased in the
122	presence of <i>H. axyridis</i> males, suggesting that <i>H. yedoensis</i> might utilize the less preferred

123	food and habitat to avoid reproductive interference from <i>H. axyridis</i> (Noriyuki et al. 2012).
124	Third, we investigated the general consequences of CSP on species coexistence in nature by
125	compiling published data on pairs of species in which CSP has been detected and found that
126	such species pairs generally show niche separation (habitat and food source) or
127	geographically separate distributions. We concluded from our results that CSP does not reduce
128	the overall cost of reproductive interference sufficiently to allow the interacting species to
129	coexist in the same local environment.
130	
131	Materials and methods
132	
133	Mathematical model
134	
135	We modelled a community of two species (X and Y), with density $N_X(t)$ and $N_Y(t)$,
136	respectively, in generation t , inhabiting a single patch. The two species interact through
137	resource competition as well as through reproductive interference, but they are ecologically
138	neutral in terms of the total number of offspring per capita that survive to maturation (denoted
139	r), density-dependent regulation (denoted v), and interspecific competitive strength (denoted
140	b). We assumed a sex ratio of 1:1 (though we found that the ratio does not affect the results;
141	see Kyogoku and Sota 2017), and, for the sake of simplicity, at most two instances of

142	copulation per female. Finally, we assumed that females are not always capable of correctly
143	assessing the species identity of their mating partner; as a result, interspecific mating can
144	occur even after intraspecific mating (as is the case in <i>H. yedoensis</i> and <i>H. axyridis</i>).
145	Species X and Y can differ with respect to the rate at which females accept males as
146	mates (Fig. 1). Specifically, a virgin X-female (i.e., a female of species X) accepts a mating
147	attempt by an X-male with probability $p_{X X}$ and a Y-male with probability $p_{X Y}$, and a once-
148	mated female accepts a mating attempt by an X-male with probability $q_{X X}$ and with a Y-male
149	with probability $q_{X Y}$. Similarly, the probabilities of a Y-female accepting a mating attempt by
150	a male in the corresponding situations are $p_{Y Y}$, $p_{Y X}$, $q_{Y Y}$, and $q_{Y X}$.
151	The frequencies of X-males and Y-males (among all males in the community) are as
152	follows:

153 [Equation 1]

154
$$f_{\rm X} = \frac{N_{\rm X}}{N_{\rm X} + N_{\rm Y}}, f_{\rm Y} = \frac{N_{\rm Y}}{N_{\rm X} + N_{\rm Y}}.$$
 (1)

We denote the expected reproductive output by a single X-female or a single Y-female by E_X or E_Y , respectively. Parameter *c* tunes the intensity of reproductive interference (0 < c < 1) and reflects the degree of interspecific overlap in the reproductive niche; thus, the expected reproductive output of an X- or Y-female is calculated as:

159 [Equation 2]

160
$$E_{\rm X} = \left((1-c) + c \cdot \frac{(p_{\rm X|\rm X} + p_{\rm X|\rm Y} \cdot q_{\rm X|\rm X} f_{\rm Y}) f_{\rm X}}{f_{\rm X} \cdot p_{\rm X|\rm X} + f_{\rm Y} \cdot p_{\rm X|\rm Y}} \right) r, \tag{2}$$

161
$$E_{\mathrm{Y}} = \left((1-c) + c \cdot \frac{(p_{\mathrm{Y}|\mathrm{Y}} + p_{\mathrm{Y}|\mathrm{X}} \cdot q_{\mathrm{Y}|\mathrm{Y}} f_{\mathrm{X}}) f_{\mathrm{Y}}}{f_{\mathrm{Y}} \cdot p_{\mathrm{Y}|\mathrm{Y}} + f_{\mathrm{X}} \cdot p_{\mathrm{Y}|\mathrm{X}}} \right) r,$$

162 (see Appendix A). Within the parentheses on the right side of each Eq. (2), (1 - c) represents 163 reproductive success independent of density and frequency, and the second term represents 164 the product of reproductive interference intensity (c) and the conditional probability that, 165 given a non-virgin, a single female mates with a conspecific male at least once. 166 To model the population dynamics under intra- and interspecific competition, we used 167 the Beverton-Holt model of community dynamics (Beverton and Holt 1957, May and Oster 168 1976, Ackleh and Salceanu 2014). Specifically, we assume that regulation occurs among 169 adults, followed by reproduction. Under this assumption, the dynamics are as follows: 170 [Equation 3] $N_{\mathrm{X}}(t+1) = \frac{N_{\mathrm{X}}(t)E_{\mathrm{X}}(t)}{1+\nu N_{\mathrm{X}}(t)+\nu b N_{\mathrm{Y}}(t)},$ 171 (3) $N_{\mathrm{Y}}(t+1) = \frac{N_{\mathrm{Y}}(t)E_{\mathrm{Y}}(t)}{1+\nu bN_{\mathrm{X}}(t)+\nu N_{\mathrm{Y}}(t)},$ 172 173 where t represents the generation, $r \ge 1$ represents the life-time survival rate (subsuming the 174 total number of eggs per capita), $v \ge 0$ tunes density dependence in regulation, and $b (0 \le 1)$ 175 $b \leq 1$) tunes the strength of interspecific resource competition. Throughout this analysis, we 176 set v = 1, which does not cause any loss of generality (Ackleh and Salceanu 2014). By using 177 the underlying link between a continuous-time logistic equation and the discrete-time 178 Beverton-Holt model (May and Oster 1976), we approximate the dynamics by the following 179 ordinary differential equations (ODE):

180 [Equation 4]

181
$$\frac{\mathrm{d}N_{\mathrm{X}}(t)}{\mathrm{d}t} = \frac{N_{\mathrm{X}}(t)E_{\mathrm{X}}(t)}{1 + (N_{\mathrm{X}}(t) + bN_{\mathrm{Y}}(t))} - N_{\mathrm{X}}(t), \tag{4}$$

182
$$\frac{dN_{Y}(t)}{dt} = \frac{N_{Y}(t)E_{Y}(t)}{1 + (bN_{X}(t) + N_{Y}(t))} - N_{Y}(t).$$

183	All variables and parameters are defined in Table 1. The community equilibrium is obtained
184	by setting Eqs. (4) to zero. We also carry out a basic local stability analysis of the equilibrium
185	of the dynamical system to determine possible equilibrium states. Specifically, we identified
186	conditions leading to species exclusion (i.e., only one species persists) or coexistence (i.e.,
187	both species coexist).
188	We also visualized the steady states by a numerical approach, first (i) evaluating the
189	eigenvalues of the Jacobi matrix of equilibria and then (ii) depicting the phase portraits (using
190	Mathematica 11.2.0; Wolfram Research 2017). For the eigenvalue analyses, we first checked
191	the number of feasible equilibria $(N_X, N_Y \ge 0)$ given the community dynamics and then
192	numerically evaluated the real part of the eigenvalues associated with the corresponding
193	equilibria.
194	
195	Experiment
196	We collected adults of two ladybird species from Japanese red pine (Pinus densiflora Sieb. et
197	Zucc.) at the University of Tokyo Tanashi Forest (139°32'E, 35°44'N), Tanashi city, Tokyo,
198	during April 2014, and at the Kumagaya campus of Rissho University (139°36'E, 36°10'N)

199	and the Hirose Wild Birds Forest (139°35'E, 36°14'N), Kumagaya city, central Japan, during
200	April 2015. In the laboratory, we maintained females individually in plastic Petri dishes (9 cm
201	in diameter by 1.5 cm high) at 25 °C, and fed them each day with a surplus of frozen <i>Ephestia</i>
202	kuehniella Zeller eggs (Beneficial Insectary, Ontario, Canada) to ready them for reproduction.
203	In total, 15 H. yedoensis and 8 H. axyridis females in 2014 and 10 H. yedoensis and 9 H.
204	axyridis females in 2015 produced a sufficient number of egg clutches for our experiments. In
205	addition, in 2015, we collected 32 H. yedoensis egg clutches and 41 H. axyridis egg clutches
206	that had been oviposited on the leaves and branches of Japanese red pine trees at the Hirose
207	Wild Birds Forest. We fed the hatched offspring from both laboratory-laid and wild-collected
208	egg clutches with a mixture of sucrose, dried yeast, and powdered drone honeybee (following
209	Niijima et al. 2000) to the adult stage in plastic cases (each 12.5 cm in diameter by 9.5 cm
210	high) containing wood wool as a substrate on which they could walk. We recorded the date of
211	emergence, body length (to the nearest 0.01 mm), and elytra colour (black or red) of all newly
212	emerged adults as possible factors affecting mating preference, and used these virgin
213	individuals for the following behavioural experiments to standardize the mating experience.
214	Because it takes approximately 1 month for most individuals of both <i>H. yedoensis</i> and <i>H.</i>
215	axyridis to mature sexually after they emerge as adults (Okada, Nijima & Toriumi 1978), we
216	reared the newly emerged adults individually in plastic Petri dishes for at least 30 days,
217	providing them with frozen E. kuehniella eggs every other day, before using them in mating

218	experiments. In addition, we excluded egg clutches from the wild-caught mothers that
219	produced only female offspring (two H. yedoensis females in 2014 and one H. axyridis female
220	in 2015) because they were likely to be infected with male-killing bacteria (Noriyuki et al.
221	2014, 2016), to avoid any confounding effects of male-killing bacteria on the host mating
222	behaviour (Majerus 2003).
223	In the mating experiment, we kept one female (H. yedoensis or H. axyridis) and one male
224	(H. yedoensis or H. axyridis) together in a small Petri dish (5 cm in diameter) on a laboratory
225	bench at room temperature (25 °C) under constant fluorescent lighting. We never placed
226	females with sibling males (i.e., individuals produced by the same wild-caught mother or
227	from the same wild-collected clutch) to preclude any effects of inbreeding avoidance on
228	mating behaviour. We observed the occurrence of male mating attempts, female rejection
229	behaviour, and successful copulation in each experimental session (see Noriyuki et al. 2012
230	for the definition of these behaviours). In 2014, we visually observed mating activities during
231	15-min sessions. In 2015, we used videocameras (HC-V480, Panasonic, Osaka, Japan) to
232	record experimental sessions for at least 6 hours (up to 20 hours) and then watched the videos
233	to analyse mating behaviours. In the 2014 experiments, each pair was allowed to mate after
234	the 15-min session until copulation was completed. In the 2015 experiments, multiple
235	copulations were allowed in the same experimental session. Note that Noriyuki et al. (2012)
236	reported that the mean duration of copulation was 228 min in <i>H. yedoensis</i> and 124 min in <i>H.</i>

axyridis under similar experimental conditions. In both 2014 and 2015, we reused virgin and
non-virgin individuals after the experimental session for other sessions to analyse the effects
of mating experience on subsequent mating behaviour.
To examine the effect of mating experience in virgins and non-virgins on the copulation

rate in each species, we analysed the proportion of experimental sessions that included

successful copulation (at least one in the 2015 experiments) by a generalized linear mixed

243 model with a binomial error structure using the glmer function of the lme4 library (Bates et al

244 2015) of the R software package (version 3.4.2, R Core Team 2017). Similarly, we compared

the mating rate between intra- and interspecific mating trials in virgin and non-virgin females.

246 Moreover, we analysed mating preferences of both males and females to determine factors

responsible for the copulation rate. First, we evaluated male preference by the proportion of

248 experimental sessions that included at least one male mating attempt, whether or not it was

followed by successful mating. Second, we examined the female preference by calculating the

250 proportion of male mating attempts that elicited female rejection behaviour. In all analyses,

251 we also incorporated the date of emergence, body length, and elytra colour of females and

252 males as fixed effects, and the identity of the mother of the female and that of the male as a

random term. We analysed data from the experiments in 2014 and 2015 separately because of

the differences in the source populations and the specific experimental conditions.

Furthermore, we applied signal detection theory (Green and Swets 1966) to disentangle

256	the mechanism of decision making in males and females who need to choose conspecific
257	mating partner over heterospecifics. We computed two statistics, d' and β , where d' is signal
258	strength (a higher value indicates that the mating signal from conspecifics is more readily
259	detected), and β reflects an individual's mating strategy. $\beta \approx 1.0$ indicates unbiased decision
260	making; $\beta \approx 0.0$ indicates a bias towards mating with either a conspecific or heterospecific
261	individual (i.e., a liberal strategy); and $\beta > 1.0$ indicates a bias towards rejection of mating
262	with either a conspecific or heterospecific individual (i.e., a conservative strategy). d' and β in
263	response to signals (male mating attempt and female rejection behaviour) in each species were
264	computed by using the dprime function of the neuropsychology library for the R software
265	package (Makowski 2017). To visualize the decision-making performance in response to both
266	male mating attempts and female rejection behaviour, we calculated the receiver operating
267	characteristic (ROC) curve, which compares the sensitivity (the true positive rate, plotted on
268	the y-axis) with the specificity (the false positive rate, plotted on the x-axis), for the signal
269	detection results by using the ROCR package for R (Sing et al. 2005). Essentially, the closer
270	an ROC curve is to the upper left corner, the better the decision-making accuracy, and the
271	closer the curve is to the diagonal line of the panel (i.e., $y = x$), the more likely that the result
272	is owing to chance alone (Carter et al. 2016). In addition, we used the DeLong method in the
273	pROC package for R (Robin et al. 2011) to statistically compare the area under the ROC
274	curve (AUC) between species in each experiment year.

275

276 **Comparative study**

- 277 We performed a literature survey, using the ISI Web of Science
- 278 (https://webofknowledge.com/) on 30 November 2017 and the key phrase "conspecific sperm
- 279 precedence", to identify congeneric pairs of animal species in which CSP had been detected in
- at least one of the pair. In addition, we screened the reference lists of two review papers for
- 281 CSP (Howard 1999, Marshall et al. 2002) to locate additional pairs. We classified the
- 282 geographic distributions and niches of each pair into one of four categories: (1) sympatry,

283 geographical distribution of the two species largely overlaps with little if any niche separation

- in the sympatric area; (2) niche partitioning, geographical distributions of the two species
- overlap with niche partitioning at local scale (e.g., separation by food, habitat, or seasonality)
- especially at the reproductive stage; (3) parapatry, geographical distributions of the two
- species do not overlap but are adjacent with a narrow contact (hybridization) zone; or (4)
- allopatry, geographical distributions of the two species do not overlap and are not adjacent.
- 289 We excluded species with cosmopolitan, human-mediated distributions (e.g., Drosophila
- 290 simulans, Tribolium flour beetles, and Callosobruchus bean weevils) from the analysis
- 291 because their habitats and distributions in the natural environment are unclear. In total, we
- analysed 24 species pairs of marine invertebrates, terrestrial insects, and vertebrates.
- 293

294 **Results**

295

- 296 Mathematical model
- 297 Equilibria

We found dynamic population equilibria, designated by an asterisk (*), on (i) the N_X -axis (i.e.,

299 $N_X^* > 0, N_Y^* = 0$, (ii) the N_Y^* -axis (i.e., $N_X^* = 0, N_X^* > 0$), or (iii) in the interior (i.e., $N_X^* > 0$)

300 0, $N_{\rm Y}^* > 0$). The boundary equilibria (as a result of competitive exclusion) are given by

301
$$B_{\rm X} = (r-1, 0), B_{\rm Y} = (0, r-1)$$

302 whereas the interior equilibrium did not have analytical formula (note that because we assume

303 r > 1, boundary equilibria were always feasible).

304 Stability analyses

305 The stability conditions for the equilibria (species exclusion or coexistence) were determined

306 from the eigenvalues of a Jacobi matrix around the focal equilibrium (more details are given

307 in Appendix B). The necessary condition for a stable equilibrium resulting in extinction of one

- 308 of the two species is given by:
- 309 [Equation 5]
- $310 b + c \frac{r}{r-1} > 1. (5)$

311 In particular, c = 1 (i.e., reproductive niches of the species overlap completely) necessarily

312 leads to competitive exclusion given the parameter set for *p* and *q* used in our analysis (Fig.

- 313 2), even in the absence of interspecific resource competition (i.e., b = 0). See Appendix C for
- the numerical procedures for basins of attraction.

315	We note here that, if the two species are highly symmetric in terms of p and q values,
316	then more outcomes become possible; in particular, species exclusion and coexistence states
317	can be stable simultaneously ("bi-stable"), in agreement with Kishi and Nakazawa (2013) and
318	Kyogoku and Sota (2017). Our particular intention here, however, is to explore the effects of
319	asymmetry in mating behaviour (p and q values) on the community dynamics in our
320	experimental system. For more details about the consequences of symmetric p and q values,
321	see Appendix D. Also, it is possible to incorporate differences in the number of mating
322	attempts in a given time period (i.e., mating activity) such that the encounter rate with an X-
323	or Y-male can be biased towards either species relative to their frequency i the community (f_X
324	and $f_{\rm Y}$); however, changes in the encounter rate did not change the results dramatically,
325	although species exclusion became more likely (see Appendix D for more information).
326	
327	Experiment

Mating experience did not have a significant effect on the rate of copulation in either the 2014 or the 2015 experiment (Fig. SI 4, Table S1); therefore, virgin and non-virgin females were pooled in the following analyses. The copulation rate was higher in *H. axyridis* females than in *H yedoensis* females, especially in the 2014 experiments, although the difference was not

333to mate with conspecifics, whereas no such assortative mating pattern was observed in H.334yedoensis; that is there was a significant interaction effect between female species and species335identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the3362014 and 2015 experiments, H. axyridis males more frequently attempted to mate with337conspecific females, whereas H. yedoensis males did not show a significant preference338towards conspecific females (Table S3). Harmonia axyridis females were more likely than H.339yedoensis females to refuse mating attempts by conspecific males, especially in the 2014340experiment (Table S4); however, both coercive mating and copulation failure occurred in both341species following female rejection behaviour.342In the signal detection analysis results, d' in response to male mating attempts was higher343in H. axyridis than in H. yedoensis in both 2014 and 2015 (Table S5). Further, the AUC for3442014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection346behaviour was detected between species or years in the signal detection analysis, probably in	 <i>yedoensis</i>; that is there was a significant interaction effect between female species and sp identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the 2014 and 2015 experiments, <i>H. axyridis</i> males more frequently attempted to mate with conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely the <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabli part because of the small sample size (Table S6). The AUC results for female rejection 	332	statistically significant (Fig. 3, Table S2). In the 2015 experiment, <i>H. axyridis</i> was more likely
 identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the 2014 and 2015 experiments, <i>H. axyridis</i> males more frequently attempted to mate with conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely than <i>H.</i> <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the 2014 and 2015 experiments, <i>H. axyridis</i> males more frequently attempted to mate with conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely the <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	333	to mate with conspecifics, whereas no such assortative mating pattern was observed in H.
 2014 and 2015 experiments, <i>H. axyridis</i> males more frequently attempted to mate with conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely than <i>H. yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 2014 and 2015 experiments, <i>H. axyridis</i> males more frequently attempted to mate with conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely the <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probable part because of the small sample size (Table S6). The AUC results for female rejection 	334	yedoensis; that is there was a significant interaction effect between female species and species
 conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely than <i>H.</i> <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely tha <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probable part because of the small sample size (Table S6). The AUC results for female rejection 	335	identity of the mating partner (conspecific or heterospecific; Fig. 3, Table S2). In both the
 towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely than <i>H.</i> <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 towards conspecific females (Table S3). <i>Harmonia axyridis</i> females were more likely tha <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probable part because of the small sample size (Table S6). The AUC results for female rejection 	336	2014 and 2015 experiments, H. axyridis males more frequently attempted to mate with
 <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 <i>yedoensis</i> females to refuse mating attempts by conspecific males, especially in the 2014 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	337	conspecific females, whereas <i>H. yedoensis</i> males did not show a significant preference
 experiment (Table S4); however, both coercive mating and copulation failure occurred in both species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 experiment (Table S4); however, both coercive mating and copulation failure occurred in species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probable part because of the small sample size (Table S6). The AUC results for female rejection 	338	towards conspecific females (Table S3). Harmonia axyridis females were more likely than H.
 species following female rejection behaviour. In the signal detection analysis results, d' in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 species following female rejection behaviour. In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	339	yedoensis females to refuse mating attempts by conspecific males, especially in the 2014
In the signal detection analysis results, <i>d'</i> in response to male mating attempts was higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection	In the signal detection analysis results, <i>d'</i> in response to male mating attempts was h in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection	340	experiment (Table S4); however, both coercive mating and copulation failure occurred in both
 in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC f male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	341	species following female rejection behaviour.
 male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection 	 male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	342	In the signal detection analysis results, d' in response to male mating attempts was higher
345 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection	 2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	343	in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both 2014 and 2015 (Table S5). Further, the AUC for
	 behaviour was detected between species or years in the signal detection analysis, probabl part because of the small sample size (Table S6). The AUC results for female rejection 	344	male mating attempts was significantly higher in <i>H. axyridis</i> than in <i>H. yedoensis</i> in both
346 behaviour was detected between species or years in the signal detection analysis, probably in	347 part because of the small sample size (Table S6). The AUC results for female rejection	345	2014 and 2015 (Fig. 4, Table 2). By contrast, no consistent pattern in female rejection
		346	behaviour was detected between species or years in the signal detection analysis, probably in
347 part because of the small sample size (Table S6). The AUC results for female rejection	348 behaviour was also not significantly different between species in either experiment year (347	part because of the small sample size (Table S6). The AUC results for female rejection
348 behaviour was also not significantly different between species in either experiment year (Fig.		348	behaviour was also not significantly different between species in either experiment year (Fig.
	349 4, Table 2).	349	4, Table 2).

351 (c) Comparative study

352	We found spatial separation at both local (niche partitioning) and regional scales (parapatry or
353	allopatry) among species pairs exhibiting CSP, including in marine abalones, freshwater
354	fishes, terrestrial insects, birds, and mice (Table 3). We observed parapatry mainly in
355	Orthoptera (crickets and grasshoppers). We detected sympatry without apparent niche
356	partitioning in 6 of 24 species pairs, especially in aquatic invertebrates such as mussels,
357	starfishes, and sea urchins.
358	
359	Discussion
360	
361	Our results suggest that reproductive interference is likely to hamper stable species
362	coexistence in a local patch even when the interacting species exhibit CSP. Our experimental
363	results for two species in which CSP has been detected showed that the mating rate in a given
364	period was higher in <i>H. axyridis</i> females than in <i>H. yedoensis</i> females (Fig. 3), and that <i>H.</i>
365	axyridis, but not H. yedoensis, was more likely to copulate with a partner of its own species
366	(Figs. 3 and 4). Our mathematical model indicated that these observed behavioural differences
367	between these Harmonia species have a community-level consequence: namely, H. yedoensis
368	becomes extinct in a local patch because of reproductive interference from <i>H. axyridis</i> (Figs.
369	SI 2 and SI 3). Furthermore, our comparative study of species pairs exhibiting CSP

370	demonstrated that parapatric distribution or niche partitioning, but not sympatric coexistence
371	in the same habitat, can be maintained between two closely related species of a wide range of
372	taxa, including both vertebrates and invertebrates living in either aquatic or terrestrial
373	environments (Table 3). Taken together, these results lead us to conclude that CSP does not
374	generally promote local coexistence between closely related species with overlapping
375	reproductive niches.
376	Our experiment using Harmonia ladybirds, combined with our theoretical analysis,
377	clarified the behavioural mechanisms of species exclusion. The rate of copulation was not
378	significantly different between virgin and non-virgin females in the two Harmonia species
379	(Fig. SI 4), suggesting that mating experience did not affect the reproductive success of
380	individuals or the subsequent population dynamics in these species. However, the results of
381	our signal detection analysis indicated that <i>H. axyridis</i> males easily distinguish and choose
382	conspecific females over heterospecific females (Fig. 4, Table 2), whereas mating rates with
383	conspecifics was low in <i>H. yedoensis</i> (Fig. 3). Our mathematical model demonstrated that, in
384	the situations examined by our experiments, <i>H. axyridis</i> is likely to mate with a conspecific
385	partner at least once before oviposition begins, whereas <i>H. yedoensis</i> females, even though
386	they exhibit CSP, are incapable of producing viable offspring in the presence of <i>H. axyridis</i>
387	males, with the result that <i>H. axyridis</i> is predicted to exclude <i>H. yedoensis</i> from the local
388	patch (Fig. 2). This prediction is consistent with the niche partitioning observed in the field,

389 where *H. axyridis* feeds on preferred prey items on various types of trees and *H. yedoensis* 390 specializes in highly elusive prey on only pine trees. The pine habitat may function as a refuge 391 for H. vedoensis, where it can avoid reproductive interference from H. axvridis (Noriyuki et 392 al. 2012). 393 Our mathematical model highlighted the behavioural mechanisms that affect the 394 asymmetry of reproductive interference and subsequent species exclusion. Although the 395 classic theory of interspecific competition postulates that species exclusion occurs through 396 exploitative competition for shared resources (Chesson 2000), our model results demonstrated 397 that interference interactions during the reproductive stage hamper the coexistence of two 398 species even when they demonstrate equal competitive strength for resources. In addition, our

399 model results showed that slight differences in mating activity, mating preference, and

400 remating acceptance determine which of two interacting species is superior with respect to

401 reproductive interference (Figs. SI 2 and SI 3), whereas previous theoretical studies on

402 reproductive interference did not fully take into account the consequences of behavioural

403 processes on population dynamics and species' fates (Yoshimura and Clark 1994, Kishi and

404 Nakazawa 2013, Kyogoku and Sota 2017). In addition, we found that species exclusion is

405 more likely to occur for a wide range of initial population densities of the two species when

406 the intensity of reproductive interference is high (Fig. 2). This finding means that closely

407 related species are unlikely to coexist in the same environment if they have similar mating

408 signals or if they share a reproductive niche in space and time; as a result, niche partitioning409 or geographical segregation of the species is likely to occur.

410	Our comparative study found a separation of niche use or geographical distributions
411	between species pairs with CSP in a range of taxa (Table 3). This finding suggests that CSP
412	alone does not allow these species pairs to coexist in the same local environment. The pattern
413	corresponds found in our comparative study is consistent with the prediction of our
414	mathematical model that two interacting species are unlikely to coexist when c (intensity of
415	reproductive interference) is high (Fig. 2). However, sympatric coexistence without apparent
416	niche separation was also detected, especially in free-spawning marine invertebrates such as
417	mussels, starfishes, and sea urchins (Table 3). There are several possible reasons that can
418	account for the discrepancy between our model prediction and the actual pattern in nature in
419	these cases. First, niche separation might actually exist, but, perhaps because of limited field
420	survey data, it may not have been recognized. In fact, fine-scale differences in adult habitat
421	and the timing of spawning have been detected in closely related marine invertebrate species
422	(Lindberg 1992, Fogarty 2012). Therefore, it is possible that niche separation has actually
423	occurred to mitigate the cost of reproductive interference in such species. Second, dispersal to
424	new patches can allow overlapping niche use at a local scale even when two species engage in
425	competitive interactions. Especially in marine sessile invertebrates that have high dispersal
426	ability in the larval stage and a sedentary life style in the adult stage, source-sink dynamics

427	(Mouquet and Loreau 2003) and stochastic processes (Paine and Levin 1981) likely promote
428	local species coexistence. Third, in sessile animals, decision making at the pre-mating stage
429	may not be important; females may be likely to accept sperm from conspecific as well as from
430	heterospecific males, which means that CSP makes it possible for them to produce viable
431	offspring. In this situation, therefore, CSP can indeed mitigate the cost of interspecific mating
432	and thus promote species coexistence in the same niche. Clearly, it is important to incorporate
433	life-history characteristics when considering the community-level consequences of
434	behavioural decision making in animals.
435	By including plants, it would be possible to extend our model to more general scenarios
436	of interacting species under imperfect species recognition. Reproductive interference occurs
437	in flowering plants when the stigma receive heterospecific as well as conspecific pollen
438	grains, for example when flowering phenology and pollinators overlap (Matsumoto et al.
439	2010, Runquist and Stanton 2013, Takakura 2013, Nishida et al. 2014). In some cases,
440	however, conspecific pollen tubes preferentially grow and fertilize the ovules (Baldwin and
441	Husband 2010, reviewed in Howard 1999). This phenomenon is called conspecific pollen
442	precedence, and is considered a mechanism of reproductive isolation that prevents
443	hybridization, and consequently, speciation in plants (Howard 1999). Therefore, it is
444	suggested that conspecific pollen precedence in plants, similar to CSP in animals, can mitigate
445	the cost of reproductive interference and lead to species coexistence in the same habitat.

446	Alternatively, as our model predicted, conspecific pollen precedence may be insufficient to
447	allow interacting species to coexist in the same local environment. In fact, in three species of
448	Iris, conspecific pollen precedence has been detected together with habitat differences
449	(Carney et al. 1996; Emms et al. 1996), suggesting that reproductive interference destabilizes
450	local coexistence of these species. In future, it would be interesting to examine whether our
451	model is applicable to plant species by investigating reproductive success in species pairs
452	exhibiting conspecific pollen precedence.
453	In conclusion, our study clarified the ecological significance of CSP by identifying
454	conditions that lead to local species exclusion despite the presence of CSP. This finding is in
455	contrast to those of previous studies of CSP, which have focused on its evolutionary
456	significance, that is, speciation through post-mating pre-zygotic reproductive isolation.
457	Moreover, many CSP studies have not quantified pre-mating behaviours that can affect the
458	reproductive success of females but have instead examined the functioning of CSP by
459	focusing on post-mating, pre-zygotic mechanisms. Importantly, however, it has been
460	documented that the overall costs of reproductive interference, including loss of mating
461	opportunity and decreases in the oviposition rate due to male interference, can lead to the
462	extinction of one of the interacting species even if interspecific mating and insemination does
463	not occur (Kishi et al. 2009, Friberg et al. 2013, Carrasquilla and Lounibos 2015). Therefore,
464	to understand individual reproductive success and community structure of closely related

465 species, pre-mating behaviours should not be neglected.

466

467 Acknowledgements

468

- 469 S.N. would like to thank staff members at the University of Tokyo Tanashi Forest for
- 470 permission to collect insects. This study was supported grants from the Natural Environment
- 471 Research Council (NERC) to R.I. (NE/K014617/1) and the Japan Society for the Promotion
- 472 of Science to S.N (No. 26840137).

473

474 **Declarations**

475 The authors declare no competing interest.

476 **References**

477

- 478 Ackleh, A. S. & P. L. Salceanu (2014). "Competitive Exclusion Through Discrete
- 479 Time Models". Theory and Applications of Difference Equations and Discrete
- 480 Dynamical Systems. Springer, pp. 3–21.

481

482 Alcock, J. 1994. Postinsemination associations between males and females in insects: the

483 mate-guarding hypothesis. – Annu. Rev. Entomol. 39:1–21.

484

485 Arnqvist, G. and Rowe, L. 2005. Sexual conflict. – Princeton Univ. Press.

486

- 487 Baldwin, S. J. and Husband, B. C. 2010. Genome duplication and the evolution of conspecific
- 488 pollen precedence. Proc. Roy. Soc. Lond. B Biol. Sci. 278:1714.
- 489
- 490 Bargielowski, I. E. et al. 2013. Evolution of resistance to satyrization through reproductive
- 491 character displacement in populations of invasive dengue vectors. Proc. Natl. Acad. Sci. -
- 492 110:2888–2892.

493

494 Bates, D. et al. 2015. Fitting linear mixed-effects models using lme4. – J. Stat. Soft. 67:1–48.

495

496	Beverton,	R. J. H.,	& Holt,	S. J. ((1957)	. On the d	ynamics of	fex	ploited	fish	populations
-----	-----------	-----------	---------	---------	--------	------------	------------	-----	---------	------	-------------

- Fisheries Investigation Series 2, volume 19, UK Ministry of Agriculture. *Fisheries, and Food, London, UK.*
- 499
- 500 Butlin, R. K. 1998. What do hybrid zones in general, and the Chorthippus parallelus zone in
- 501 particular, tell us about speciation. In: Endless forms: species and speciation. Oxford Univ.
- 502 Press, pp. 367–378.

503

- 504 Butlin, R. K. and Hewitt, G. M. 1985. A hybrid zone between Chorthippus parallelus
- 505 parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): morphological and
- 506 electrophoretic characters. Biol. J. Linn. Soc. 26:269–285.

507

- 508 Carney, S. E. et al. 1996. Effects of differential pollen-tube growth on hybridization in the
- 509 Louisiana irises. Evolution 50:1871–1878.
- 510
- 511 Carrasquilla, M. C. and Lounibos, L. P. 2015. Satyrization without evidence of successful
- 512 insemination from interspecific mating between invasive mosquitoes. Biol. Lett. 11:

513 20150527.

514

515 Carter, J. V. et al. 2016. ROC-ing along: evaluation and interpretation of receiver operating

516 characteristic curves. – Surgery 159:1638–1645.

517

- 518 Chang, A. S. 2004. Conspecific sperm precedence in sister species of Drosophila with
- 519 overlapping ranges. Evolution 58:781–789.

520

- 521 Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol.
- 522 Sys. 31:343–366.

523

- 524 Christianson, S. J. et al. 2005. Rapid evolution of postzygotic reproductive isolation in stalk-
- 525 eyed flies. Evolution 59:849–857.

526

- 527 Cox, K. W. 1962. California abalones, family Haliotidae. Deptment of Fish and Game, the
- 528 Resources Agency of California.

529

- 530 Crowder, D. W. et al. 2011. Niche partitioning and stochastic processes shape community
- 531 structure following whitefly invasions. Bas. Appl. Ecol. 12:685–694.

- 533 Dean, M. D. and Nachman, M. W. 2009. Faster fertilization rate in conspecific versus
- heterospecific matings in house mice. Evolution, 63:20–28.

- 535
- 536 Eberhard, W. G. 1996. Female control: sexual selection by cryptic female choice. Princeton
- 537 Univ. Press.
- 538
- 539 Emms, S. K. et al. 1996. Pollen-tube competition, siring success, and consistent asymmetric
- 540 hybridization in Louisiana irises. Evolution 50:2201–2206.
- 541
- 542 Ficetola, G. F. and Bernardi, F. D. 2005. Interspecific social interactions and breeding success
- 543 of the frog *Rana latastei*: a field study. Ethology 111:764–774.
- 544
- 545 Friberg, M. et al. 2013. Heterospecific courtship, minority effects and niche separation
- 546 between cryptic butterfly species. J. Evol. Biol. 26:971–979.

- 548 Fricke, C. and Arnqvist, G. 2004. Conspecific sperm precedence in flour beetles. Anim.
- 549 Beh. 67:729–732.
- 550
- 551 Fogarty, N. D. et al. 2012. Asymmetric conspecific sperm precedence in relation to spawning
- 552 times in the *Montastraea annularis* species complex (Cnidaria: Scleractinia). J. Evol.
- 553 Biol. 25:2481–2488.

555	Gaitán-Espitia, J. D. et al. 2016. Mitogenomics of southern hemisphere blue mussels
556	(Bivalvia: Pteriomorphia): Insights into the evolutionary characteristics of the Mytilus edulis
557	complex. – Sci. Rep. 6:26853.
558	
559	Geyer, L. B. and Palumbi, S. R. 2005. Conspecific sperm precedence in two species of
560	tropical sea urchins. – Evolution 59:97–105.
561	
562	Gillott, C. 2003. Male accessory gland secretions: modulators of female reproductive
563	physiology and behavior. – Annu. Rev. Entomol. 48:163–184.
564	
565	Grant, P. R. and Grant, B. R. 2011. How and why species multiply: the radiation of Darwin's
566	finches. – Princeton Univ. Press.
567	
568	Green, D.M. and Swets, J.A. 1966. Signal detection theory and psychophysics Wiley.
569	
570	Gröning, J. and Hochkirch, A. 2008. Reproductive interference between animal species
571	Quart. Rev. Biol. 83:257–282.
572	

573	Harper, F. M. and Hart, M. W. 2005. Gamete compatibility and sperm competition affect
574	paternity and hybridization between sympatric Asterias sea stars Biol. Bull. 209:113-126.
575	
576	Harrison, R. G. and Arnold, J. 1982. A narrow hybrid zone between closely related cricket
577	species. – Evolution 36:535–552.
578	
579	Heggberget, T. G. et al. 1988. Temporal and spatial segregation of spawning in sympatric
580	populations of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. – J. Fish
581	Biol. 33:347–356.
582	
583	Hewitt, G. M. 1975. A sex-chromosome hybrid zone in the grasshopper Podisma pedestris
584	(Orthoptera: Acrididae). – Heredity 35:375–387.
585	
586	Hewitt, G. M. et al. 1989. Sperm precedence and homogamy across a hybrid zone in the

alpine grasshopper *Podisma pedestris*. – Heredity 62:343–353.

- 589 Himuro, C. and Fujisaki, K. 2008. Males of the seed bug *Togo hemipterus* (Heteroptera:
- 590 Lygaeidae) use accessory gland substances to inhibit remating by females. J. Insect
- 591 Physio. 54:1538–1542.

592

- 593 Howard, D. J. 1999. Conspecific sperm and pollen precedence and speciation. Annu. Rev.
- 594 Ecol. Sys. 30:109–132.

595

- 596 Howard, D. J. et al. 1998. Conspecific sperm precedence is an effective barrier to
- 597 hybridization between closely related species. Evolution 52:511–516.

598

599 Howard, D. J. and Waring, G. L. 1991. Topographic diversity, zone width, and the strength of

600 reproductive isolation in a zone of overlap and hybridization. – Evolution 45:1120–1135.

601

- Hochkirch, A. et al. 2007. Sympatry with the devil: reproductive interference could hamper
- 603 species coexistence. J. Anim. Ecol. 76:633–642.

604

605 Immler, S. et al. 2011. Post-mating reproductive barriers in two unidirectionally hybridizing
606 sunfish (Centrarchidae: Lepomis). – J. Evol. Biol. 24:111–120.

- 508 Jonsson, B. and Jonsson, N. 2009. A review of the likely effects of climate change on
- anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular
- 610 reference to water temperature and flow. J. Fish Biol. 75:2381–2447.

6	1	1
0	Т	Т
-	_	_

612	Kawatsu, K. and Kishi, S. 2017. Identifying critical interactions in complex competition
613	dynamics between bean beetles. – Oikos. doi:10.1111/oik.04103
614	
615	Klibansky, L. K. and McCartney, M. A. 2014. Conspecific sperm precedence is a reproductive
616	barrier between free-spawning marine mussels in the northwest Atlantic Mytilus hybrid
617	zone. – Plos One 9:e108433.
618	
619	Kishi, S. and Nakazawa, T. 2013. Analysis of species coexistence co-mediated by resource
620	competition and reproductive interference. – Popul. Ecol. 55:305–313.
621	
622	Kishi, S. et al. 2009. Reproductive interference determines persistence and exclusion in
623	species interactions. – J. Anim. Ecol. 78:1043–1049.
624	
625	Konuma, J. and Chiba, S. 2007. Ecological character displacement caused by reproductive
626	interference. – J. Theor. Biol. 247:354–364.
627	
628	Kresge, N. et al. 2000. The high resolution crystal structure of green abalone sperm lysin:
629	implications for species-specific binding of the egg receptor1. – J. Mol. Biol. 296:1225–1234.

Kyogoku, D. 2015. Reproductive interference: ecological and evolutionary consequences of

631

632	interspecific promiscuity. – Popul. Ecol. 57:253–260.
633	
634	Kyogoku, D. and Sota, T. 2015. Exaggerated male genitalia intensify interspecific
635	reproductive interference by damaging heterospecific female genitalia. – J. Evol. Biol. 28:
636	1283–1289.
637	
638	Kyogoku, D. and Sota, T. 2017. A generalized population dynamics model for reproductive
639	interference with absolute density dependence Sci. Rep. 7:1996.
640	
641	Kuno, E. 1992. Competitive exclusion through reproductive interference. – Res. Popul. Ecol.
642	34:275–284.
643	
644	Lachaise, D. et al. 2000. Evolutionary novelties in islands: Drosophila santomea, a new
645	melanogaster sister species from Sao Tome Proc. Roy. Soc. Lond. B Biol. Sci. 267:1487-
646	1495.
647	

648 Larson, E. L. et al. 2012. Post-mating prezygotic barriers to gene exchange between

649 hybridizing field crickets. – J. Evol. Biol. 25:174–186.

650

- 651 Lindberg, D. R. 1992. Evolution, distribution and systematics of Haliotidae. In:
- 652 Shepherd, S. A. et al. (eds) Abalone of the world: biology, fisheries and culture. Wiley-
- 653 Blackwell.

654

- 655 Losos, J. B. 2011. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. -
- 656 Univ. California Press.

657

658 Majerus, M. E. N. 2003. Sex wars: genes, bacteria and biased sex ratios. – Princeton Univ.

659 Press.

660

- 661 Makowski, D. 2017. Package 'neuropsychology': an R toolbox for psychologists,
- 662 neuropsychologists and neuroscientists. Available from
- 663 https://github.com/neuropsychology/neuropsychology.R

664

665 Marshall, J. L. et al. 2002. Reinforcement: the road not taken. – Trend. Ecol. Evol. 17:558–

666 563.

668	Matsubayashi, K. W. and Katakura, H. 2009. Contribution of multiple isolating barriers to
669	reproductive isolation between a pair of phytophagous ladybird beetles Evolution 63:2563-
670	2580.
671	
672	Matsumoto, K. and Suzuki, N. 1992. Effectiveness of the mating plug in Atrophaneura
673	alcinous (Lepidoptera: Papilionidae). – Behav. Ecol. Sociobiol. 30:157–163.
674	
675	Matsumoto, T. et al. 2010. Alien pollen grains interfere with the reproductive success of
676	native congener. – Biol. Inv. 12:1617–1626.
677	
678 679	May, R. M., & Oster, G. F. (1976). Bifurcations and dynamic complexity in simple ecological models. <i>The American Naturalist</i> , <i>110</i> (974), 573-599.
680	
681	Mendelson, T. C. et al. 2007. The accumulation of reproductive barriers during speciation:
682	postmating barriers in two behaviorally isolated species of darters (Percidae: Etheostoma)
683	Evolution 61:2596–2606.
684	
685	Menge, B. A. 1979. Coexistence between the seastars Asterias vulgaris and A. forbesi in a
686	heterogeneous environment: a non-equilibrium explanation. – Oecologia 41:245–272.
687	

- 688 Metz, E. C. et al. 1994. Fertilization between closely related sea urchins is blocked by
- 689 incompatibilities during sperm-egg attachment and early stages of fusion. –Biol. Bull. 187:
- 690 23–34.
- 691
- 692 Mouquet, N. and Loreau, M. 2003. Community patterns in source-sink metacommunities. -
- 693 Am. Nat. 162:544–557.
- 694
- 695 Nakano, S. 1985. Effect of interspecific mating on female fitness in two closely related

696 ladybirds (Henosepilachna). – Kontyû 53:112–119.

- 697
- 698 Niijima, K. et al. 2000. Development of low-cost and laborsaving technique for group rearing
- 699 of a ladybird, Harmonia axyridis. Tamagawa Univ. Res. Rev. 6:23-33 [in Japanese with
- 700 English abstract].
- 701
- 702 Nishida, S. et al. 2014. Pollen–pistil interactions in reproductive interference: comparisons of
- 703 heterospecific pollen tube growth from alien species between two native *Taraxacum*
- 704 species. Func. Ecol. 28:450–457.

705

Nishida, T. et al. 2015. Host specialization by reproductive interference between closely

related herbivorous insects. – Popul. Ecol. 57:273–281.

708

- 709 Noriyuki, S. and Osawa, N. 2012. Intrinsic prey suitability in specialist and generalist
- 710 *Harmonia* ladybirds: a test of the trade-off hypothesis for food specialization. Entomol.
- 711 Exp. Appl. 144:279–285.

712

- 713 Noriyuki, S. et al. 2011. Prey capture performance in hatchlings of two sibling Harmonia
- 714 ladybird species in relation to maternal investment through sibling cannibalism. Ecol.
- 715 Entomol. 36:282–289.
- 716
- 717 Noriyuki, S. et al. 2012. Asymmetric reproductive interference between specialist and
- 718 generalist predatory ladybirds. J. Anim. Ecol. 81:1077–1085.

719

- 720 Noriyuki, S. et al. 2014. Prevalence of male-killer in a sympatric population of two sibling
- 721 ladybird species, Harmonia yedoensis and Harmonia axyridis (Coleoptera: Coccinellidae). -
- 722 Eur. J. Entomol. 111:307–311.

- Noriyuki, S. et al. 2016. Variation of clutch size and trophic egg proportion in a ladybird with
- and without male-killing bacterial infection. Evol. Ecol. 30:1081–1095.

7	2	6
	_	~

727	Okada, I. et al. 1978. Comparative studies on sibling species of ladybeetles, Harmonia
728	yedoensis and H. axyridis (Coleoptera: Coccinellidae). – Bull. Fac. Agr. Tamagawa Univ.
729	18:60–68 [in Japanese with English abstract].
730	
731	Osenberg, C. W. et al. 1992. Two-stage life histories in fish: the interaction between juvenile
732	competition and adult performance. – Ecology 73:255–267.
733	
734	Otte, T. et al. 2016. Phenotypic plasticity of mate recognition systems prevents sexual
735	interference between two sympatric leaf beetle species. – Evolution 70:1819–1828.
736	
737	Paine, R. T. and Levin, S. A. 1981. Intertidal landscapes: disturbance and the dynamics of
738	pattern. – Ecol. Monog. 51:145–178.
739	
740	Payseur, B. A. et al. 2004. Differential patterns of introgression across the X chromosome in a
741	hybrid zone between two species of house mice. – Evolution 58:2064–2078.
742	
743	Polak, M. et al. 2001. Function of the mating plug in Drosophila hibisci Bock. – Behav. Ecol.
744	Sociobiol. 49:196–205.

- 745
- 746 Price, C. S. 1997. Conspecific sperm precedence in *Drosophila*. Nature 388:663–666.

747

- 748 Qvarnström, A. et al. 2009. Life-history divergence facilitates regional coexistence of
- 749 competing *Ficedula* flycatchers. Ecology 90:1948–1957.

750

- 751 R Core Team 2017. R: A language and environment for statistical computing. R Foundation
- 752 for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

753

- Ramiro, R.S. et al. 2015. Hybridization and pre-zygotic reproductive barriers in *Plasmodium*.
- 755 Proc. Roy. Soc. Lond. B Biol. Sci. 282:20143027.

756

- Robin, X. et al. 2011. pROC: an open-source package for R and S+ to analyze and compare
- 758 ROC curves. BMC Bioinfo. 12:77.

759

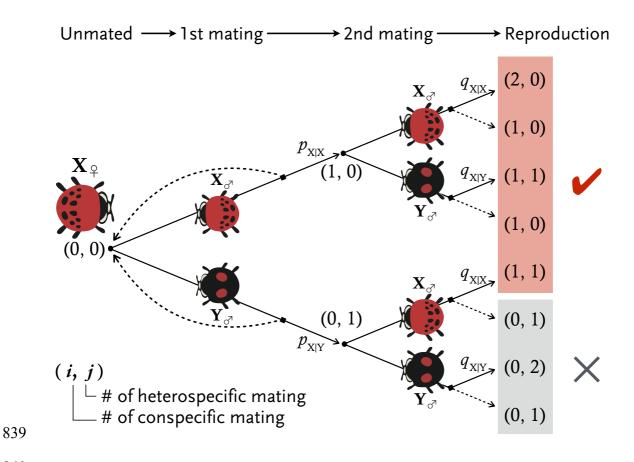
- 760 Rose, E. G. et al. 2014. Rapid evolution of asymmetric reproductive incompatibilities in stalk-
- 761 eyed flies. Evolution 68:384–396.

762

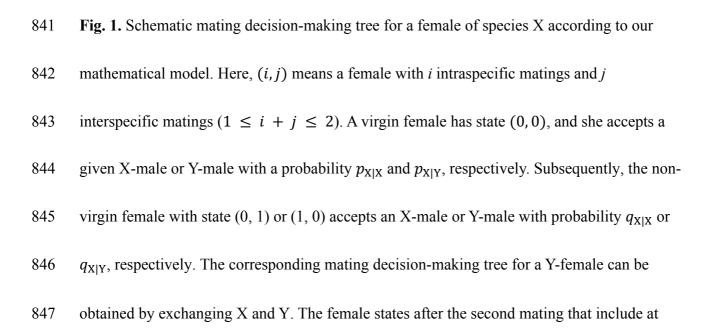
763 Rugman-Jones, P. F. and Eady, P. E. 2007. Conspecific sperm precedence in *Callosobruchus*

764	subinnotatus (Coleoptera: Bruchidae): mechanisms and consequences Proc.Roy. Soc. Lond,
765	B Biol. Sci. 274:983–988.
766	
767	Runquist, R. B. and Stanton, M. L. 2013. Asymmetric and frequency-dependent pollinator-
768	mediated interactions may influence competitive displacement in two vernal pool plants
769	Ecol. Lett. 16:183–190.
770	
771	Ruokolainen, L. and Hanski, I. 2016. Stable coexistence of ecologically identical species:
772	conspecific aggregation via reproductive interference. – J. Anim. Ecol. 85–638–647.
773	
774	Sánchez-Guillén, R. A. et al. 2005. Hybridization and the inheritance of female colour
775	polymorphism in two ischnurid damselflies (Odonata: Coenagrionidae). – Biol. J. Linn.
776	Soc. 85:471–481.
777	
778	Sánchez-Guillén, R. A. et al. 2011a. Introgression and rapid species turnover in sympatric
779	damselflies. – BMC Evol. Biol. 11:210.
780	
781	Sánchez-Guillén, R. A. et al. 2011b. Strong asymmetry in the relative strengths of prezygotic
782	and postzygotic barriers between two damselfly sister species. – Evolution 66:690–707.

,00


784	Sánchez-Guillén, R. A. et al. 2013. An examination of competitive gametic isolation
785	mechanisms between the damselflies Ischnura graellsii and I. elegans. – Internatio. J.
786	Odonat. 16:259–267.
787	
788	Sing, T. et al. 2005. ROCR: visualizing classifier performance in R. – Bioinformatics 21:
789	3940–3941.
790	
791	Schluter, D. 2000. The ecology of adaptive radiation. – Oxford Univ. Press.
792	
793	Scott, D. 1986. Inhibition of female Drosophila melanogaster remating by a seminal fluid
794	protein (esterase 6). – Evolution 40:1084–1091.
795	
796	Takafuji, A. et al. 1997. Reproductive interference and its consequences for the competitive
797	interactions between two closely related <i>Panonychus</i> spider mites. – Exp. Appl. Acaro. 21:
798	379–391.
799	
800	Takakura, K. I. 2013. Two-way but asymmetrical reproductive interference between an
801	invasive Veronica species and a native congener. – Am. J. Plant Sci. 4:535–542.

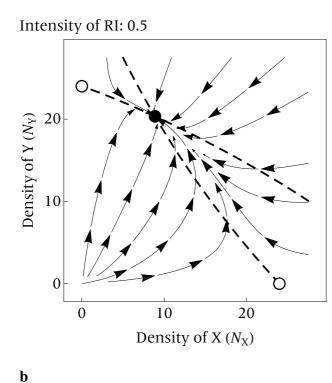
803	Thum, R. 2007. Reproductive interference, priority effects and the maintenance of parapatry
804	in Skistodiaptomus copepods. – Oikos 116:759–768.
805	
806	Todesco, M. et al. 2016. Hybridization and extinction. – Evol. Appl. 9:892–908.
807	
808	Tyler, F. et al. 2013. Multiple post-mating barriers to hybridization in field cricketsMol.
809	Ecol. 22:1640–1649.
810	
811	Vacquier, V. D. et al. 1990. Species-specific sequences of abalone lysin, the sperm protein that
812	creates a hole in the egg envelope. – Proc. Natl. Acad. Sci. 87:5792–5796.
813	
814	Vacquier, V. D. and Lee, Y. H. 1993. Abalone sperm lysin: unusual mode of evolution of a
815	gamete recognition protein. – Zygote 1:181–196.
816	
817	Vallin, N. et al. 2012. Combined effects of interspecific competition and hybridization impede
818	local coexistence of Ficedula flycatchers. – Evol. Ecol. 26:927–942.
819	
820	Veen, T. et al. 2001. Hybridization and adaptive mate choice in flycathers. – Nature 411:45–


- 821 50.
- 822
- 823 Veen, T. et al. 2013. Diverse reproductive barriers in hybridising crickets suggests extensive
- 824 variation in the evolution and maintenance of isolation. Evol. Ecol. 27:993–1015.
- 825
- 826 Williams, T. H. and Mendelson, T. C. 2014. Quantifying reproductive barriers in a sympatric
- 827 pair of darter species. Evol. Biol. 41:212–220.
- 828
- 829 Wolfram Research, I. (2017). *Mathematica 11.2*.
- 830
- 831 Yeates, S. E. et al. 2013. Cryptic choice of conspecific sperm controlled by the impact of
- 832 ovarian fluid on sperm swimming behavior. Evolution 67:3523–3536.
- 833
- 834 Yoshimura, J. and Clark, C.W. 1994. Population dynamics of sexual and resource
- 835 competition. Theor. Popul. Biol. 45:121–131.
- 836

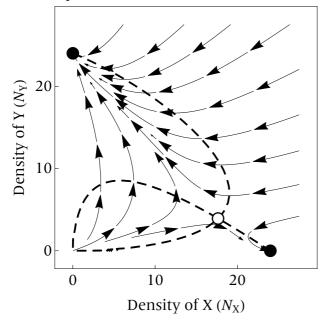
Figures 837

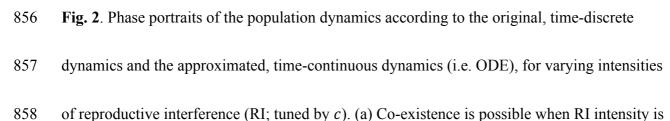
838

- least one intraspecific mating $(i \ge 1)$ are shaded red; in this case, the female can produce
- 849 offspring of her own species through CSP. The states of females that failed to copulate with a
- 850 conspecific male before producing offspring (i = 0) are shaded grey.

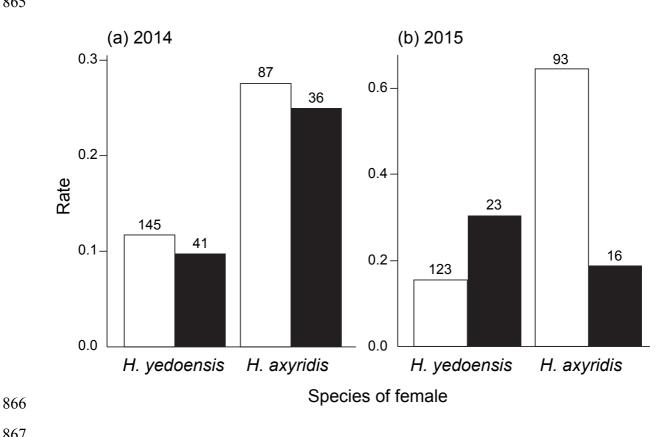

852

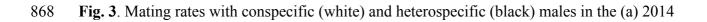
853


854

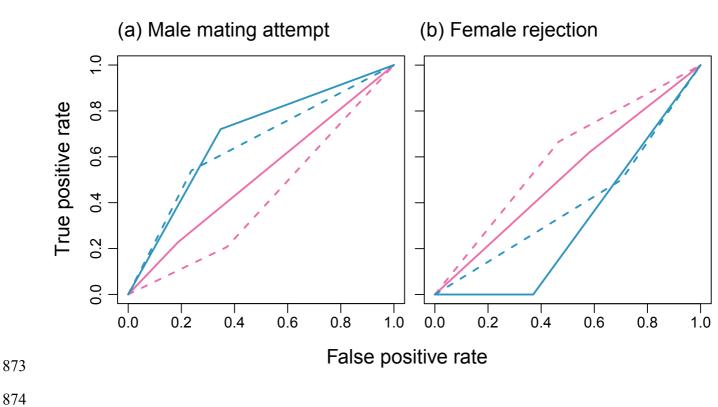

855

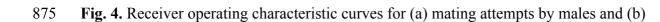
a


Intensity of RI: 1.



- 859 weak (c = 0.5). (b) Competitive exclusion occurs when RI intensity is very strong (c = 1).
- 860 Dotted curves, isoclines; arrows: approximated vector fields based on the ODE; open circles,
- 861 unstable equilibria; and closed circles, stable equilibria. The procedure used to produce the
- 862 figures is described in Appendix C. Probability parameter values: $p_{XX} = 0.4$, $q_{XX} =$
- 863 0.4, $p_{XY} = 0.8$, $p_{YY} = 0.8$, $p_{YX} = 0.4$, $q_{YY} = 0.8$; other parameters, default values (see
- 864 Table 1).





and (b) 2015 experiments. The number of individuals in each category is shown above each

bar.

876 rejection behaviour in females. In each panel, red and blue lines indicate *H. yedoensis* and *H.*

877 *axyridis*, respectively, and dashed and solid lines indicate the 2014 and 2015 experiments,

878 respectively.

879

Table 1. Parameters included in the model.

882

Parameter/Variable	Definition	Default value (if any)
X or Y	Species label	-
N _X , N _Y	Density of X or Y	Dynamic variable
t	Generation $(t \ge 0)$	-
r	Egg production (per capita)	25
V	Density dependence of resource competition $(v > 0)$	1
b	Strength of interspecific competition (<i>b</i> > 0)	0.3
С	Strength of reproductive interference ($0 < c < 1$); probability that a female is subject to a possible heterospecific mating	Varied
$p_{i j}$	Probability that a virgin female of species <i>i</i>) accepts a mating attempt by a male of species <i>j</i> , where <i>i</i> and <i>j</i> can be either X or Y	See Fig. 2
$q_{i j}$	Probability that a non-virgin female of species <i>i</i> accepts a mating attempt by a male of species <i>j</i> , where <i>i</i> and <i>j</i> can be either X or Y	See Fig. 2
$f_{\rm X} \left(= N_{\rm X} / (N_{\rm X} + N_{\rm Y})\right)$	Frequency of species X in the population	Dynamic variable
$E_{ m X}$, $E_{ m Y}$	Expected reproductive output (per capita), calculated based upon the mating decision-making tree (see Fig. 1), for species X or Y	-

883

Table 2. Comparison of the area under curve (AUC) values between species. Statistically

886 significant results are shown in boldface.

887

Behaviour	Year	AUC		Statistic		
		H. yedoensis	H. axyridis	D	df	Р
Male mating attempt	2014	0.429	0.635	-3.738	298.130	< 0.001
	2015	0.512	0.630	-2.247	220.750	0.026
Female rejection	2014	0.571	0.421	1.648	87.723	0.103
	2015	0.519	0.485	0.481	52.513	0.632

Group	Common name	Species pair	Category	Description	Reference
Marine invertebrate	Abalone	Haliotis corrugata and H. rufescens	Sympatry	Niche overlap in terms of water depth and habitat	1–3
		Haliotis cracherodii and H. rufescens	Niche partitioning	Intertidal zone versus kelp forest habitat	3, 4
		Haliotis fulgens and H. rufescens	Niche partitioning	Shallow versus deep water habitats	2, 3, 5
	Blue mussel	Mytilus trossulus and M. edulis	Sympatry	Hybrid zone is not narrow	6, 7
	Starfish	Asterias forbesi and A. rubens	Sympatry	Similar habitats, food resources, and spawning time	8, 9
	Coral	Montastraea annularis and M. franksi	Niche partitioning	Separation in (slightly overlapped) spawning time	10
	Sea urchin	Echinometra mathaei and E. oblonga	Sympatry	Slight ecological differences	11
		Echinometra oblonga and E. sp. C	Sympatry	Slight difference in habitat but similar spawning time	12
Terrestrial invertebrate	Cricket	Allonemobius fasciatus and A. socius	Parapatry		13, 14
		Gryllus firmus and G. pennsylvanicus	Parapatry		15, 16
		Gryllus bimaculatus and G. campestris	Parapatry		17, 18
	Grasshopper	Chorthippus p. parallelus and C. p. erythropus	Parapatry		19, 20
		Podisma pedestris races	Parapatry		21, 22
	Ladybird	Epilachna pustulosa and E. vigintioctomaculata	Niche partitioning	Host plant separation	23, 24
		Harmonia yedoensis and H. axyridis	Niche partitioning	Difference in prey item and habitat	25
	Fruit fly	Drosophila yakuba and D. santomea	Parapatry	Lowland versus highland distributions	26, 27
	Stalk-eyed fly	Teleopsis dalmanni diverged populations	Allopatry		28, 29
	Damselfly	Ischnura graellsii and I. elegans	Niche partitioning	The two species are rarely found in the same localities	30–33
Vertebrate	Darter fish	Etheostoma barrenense and E. zonale	Sympatry	Not closely related within the genus	34
		Etheostoma hopkinsi and E. luteovinctum	Allopatry		35

Salmonid	Salmo salar and S. trutta	Niche partitioning	Spatial and temporal segregation in spawning activities	36–38
Sunfish	Lepomis macrochirus and L. gibbosus	Niche partitioning	Differences in nesting and breeding habits	39, 40
Bird	Ficedula hypoleuca and F. albicollis	Niche partitioning	Separation in breeding habitat	41–43
Mouse	Mus domesticus and M. musculus	Parapatry		44, 45

- 4 1: Vacquier et al. (1990); 2: Cox (1962); 3: Lindberg (1992); 4: Vacquier and Lee (1993); 5: Kresge et al. (2000); 6: Klibansky and McCartney
- 5 (2014); 7: Gaitán-Espitia et al. (2016); 8: Harper and Hart (2005); 9: Menge (1979); 10: Fogarty et al. (2012); 11: Metz et al. (1994); 12: Geyer
- 6 and Palumbi (2005); 13: Howard et al. (1998); 14: Howard and Waring (1991); 15: Larson et al. (2012); 16: Harrison and Arnold (1982); 17:
- 7 Tyler et al. (2013); 18: Veen et al. (2013); 19: Butlin (1998); 20: Butlin and Hewitt (1985); 21: Hewitt et al. (1989); 22: Hewitt (1975); 23:
- 8 Nakano (1985); 24: Matsubayashi and Katakura (2009); 25: Noriyuki et al. (2012); 26: Chang (2004); 27: Lachaise et al. (2000); 28: Rose et al.
- 9 (2014); 29: Christianson et al. (2005); 30: Sanchez-Guillen et al. (2011a); 31: Sánchez-Guillén et al. (2011b); 32: Sánchez-Guillén et al. (2013a);
- 10 33: Sánchez-Guillén et al. (2013b); 34: Williams and Mendelson (2014); 35: Mendelson et al. (2007); 36: Yeates et al. (2013); 37: Heggberget et
- 11 al. (1988); 38: Jonsson and Jonsson (2009); 39: Immler et al. (2011); 40: Osenberg et al. (1992); 41: Veen et al. (2001); 42: Qvarnström et al.
- 12 (2009); 43: Vallin et al. (2012); 44: Dean and Nachman (2009); 45: Payseur et al. (2004).