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Abstract  17 

 18 
The evolutionarily conserved nature of the few well-known anti-aging interventions that 19 
affect lifespan, such as caloric restriction, suggests that aging-related research in model 20 
organisms is directly relevant to human aging. Since human lifespan is a complex trait, a 21 
systems-level approach will contribute to a more comprehensive understanding of the 22 
underlying aging landscape. Here, we integrate evolutionary and functional information 23 
of normal aging across human and model organisms at three levels: gene-level, 24 
process-level, and network-level. We identify evolutionarily conserved modules of 25 
normal aging across diverse taxa, and importantly, we show that proteostasis 26 
involvement is conserved in healthy aging. Additionally, we find that mechanisms related 27 
to protein quality control network are enriched in 22 age-related genome-wide 28 
association studies (GWAS) and are associated to caloric restriction. These results 29 
demonstrate that a systems-level approach, combined with evolutionary conservation, 30 
allows the detection of candidate aging genes and pathways relevant to human normal 31 
aging.  32 

Highlights  33 

 Normal aging is evolutionarily conserved at the module level. 34 
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 Core pathways in healthy aging are related to mechanisms of protein quality 35 
network 36 

 The evolutionarily conserved pathways of healthy aging react to caloric 37 
restriction. 38 

 Our integrative approach identifies evolutionarily conserved functional modules 39 
and showed enrichment in several age-related GWAS studies. 40 

 41 

Introduction 42 

Aging is a process that affects all living organisms and results in a progressive decline in 43 
life function and a gain in vulnerability to death (Jones et al., 2014). In humans, aging is 44 
the main risk factor in a wide spectrum of diseases. The recent increase in human 45 
healthspan, also called ‘normal’, ‘disease-free’, or ‘healthy’ aging, is mostly due to 46 
improved medical care and sanitation (Greene, 2001; Rappuoli et al., 2011).  47 
 48 
Major strides have been made in understanding the main molecular pathways 49 
underpinning the aging phenotype, leading to the definition of a number of "hallmarks" of 50 
aging, that may be common between species (López-Otín et al., 2013). Mitochondrial 51 
dysfunction and loss of proteostasis are two such conserved hallmarks of aging. Indeed, 52 
many comparative studies have shown mitochondrial dysfunction as a common feature 53 
of aging across species. Shared gene signatures in aging of D. melanogaster and C. 54 
elegans are linked to mitochondrial oxidative respiration, and similar results are 55 
observed in primates, including humans (McCarroll et al., 2004; de Magalhães, Curado 56 
and Church, 2009; Alexey A. Fushan et al., 2015). Collapse of proteostasis is another 57 
hallmark of aging that was shown to be important not only in short-lived species, but also 58 
in long-lived ones (Tian, Seluanov and Gorbunova, 2017). Loss of proteostasis is related 59 
to major human pathologies, such as Alzheimer’s and Parkinson’s disease, offering an 60 
opportunity to detect conserved candidate genes important in those age-related 61 
diseases (Labbadia and Morimoto, 2015; Sorrentino et al., 2017). The proteostasis 62 
network consists of three major mechanisms: protein synthesis, autophagy and the 63 
proteasome complex (Kaushik and Cuervo, 2015). Recent studies on the long-lived 64 
naked mole rat showed maintenance of proteasome activity throughout life (Rodriguez et 65 
al., 2012). Perturbations of components of the proteostasis network have already been 66 
observed in other species, such as mice (Pyo et al., 2013). Notably, caloric restriction, 67 
defined as a reduction of regular caloric intake by 20-40%, extends lifespan and delays 68 
the onset of age-related diseases in many species (Lee et al., 2006; Selman and 69 
Hempenstall, 2012; Bass et al., 2015; Mattison et al., 2017), in part through effects on 70 
mitochondria and proteostatic networks.  71 
 72 
Although significant efforts have been made to uncover the identity of genes and 73 
pathways that affect lifespan, it is unclear to what extent the functional information of 74 
aging obtained from model organisms can contribute to human aging. Focusing on the 75 
process of aging in healthy individuals should improve the discovery of pathways 76 
important in natural aging. In addition, systems-level analysis of large datasets has 77 
emerged as an important tool for identifying relevant molecular mechanisms, as single 78 
gene-based methods are not sufficient to elucidate complex processes such as aging. 79 
The integration of various data types contributes to identify pathways and marker genes 80 
associated with specific phenotypes (Baumgart et al., 2016; Hasin, Seldin and Lusis, 81 
2017). Notably, co-expression network analyses can help to elucidate the underlying 82 
mechanisms of various complex traits (Xue et al., 2007; van Dam et al., 2017). 83 
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 84 
To incorporate evolutionary and functional age-related information, we integrated 85 
transcriptome profiles of four animal species from young and old adults: H. sapiens, M. 86 
musculus, D. melanogaster and C. elegans. As a source of gene expression, we used 87 
human data from the large-scale Genotype-Tissue expression (GTEx) project (Mele et 88 
al., 2015), together with aging transcriptomes of model organisms. We identified the 89 
functional levels of conserved genetic modifiers important during normal aging, and 90 
related them to caloric restriction experiments and enrichments in age-related genome-91 
wide association studies (GWAS). We used gene families as evolutionary information 92 
across distant species in a two-step approach to observe age-related conserved 93 
mechanisms. Our results show the contribution of age-related mechanisms from model 94 
organisms to human normal aging, with notably a demonstration of the conserved role of 95 
proteostasis in normal aging and in the reaction to dietary restriction. 96 
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Results 97 

Data-driven integrative evolutionary approach to healthy aging  98 

We used a three steps-approach to integrate transcriptomes across distant species 99 
(human and model organisms) and to identify evolutionarily conserved mechanisms in 100 
normal aging (Figure 1A). In the first step, we performed differential expression analysis 101 
between young and old samples in two tissues, skeletal muscle and hippocampus, from 102 
humans (Homo sapiens) and mice (Mus musculus), and in whole body for the fly 103 
(Drosophila melanogaster) and the worm (Caenorhabditis elegans). We also used 104 
transcriptome datasets related to caloric restriction in these species for validation. In the 105 
second step, we obtained 3232 orthologous sets of genes, ‘orthogroups’, across those 106 
four species (see Methods). Each orthogroup (OG) is defined as the set of the 107 
orthologous and paralogous genes that descended from a single ancestral gene in the 108 
last common ancestor to those four species (H. sapiens, M. musculus, D. melanogaster, 109 
C. elegans) and an outgroup species (Amphimedon queenslandica). Each orthogroup 110 
can contain a different number of genes, and was treated as a single functional meta-111 
gene common to four species. We corrected for the orthogroup sizes by applying 112 
Bonferroni correction on the gene p-values from differential expression analysis within 113 
the orthogroup. Then, we selected a representative gene per species within orthogroups. 114 
We took the minimum Bonferroni adjusted p-value of a species-specific age-related 115 
gene from differential expression analysis. This allowed us to build ‘age-related 116 
homologous quadruplets’ (see Details in Figure S1A). The four p-values within each 117 
quadruplet were then summarized into a single p-value per quadruplet, by using Fisher’s 118 
combined test. We obtained 2511 gene quadruplets in skeletal muscle, 2800 in 119 
hippocampus, and 1971 in caloric restriction experiments (Table S4). We characterized 120 
their biological relevance by functional enrichment. In the third and final step, those 121 
quadruplets of age-related genes were used to build a co-expression network per 122 
species (Figure S1B). These networks were then integrated together using order 123 
statistics into one cross-species age-related network. We performed community search 124 
algorithm on this network to obtain age-related and evolutionarily conserved modules. 125 
The modules were then tested for functional enrichment and for enrichment in GWAS 126 
hits.  127 

 128 

Age-related gene expression patterns in four species 129 

To study normal aging, we restricted ourselves to transcriptomic studies with at least one 130 
young adult and one old adult time-point, adult being defined as after sexual maturity 131 
(Figure 1B). Transcriptomes had to come from control samples (model organism 132 
datasets) or relatively healthy individuals (GTEx dataset). We defined young and old 133 
adults across species as follows: young: 3-4 months for M. musculus, 2-10 days for D. 134 
melanogaster, 3-6 days for C. elegans; old: 18-24 months for M. musculus, 20-50 days 135 
for D. melanogaster, 10-15 days for C. elegans. For the GTEx data, samples from all 136 
adults (20-70 years old) were taken into account in a linear model to detect differentially 137 
expressed genes. In human and mouse, we focused on two tissues, skeletal muscle and 138 
hippocampus, because they are known to be profoundly affected by aging. During aging, 139 
skeletal muscle is affected by sarcopenia (Marzetti and Leeuwenburgh, 2006). Changes 140 

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted March 23, 2018. ; https://doi.org/10.1101/287128doi: bioRxiv preprint 

https://doi.org/10.1101/287128


in hippocampus function have a significant impact on the memory performances in 141 
elderly people (Driscoll et al., 2003). Thus both tissues are susceptible to aging-related 142 
diseases. For human, we used transcriptomes of 361 samples from skeletal muscle 143 
tissue and 81 samples from hippocampus from GTEx V6p. For the other species we 144 
used diverse publicly available transcriptomic datasets (Table S1). The sample sizes for 145 
model organisms were variable, from 3 to 6 replicates per time-point. In order to 146 
compare samples between young and old age groups, we fitted linear regression models 147 
for each dataset. In addition, in the GTEx dataset we controlled for covariates and 148 
hidden confounding factors to identify genes whose expression is correlated or anti-149 
correlated with chronological age, taking into account all samples (see Methods).  150 
 151 
We observed uneven distributions of up- and down-regulated genes with aging across 152 
different species and datasets (Figure 1C, Table S2), suggesting variable responses to 153 
aging and different power of datasets. The human hippocampus shows substantially 154 
more age-related gene expression change than skeletal muscle (6083 vs. 5053 155 
differentially expressed genes, FDR < 0.1). However, mouse hippocampus shows less 156 
gene expression change than skeletal muscle (1639 vs. 2455 differentially expressed 157 
genes, FDR < 0.1). These differences are due in part to the smaller sample size of the 158 
mouse skeletal muscle study. We limited our analysis to genes that were expressed in at 159 
least one age group, leading to detection of 15-40 % of genes that exhibits age-related 160 
gene expression changes. Of note, these changes are often very small, typically less 161 
than 1.05 fold in humans and less than 2-fold in animal models. 162 
 163 
It has been previously reported that there is a small overlap of differentially expressed 164 
genes among aging studies (de Magalhães, Curado and Church, 2009; Yang et al., 165 
2015). To make results easily comparable across species, the young and old adults of 166 
one species should correspond to young and old adults of another species (Flurkey, M. 167 
Currer and Harrison, 2007). Our clustering shows good consistency across age groups 168 
of samples between species, based on one-to-one orthologous genes with significant 169 
age variation (FDR < 0.05) (Figure 2A, Figure S2). Yet there is a low overlap of one-to-170 
one orthologous genes with significant expression change in aging (Table S3). This 171 
observation is in line with two studies showing that the overlap between individual genes 172 
associated with aging did not reach the level of significance (Smith et al., 2008; Alexey 173 
A. Fushan et al., 2015). To go beyond this observation, we correlated log-transformed 174 
fold change (old/young; or log of  age-related regression coefficient in human) between 175 
human and model organisms. We observed weak pairwise correlations (Figure S3) 176 
when comparing single genes. This indicates that most transcriptional changes on the 177 
gene level are species-specific, and that there is little evolutionary conservation to be 178 
found at this level. 179 
 180 
 181 

Cross-species integration at the process-level reveals proteostasis-linked age-182 

related mechanisms 183 

To assess the age-related gene expression changes on a functional level in healthy 184 
individuals per species, we performed gene set enrichment analysis (GSEA) 185 
(Subramanian et al., 2005)  using gene ontology (GO) annotations (Gene Ontology 186 
Consortium et al., 2000; The Gene Ontology Consortium, 2017). We then selected 187 
significant GO terms (FDR < 0.20) that we grouped into broader categories. 188 
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 189 
All species showed a general pattern of down-regulation of metabolic processes, such 190 
as mitochondrial translation (GO:0032543) in human GTEx skeletal muscle tissue, 191 
nucleotide metabolic process (GO:0009117) in mouse muscle tissue, cellular respiration 192 
(GO:0045333) in fly whole body, and oxoacid metabolic process (GO:0043436) in worm 193 
whole body (Figure S4). The pattern of metabolic down-regulation was stronger in 194 
muscle for both human and mouse. The processes that were down-regulated in 195 
hippocampus were related to behavior (GO:0007610), cognition (GO:0050980) and 196 
neurotransmitter secretion (GO:0007269) in human, and to synaptic signaling 197 
(GO:0099536) and axonogenesis (GO:0007409) in mouse. This confirms that there is a 198 
tissue-specific signal in normal aging. Due to small samples size of the mouse skeletal 199 
muscle dataset, we were able to detect only down-regulated metabolic processes. In 200 
addition to metabolism, we observe strong immune systems response to aging, such as 201 
regulation of cytokine production (GO:0001817) in human hippocampus or leukocyte-202 
mediated immunity (GO:0002443) in mouse hippocampus. These results are consistent 203 
with known links between metabolism, immunity and aging (Lanna et al., 2017).  204 
 205 
We aggregated processes on the functional level across four species using evolutionary 206 
information to observe common age-related mechanisms rather than tissue-specific 207 
mechanisms. We integrated differential expression analysis from each species, as 208 
described above. We obtained 2010 genes in skeletal muscle / whole body, 2075 genes 209 
in hippocampus / whole body, and 1962 genes in caloric restriction experiments (Fisher 210 
combined tests, FDR < 0.10) (Table S4). We examined their biological relevance using 211 
Gene Ontology enrichment analysis (GEA) based on human annotation (Figure 2B). We 212 
did not take into account whether the processes that are shared across species are 213 
regulated in the same direction, but rather whether they are consistently perturbed 214 
during aging.  215 
 216 
We obtained 100 significant GO terms (FDR < 0.05) related to biological processes, and 217 
aggregated them into broader GO categories. While our species-specific analysis mostly 218 
shows tissue-specific pathways, we found that terms with an evolutionarily conserved 219 
relation to normal aging are strongly enriched for processes involved in proteostasis, or 220 
protein homeostasis. The proteostasis-linked processes are more conserved than 221 
expected by chance (Figure S6). The other conserved processes are related to 222 
transport, translation, transcription and post-transcriptional modifications, and protein 223 
ubiquitination (Figure 2B, Table S5). We also confirmed previously known evolutionarily 224 
conserved age-related pathways, such as cellular respiration and immune response. 225 
Integrating caloric restriction datasets across the four species showed enrichments in 226 
similar processes (Figure 2B).  227 
 228 
While most of the shared processes have been previously linked to aging, we focused 229 
on proteostasis and related processes. To characterize in more detail the specificity of 230 
proteostasis-linked processes, we investigated their enrichment strength in the large 231 
human GTEx dataset (Figure 2C). Since proteostasis perturbation is detected both 232 
through the GO domains of cellular localization and of biological process, we 233 
investigated these two domains, and obtained similar enrichments for both skeletal 234 
muscle (Figure 2C), and in hippocampus (Figure S6, Table S6). The most enriched 235 
cellular component terms in skeletal muscle were related to proteasome complex 236 
(GO:0000502, enrichment score: 1.99) and to mitochondrial matrix (GO:0005759, 237 
enrichment score: 1.38). We also observed strong enrichment of ribosomal large 238 
(GO:0000027, enrichment score: 1.57) and small subunit (GO:0000028, enrichment 239 
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score: 1.84), of protein homotetramerization (GO:0051289, enrichment score: 1.18), and 240 
of GO biological processes that are part of the protein quality control network. Overall, 241 
the translation and proteasome complexes appear to be the parts of the protein quality 242 
control network whose involvement in aging is both evolutionarily conserved across 243 
different species, and significantly enriched in human healthy aging. Interestingly, we 244 
also detect the mRNA splicing pathway as a part of the conserved processes between 245 
species.  246 
 247 
The direction of the changes in conserved proteostasis processes in humans is 248 
consistent with a relation between loss of proteostasis and healthy aging (Figure 3). 249 
Although macroautophagy did not show a strong enrichment score in the Figure 2C 250 
(GO:0016236, enrichment score: 0.90), there is down-regulation of the conserved genes 251 
associated with macroautophagy (Figure 3A), translation (Figure 3B), and the 252 
proteasome complex (Figure 3C), which are important in the protein quality network. 253 
Similar results are observed in hippocampus, although not with a strong signal as in 254 
skeletal muscle (Figure S7). The changes during healthy aging in both tissues are rather 255 
subtle but significant (Figure 3, Table S7).  256 
 257 

Functional characterization of cross-species age-related network identifies 258 

candidate genes related to healthy aging 259 

To characterize age-related processes at a systems-level and to prioritize conserved 260 
marker genes associated with normal aging, we constructed probabilistic networks. 261 
These were based on prioritization of co-expression links between conserved age-262 
related genes across four species. These genes became nodes in the multi-species 263 
network. Thus the connections between the conserved age-related genes are based on 264 
evolutionary conservation, and prioritized according to the their co-expression in each 265 
species. 266 
 267 
Our integrative network analysis initially identified 20 and 14 modules for skeletal muscle 268 
and hippocampus, respectively. We randomized our networks 100 times based on the 269 
same number of conserved genes per experiment and obtained significantly higher 270 
numbers of gene-gene connections than in the original network (permutation test, p = 271 
0.0198) (Figure S9). Thus aging networks appear to be lowly connected. We focused 272 
only on the modules larger than 10 genes; there were 12 such modules per tissue. 273 
These modules ranged in size from 16 (M7 hippocampus) to 191 genes (M12 274 
hippocampus) (Figure 4A and 4B, Table S8). The networks were summarized to module 275 
level (module as a node), and we observed strong inter-modular associations. This 276 
analysis provided several levels of information. First, it provided a small number of 277 
coherent gene modules that represent distinct transcriptional responses to aging, 278 
confirming the existence of a conserved modular system. Second, it detected conserved 279 
marker genes affected during aging, discussed below. 280 
 281 
To determine which of the conserved aging-associated modules are related to the main 282 
components of the proteostasis network, we carried out functional enrichment analysis 283 
on these modules, based on human gene annotations. The enrichments were highly 284 
significant for all modules (FDR < 0.01), and confirmed the inter-modular associations 285 
(Table S8). Not all of the modules were related to proteostasis. Interestingly, M1, M10 286 
and M5 in the skeletal muscle network share strong associations with mitochondrion 287 
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organization and distribution, regulation of cellular amino acid metabolic process and 288 
ubiquitin protein catabolic process, while M2 and M3 in hippocampus share associations 289 
with different types of protein transport. Other modules (M1, M6, M7, M8, M11, M12 in 290 
skeletal muscle; M2, M3, M4, M5, M12 in hippocampus) support the impact of healthy 291 
aging on genes related to the proteostasis-linked processes. This included processes 292 
related to protein polyubiquitination (GO:0000209), translational initiation (GO:0006413), 293 
protein transport (GO:0015031), regulation of macroautophagy (GO:0016241), and 294 
proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161). In 295 
skeletal muscle tissue there were also a strong enrichment in splicing process (M3). 296 
Moreover, the connection between M2, M10 and M6 in hippocampus, and between M1, 297 
M5 and M12 in skeletal muscle indicates that there is a connection between 298 
mitochondrial and proteostasis-related processes, recently shown to occur also in 299 
amyloid-beta proteotoxic diseases (Sorrentino et al., 2017), and during mitochondrial 300 
stress(Labbadia and Morimoto, 2015; D ’amico, Sorrentino and Auwerx, 2017; 301 
Sorrentino, Menzies and Auwerx, 2018).  302 
 303 
To investigate the relevance of proteostasis-linked modules to age-related diseases, we 304 
performed enrichment analysis based on genes coming from 22 GWAS studies (See 305 
Methods, Table S9). M3, M4, M5 and M12 of skeletal muscle showed enrichment in 306 
coronary artery disease, triglycerides, 2hr glucose, multiple sclerosis and cholesterol-307 
related diseases, while M4 and M6 of hippocampus showed enrichment in coronary 308 
artery disease and fasting proinsulin, respectively. Skeletal muscle module M12 is 309 
particularly interesting because its genes are not only enriched in GWAS studies but 310 
also have strong involvement in proteostasis (Figure S10A). Similarly, hippocampus 311 
module M4 is interesting due to enrichment in both GWAS and in one of the proteostasis 312 
processes (Figure 5B).  313 
 314 
To further characterize these modules, we studied how conserved modular genes 315 
associated with proteostasis and age-related GWAS diseases are changed in 316 
expression in humans, as a long-lived species. We looked deeper into the gene 317 
composition of two modules, M1 associated with SCF-dependent proteasomal ubiquitin-318 
dependent protein catabolic process (79 genes) and M4 associated with positive 319 
regulation of telomerase RNA localization to Calaj body (155 genes) from the skeletal 320 
muscle and hippocampus networks, respectively. We defined network hubs, genes that 321 
exhibit a significantly high number of connections with other genes in the network, for 322 
each of these modules in muscle (Figure 5A, S10A) and hippocampus (Figure 5B, 323 
S10B). We focused on the hubs with the highest scores in each module and examined 324 
their neighborhood. The top ranked genes in M1 of the skeletal muscle were CTSK, 325 
UBE2L3 and CPA3 (Figure 5A). They are associated with protein quality network, 326 
related to protein degradation. Interestingly, the neighboring genes PSMB2 and PSMA1 327 
are associated with the proteasome complex (Figure 5A). The top ranked genes in M4 in 328 
skeletal muscle were related to the translational initiation process, with MAPRE3, 329 
SPTBN2 and ATP6V0A1 as hub genes. Their network neighbors were tightly connected 330 
to the cytoskeleton and protein transportation (Figure 5B). 331 
 332 
Other modules also show links to metabolism and to proteostasis. For example muscle 333 
module M12 and hippocampus module M3 are associated with the protein 334 
polyubiquitination process (Figure S10).  The top-ranked hub genes in muscle M12 were 335 
DDX3X, KIF5B and USP7 (Figure S9A). Those genes are related to DNA damage, 336 
translation and transport regulation in the cell. In the hippocampus module M3 (Figure 337 
9B), the three hub genes (PPP3CB, DNM1L and ITFG1) are involved in hydrolase 338 
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activity, apoptosis and programmed necrosis and modulating T-cell function. Although 339 
the hub genes with the highest scores were strongly related to metabolism and to tissue-340 
specific functions in each of these two modules, their network neighborhood is 341 
associated with the protein quality control network. More specifically, the PSMB5 and 342 
PSMD3 genes are related to the proteasome complex and are connected to hub genes. 343 
 344 
We combined this hub gene analysis with GWAS association gene scores, and 345 
observed that PSMB5, UBE2L3, and PSMD3 (Figure 5C, Table S9) are important in 346 
many age-related diseases or phenotypes, such as Alzheimer’s disease, HDL 347 
cholesterol, LDL cholesterol, triglycerides, and insulin resistance. Other genes related to 348 
translation and proteasome complex were also strongly associated to such diseases, 349 
such as PSMB5 with multiple sclerosis (Pascal (Lamparter et al., 2016) gene score: p-350 
value = 0.0348) and HDL cholesterol (Pascal gene score: p-value = 0.0155). Finally, we 351 
observed that the prioritized genes associated with age-related diseases from conserved 352 
functional modules change in opposite directions with healthy aging and with caloric 353 
restriction (Figure 5D). This differential expression is consistent with a causal role in 354 
these age related diseases, given the attenuating effect of caloric restriction on aging. 355 
 356 

Validation of marker genes using independent mouse studies 357 

We analyzed the association of the expression levels of candidate genes with lifespan in 358 
different tissues of mouse recombinant inbred lines used for population genetics 359 
analyses, such as the BXD (Andreux et al., 2012) and LXS (Liao et al., 2010) strains. 360 
We observed an inverse correlation between transcript levels of PSMB5 (Figure 5E) in 361 
the spleen of the BXD strains (average age at the time of transcript analysis 78 days; p = 362 
7.14 x 10-5) and in the prefrontal cortex of LXS lines (average age of 72-days; p = 0.03), 363 
and lifespan longevity. This correlation was consistent even after correction for the 364 
population structures with mixed models (Kang et al., 2008). Thus lower expression of 365 
PSMB5 is linked to lifespan. Consistent with this, the GSEA showed down-regulation of 366 
the proteasome complex during the lifespan of the mice (Figure 5E, left panel). 367 
 368 

Discussion 369 

The challenge of detecting underlying mechanisms of healthy aging that are 370 
evolutionarily conserved is thought to be a key impediment for understanding human 371 
aging biology (Fontana et al., 2010). In this work, we coupled evolutionary and functional 372 
information of healthy aging gene expression studies to identify conserved age-related 373 
systems-level changes. We identified conserved functional modules by integration of co-374 
expression networks, and we prioritized genes highlighted by GWAS of age-related 375 
diseases and traits. The observations on several functional levels allowed us to highlight 376 
the role of proteostasis, which includes all processes related to protein quality control 377 
network, as a strong core process associated with normal aging.  378 
 379 
Previous observations restricted to a small number of evolutionarily conserved genes 380 
with large effects in aging, or in age-related diseases, provided some evidence that 381 
aging mechanisms might be conserved among animals (de Magalhães, Curado and 382 
Church, 2009). However, transcriptome level correlations of expression changes in 383 
aging between species are very low in our gene-level results, in accordance with other 384 
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studies (Zahn et al., 2006; Smith et al., 2008; Alexey A Fushan et al., 2015). Yet the 385 
process of aging appears overall conserved, with notably common effects of 386 
interventions, such as caloric restriction, showing similar effects across species ranging 387 
from nematodes, flies, to mammals (Gems and Partridge, 2013). The solution to this 388 
apparent paradox seems to be that pathways are evolutionarily conserved in aging 389 
(Smith et al., 2008), even when single genes are not. Indeed, we have found strong 390 
similarities in age-related gene sets between human and other species. 391 
 392 
Beyond individual pathways, the modular nature of aging has been previously reported 393 
at several levels, such as by protein-protein interaction network analysis during human 394 
and fruit fly brain aging (Xue et al., 2007), human longevity network construction and 395 
identifying modules (Budovsky et al., 2006), mouse age-related gene co-expression 396 
modules identification (Southworth, Owen and Kim, 2009), or aging and age-related 397 
diseases cluster detection in human aging (Fernandes et al., 2016). Integrating co-398 
expression networks across species, we identified 10 and 13 evolutionarily conserved 399 
functional modules for skeletal muscle and hippocampus, respectively. These conserved 400 
modules are not only enriched in processes known to be involved in healthy aging, such 401 
as immune-related pathways, they significantly overlap with results from age-related 402 
GWASs. The latter is of particular relevance, since finding causality for aging in GWAS 403 
is difficult, given its highly multifactorial nature (McDaid et al., 2017). Of note, these 404 
modules can be tissue-specific, for example related to energy and amino acids in muscle 405 
(Figure 5A). Thus, aging is an evolutionarily conserved modular process, and this 406 
modularity is tissue-specific. 407 
 408 
An advantage of our approach is that it allows us to detect with good confidence 409 
processes whose changes in aging are quite subtle. This is important because healthy 410 
aging is not a dramatic process, akin to embryonic development or cancer, but a gradual 411 
change in tissues and cell types which keep their defining characteristics. In other words, 412 
old muscle and young muscle are very similar at the molecular level, as shown, e.g., by 413 
the log-fold change scale in Fig. 3: a log2 age-related regression coefficient (Formula 1) 414 
of -0.005 corresponds to a decrease of only 1.0035 fold. Yet we are able to detect 415 
processes associated to these changes with strong confidence, and these processes are 416 
mostly known in to be age-related. The largest changes, thus easiest to detect, include 417 
metabolism (Finkel, 2015), transcription (Roy et al., 2002), translation (Steffen and Dillin, 418 
2016), and immune response. Changes in expression for proteostasis-related genes are 419 
weaker, yet integrating at a systems level between species provided us with a strong 420 
signal. 421 
 422 
More broadly, our results strengthen the case for further investigation into the molecular 423 
program that links proteostasis to healthy aging. This is in line with “loss of proteostasis” 424 
as one of the nine proposed hallmarks of aging (López-Otín et al., 2013; Walther et al., 425 
2015). Aging involves a deregulation of the protein quality control network, and this is 426 
conserved between distant species. Changes in protein synthesis and protein 427 
degradation processes have already been linked to several age-related diseases, most 428 
notably Alzheimer’s and Parkinson’s disease (Morimoto and Cuervo, 2014). They may 429 
be fundamental to the response to normal aging because the accumulation of somatic 430 
and germline mutations can alter fine modulation of the protein homeostasis network 431 
and produce pathological alterations (Woodruff and Thompson, 2003; Khodakarami et 432 
al., 2015). Thus proteostasis provides a link between somatic genome-level changes 433 
and the phenotypic impact of aging. Our results show that during healthy or normal 434 
aging, the alterations in proteostasis network are rather subtle and discrete, by contrast 435 
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to the strong down-regulation of metabolic processes. This suggests that perhaps there 436 
is a cascade of triggered pathways as aging proceeds (Tomaru et al., 2012) . Moreover, 437 
we detect evolutionarily conserved links inside modules between mitochondrial 438 
deregulation (hub genes) and protein homeostasis (neighboring genes) in normal aging, 439 
consistent with recent advances in the field (D ’amico, Sorrentino and Auwerx, 2017; 440 
Labbadia et al., 2017; Sorrentino, Menzies and Auwerx, 2018).  441 
 442 
The main evolutionarily conserved gene candidates from proteostasis, PSMB5 and 443 
PSMD3, are related to the proteasome. These two genes were tightly connected to 444 
metabolic hub genes in skeletal muscle and to filament organization genes in the 445 
hippocampus. The proteasome complex is down-regulated during aging in our results, 446 
and in a transgenic mouse mutant proteasome dysfunction led to shorter lifespan 447 
(Schmidt and Finley, 2014). In the database of gene expression Bgee (Bastian et al., 448 
2008), human PSMB5 and PSMD3 have top expression in gastrocnemius muscle, with 449 
weaker expression in old age. Moreover, both genes showed significant association in 450 
GWAS studies with metabolic and disease traits. The PSMB5 gene was validated by 451 
comparing mice strains, and the PSMD3 gene was related with coronary artery disease, 452 
HDL cholesterol and fasting proinsulin, all indicators of healthspan, and would also be 453 
worthwhile to explore further.  454 
 455 
The association with caloric restriction studies strengthens the functional contribution to 456 
aging of the processes we identified. We observed that the gene-set signals were both 457 
evolutionarily conserved in caloric restriction, and shared between healthy aging and 458 
caloric restriction experiments. Genes related to proteostasis showed opposite directions 459 
in expression changes between human healthy aging and caloric restriction. This 460 
indicates that these functions are maintained during caloric restriction in humans but lost 461 
during aging, and reinforces the case for a causal link between proteostasis and healthy 462 
aging. Our observations are consistent with previous research in C. elegans, reporting 463 
improvement of proteostasis during caloric restriction treatments and extension of the 464 
lifespan (Depuydt et al., 2013; Chondrogianni et al., 2015). Notably, PSMB5 and PSMD3 465 
follow this trend in caloric restriction relative to healthy aging, further suggesting that 466 
they are prime candidates to study genes underlying functional modules in healthy 467 
aging. 468 
 469 
Integrating biological processes based on evolutionary conservation allows 470 
distinguishing relevant signals from noise, despite the weak patterns in aging 471 
transcriptomes. Moreover, the fact that a process is similarly involved in aging in very 472 
different species strengthens the case for causality. This provides a promising 473 
foundation to search for relevant biomarkers of healthy aging of specific tissues, e.g. 474 
further analysis of directions of change in homologous tissues, in different model 475 
organisms. 476 
 477 
In summary, the large-scale, comprehensive gene expression characterization in our 478 
study provides insights in underlying evolutionarily conserved mechanisms in normal 479 
aging. While metabolic and certain tissue-specific pathways play a crucial role in aging, 480 
processes affecting the protein quality control network also show very consistent signal. 481 
Using both evolutionary and functional information, we detected conserved functional 482 
modules that allowed us to identify core proteostasis-related genes. These genes were 483 
implicated as important hits in age-related GWAS studies (Gomes, 2013). Together, the 484 
integrative systems-level approach facilitated the identification of conserved modularity 485 
of aging, and of candidate genes for future normal aging biomarkers. 486 
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 487 

Figures  488 

Figure 1. Study design and differential gene expression analysis. 489 
(A) An overview of the integration process based on transcriptomes across the species. 490 
(I) Analysis starts at the single-gene level by performing differential expression analysis 491 
per species between young and old adults (all samples in case of GTEx human data), 492 
and determining the orthogroups across species. (II) The orthogroups (OG) are 493 
summarized to single genes that represent age-associated conserved genes. (III) The 494 
same genes are then used to build the co-expression networks per species and being 495 
integrated in the final cross-species network. (See Methods, Figure S1A and S1B) 496 
(B) The species used in the study with their phylogenetic relations and the alignment of 497 
their ages categories. 498 
(C) Barplots representing the numbers of significantly differentially expressed age-499 
related genes (FDR < 0.1) in old healthy individuals in each dataset used. Blue (resp. 500 
red) bars represent genes significantly up- (resp. down-) regulated in old adults.  501 
 502 
Figure 2. Functional enrichment analysis of integrated age-associated conserved 503 
genes.  504 
(A) Clustering of the age-related samples between human (20-30y; 61-70y) and mouse. 505 
The heatmaps show good concordance between the young and old samples between 506 
species based on the 1-1 orthologous genes that are differentially expressed. 507 
(B) Bubble plot showing the number of GO categories with conserved change of 508 
expression in aging between species. The analysis only includes categorized GO terms 509 
that are significant (FDR < 0.05) and unique to the homologous quadruplets enrichment.  510 
(C) GO enrichment of genes involved in processes related to proteostasis based on 511 
cellular component (CC) and biological process (BP). Lengths of bars represent GO 512 
log2-transformed enrichment scores.  513 
 514 
Figure 3. Gene expression changes in the main aspects of the proteostasis 515 
network in healthy aging human skeletal muscle. 516 
Conserved genes from macroautophagy (A), translation (B) and proteasome complex 517 
(C) in GTEx skeletal muscle data. Grey, conserved genes that are not significant (FDR > 518 
0.05) in human GTEx skeletal muscle data. The x-axis of the volcano plots shows the 519 
log2 of age-regression coefficient (log2 slope, Formula 1) across the samples in GTEx 520 
data (see Methods; Formula 1), named log2 fold-change. 521 
(D) Schematic outline of the gene expression direction of the proteostasis-linked 522 
processes in aging human muscle. 523 
 524 
Figure 4. Cross-species aging-associated skeletal muscle and hippocampus 525 
functional modules and GO enrichments.  526 
Module networks of skeletal muscle (A) and hippocampus (B) with GO and GWAS 527 
enrichments for modules of size greater than 10. The tables on the right show top GO 528 
BP terms (FDR < 0.1) enriched in the skeletal (upper panel) and hippocampus (lower 529 
panel) modules. The GWAS-associated disease column in the same table contains 530 
associations to the module passing a threshold of FDR < 0.2. 531 
 532 
Figure 5. Module architectures and prioritization of candidate genes 533 
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(A-B) Architecture of modules related to protein polyubiquitination (M2; A) and positive 534 
regulation of telomerase RNA (M4; B) with hub genes (in red) and their neighboring 535 
genes (in black), in skeletal muscle (A) and hippocampus (B).  536 
(C) GWAS heatmap of the conserved proteostasis-related genes that were prioritized in 537 
modules. The heatmap shows the strength of association of each gene (hubs and 538 
neighbouring genes from the interested modules) with GWAS.  539 
(D) Volcano plot of the prioritized and conserved genes in human dietary restriction 540 
dataset. 541 
(E) Validation plots for PSMB5 gene in independent mouse studies, taken at 72 and 78 542 
days of age. The x-axis represents the expression values of the gene in 35 strains of 543 
LXS (upper scatterplot) and BXD (lower scatterplot), and y-axis maximum (upper 544 
scatterplot) and median (lower scatterplot) lifespan of that strain. The left panel shows 545 
GSEA enrichment relation between proteasome complex and lifespan. 546 

 547 

Supplemental Data 548 

Supplement Figures are in Supplemental document. 549 

Table S1. Expression datasets used in aging and caloric restriction analysis. This 550 
table contains 2 sheets, corresponding to aging and dietary restriction experiments. 551 
 552 
Table S2. Differential expression statistics in skeletal muscle (human, mouse), 553 
hippocampus (human, mouse), whole body (fly, worm) for age-related 554 
experiments and skeletal muscle (human, mouse) and whole body (fly, worm) for 555 
dietary restriction. This table contains 6 sheets, each sheet corresponds for tissue and 556 
species. In each sheet, rows correspond to genes with no cutoffs applied. The columns 557 
provide differential expression statistics for all the samples (GTEx) and two-group 558 
comparisons (model organisms). 559 
 560 
Table S3. Overlap between the 1-to-1 conserved age-related orthologs between 561 
human and model organisms. 562 
 563 
Table S4. List of orthologous genes from integrative analysis.  This table contains 3 564 
sheets, corresponding to muscle, hippocampus and dietary restriction experiments that 565 
were integrated based on orthologous groups. The columns represent name of 566 
orthogroups, combined p-values across species from Fisher’s combined probability test, 567 
original p-values from differential expression analysis per species and annotations of 568 
genes. The rows contain genes that are representative per orthologous group for each 569 
species. 570 
 571 
Table S5. Summarized clusters based on GO semantic similarity method. This 572 
table contains 3 sheets, corresponding to muscle, hippocampus and dietary restriction 573 
GO analysis. The file shows the GO enrichments and categorization to higher (more 574 
general) GO terms. 575 
 576 
Table S6. Proteostasis-linked processes enriched in 2 tissues and dietary 577 
restriction experiments. This table contains 3 sheets, corresponding to muscle, 578 
hippocampus and dietary restriction GO analysis for proteostasis-linked processes. 579 
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 580 
Table S7. Significant conserved genes from human GTEx in proteostasis quality 581 
network for skeletal muscle and hippocampus. This table contains 6 sheets for each 582 
part of the protein quality network (macroautophagy, translation and proteasome 583 
complex) per tissue. 584 
 585 
Table S8. Summary of the statistics from network analysis. This table contains 5 586 
sheets of the information about the sizes of the all modules and GO and GWAS 587 
enrichments in each tissue for proteostasis-linked modules.  588 
 589 
Table S9. Summary of mapping the GWAS traits for selected modules. This table 590 
contains the gene-level p-values from the PASCAL tool for the heatmap of Figure 5C for 591 
selected 22 GWAS age-related studies. 592 
 593 

METHODS 594 

Data selection. To obtain a representative set of aging gene expression experiments, a 595 
set of raw RNA-seq and microarray datasets of four species (H. sapiens, M. musculus, 596 
D. melanogaster, C. elegans) were downloaded from the GEO database (Barrett et al., 597 
2013) and SRA database (Leinonen et al., 2011) (Table S1). For observing aging gene 598 
expression signatures in human and mouse, we selected hippocampus and skeletal 599 
muscle tissues. The aging gene expression experiments for fly and worm were available 600 
as whole-body experiments. All the healthy or control samples came from two extreme 601 
age groups (young and old adults) that are counted from sexual maturity. This 602 
corresponds to 20-30 years old humans, 3-4 months old mice, 4-5 days old flies and 3-6 603 
days old worms (see Figure 1B) in young adults. In old adult age group, this corresponds 604 
to 60-70 years old humans, 20-24 months old mice, 40-50 days old flies and 12-14 days 605 
old worms. The sample size per age group was 3-6 replicates. The GTEx V6p read 606 
counts were used as H. sapiens aging experiment (V6p dbGaP accession 607 
phs000424.v6.p1, release date: October, 2016). The information about the sample ages 608 
was obtained through dbGAP annotation files of the GTEx project (restricted access). 609 
Two RNA-seq datasets were matched for M. musculus and C. elegans; and the 610 
microarray platforms included were from Affymetrix: Mouse 430 A/2.0, GeneChip 611 
Drosophila Genome array and C. elegans Genome array.  612 
 613 
GTEx v6p analysis. From the downloaded GTEx V6p data, we extracted the gene read 614 
counts values for protein-coding genes by using Ensembl (release 91). For each tissue, 615 
the lowly expressed genes were excluded from data analysis according to the GTEx 616 
pipeline (Mele et al., 2015). Prior to the age-related differential expression analysis, we 617 
used the PEER algorithm (Stegle et al., 2012) in a two-step approach to account for 618 
known covariates as well as for hidden factors present in GTEx V6p data per tissue.   619 
From covariate files (Brain_Hippocampus_Analysis.covariates.txt and 620 
Muscle_Skeletal_Analysis.covariates.txt), we used information about the three genotype 621 
principal components. From phenotype file 622 
(phs000424.v6.pht002742.v6.p1.c1.GTEx_Subject_Phenotypes.GRU.txt), we used 623 
information about age, gender, ischemic time and BMI information. From attribute file 624 
(phs000424.v6.pht002743.v6.p1.c1.GTEx_Sample_Attributes.GRU.txt), we extracted 625 
information about the sample associations with interested tissues, hippocampus and 626 
skeletal muscle. In the first step, the PEER algorithm discovers patterns of common 627 
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variation; it created 15 and 35 assumed global hidden factors for hippocampus and 628 
skeletal muscle, respectively. In addition to global hidden factors, we provided age, BMI, 629 
sex and ischemic time as known covariates in PEER model. In the second step those 630 
hidden factors (gene expression principal components) that showed significant 631 
Pearson’s correlation coefficient with age (p-value < 0.05) were excluded. The number of 632 
hidden factors that did not significantly correlate in hippocampus was 7/15 and in 633 
skeletal muscle were 22/35 that were selected for further linear model analysis. The sum 634 
of remaining hidden factors and known covariates were included in a linear regression 635 
model to obtain the genes differentially expressed during age in GTEx V6p data for each 636 
tissue (Formula 1).  637 
 638 
𝑌𝑗𝑖 =  𝜇0 +  𝛼𝑗𝐴𝑔𝑒𝑖 +  𝛾𝑗𝑆𝑒𝑥𝑖 +  𝛽𝑗𝐵𝑀𝐼𝑖 +  𝜃𝑗𝐼𝑠ℎ𝑒𝑚𝑖𝑐 𝑡𝑖𝑚𝑒𝑖 +  ∑  𝛿𝑗𝑃𝐶𝑘𝑖

𝑛
𝑘=1 +  𝜖𝑖  [1] 639 

 640 
where, Yji is the expression of a gene j in a sample i, where Age, Sex, BMI, Ischemic 641 
time of sample i, with their regression coefficients , , , . PCki (1 < k < n) is the value 642 
of the k-hidden factors for the i-th sample with regression coefficient ; n is a total 643 
number of factors that was not correlated with age, i is the error term, and 0 is the 644 
regression intercept. If  > 0, gene j was treated as up-regulated, otherwise gene j was 645 
treated as down-regulated. The linear model (Formula 1) was performed in limma voom, 646 
and the p-values were corrected for multiple testing by performing false discovery rate 647 
(FDR) correction using Benjamini-Hochberg method. 648 
 649 
Aging datasets microarray analysis. For microarray datasets (both aging and caloric 650 
restriction experiments) from skeletal muscle of M. musculus and whole-body of D. 651 
melanogaster, raw Affymetrix .CEL files were downloaded from the GEO database and 652 
preprocessed using RMA normalization algorithm (Irizarry et al., 2003) (Table S1). In 653 
case of multiple probes mapping to the genes on the array, the average of the probes 654 
was taken in further analysis. The annotation was used from Ensembl release 91. In 655 
order to identify the features that exhibit the most variation in the dataset, principal 656 
component analysis (PCA) was performed on the expression matrices to detect outlier 657 
samples, gender and other batches.  658 
 659 
Aging datasets RNA-seq analysis. For RNA-seq datasets from two model organisms, 660 
M. musculus and C. elegans, the .sra files were downloaded from the SRA database 661 
(Leinonen et al., 2011). Both datasets were sequenced on Illumina HiSeq 2000 with read 662 
length 50nt.  The reads were mapped to species-specific reference genomes (M. 663 
musculus: GRCm38.p5, C. elegans: WBCel235) using kallisto v0.43.1 (for index 664 
building: kallisto index –i genome.idx genome.cdna.all.fa (k-mer = 31, default option); for 665 
mapping: kallisto quant -i genome.idx –o output.file –single –l 200 –s 20 666 
single.end.fastq.file) (Bray et al., 2016). Both M. musculus and C. elegans had single-667 
end RNA-seq libraries in the experiments (Table S1.). The transcript abundances were 668 
summarized at the gene-level (Soneson, Love and Robinson, 2015). For both species, 669 
we used GTF gene annotation files that were downloaded from Ensembl ftp site (release 670 
91) (Aken et al., 2016). The transcript abundances were summarized at the gene-level to 671 
lengthscaledTPMs using tximport v1.6.0 (Soneson, Love and Robinson, 2015) and used 672 
as an input to limma voom. The gene-level read counts were further analyzed in R 673 
v3.4.3. The read counts were normalized by total number of all mappable reads (library 674 
size) for each gene. The limma voom results in a matrix of normalized gene expression 675 
values on log2 scale. The counts and normalized log2 limma voom expression values 676 
were used as a raw input for all the analysis. Outlier samples were checked by principal 677 
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component analysis. For each species, genes that showed expression below 1 count per 678 
million (cpm < 1) in the group of replicates were excluded from downstream analysis. 679 
 680 
Identification of age-related differentially expressed genes. To be able to obtain 681 
differentially expressed genes from different experiments that were normalized, we had 682 
to account for the possible batches present. Since we are not aware of all the batches in 683 
the studies, we used Surrogate Variable Analysis (SVA) to correct for batches (Leek and 684 
Storey, 2007) in microarray data analysis. The SVA method borrows the information 685 
across gene expression levels to estimate the large-scale effects of all factors absent 686 
from the model directly from the data. After species-specific expression matrices were 687 
corrected, they served as input into linear model analysis implemented in limma 688 
(Affymetrix) or limma voom (RNA-seq) (Law et al., 2014), for finding age-related 689 
differentially expressed genes between two extreme aging groups, young and old. 690 
Briefly, limma uses moderate t-statistics that includes moderated standard errors across 691 
genes, therefore effectively borrowing strength from other genes to obtain the inference 692 
about each gene. The statistical significance of putatively age-dependent genes was 693 
determined with a false discovery rate (FDR) of 10%.  694 
 695 
Caloric restriction datasets microarray analysis. The GEO database was used to 696 
download caloric restriction datasets (Table S1). Only muscle tissue was available in H. 697 
sapiens, therefore we selected correspondingly muscle tissue in mouse, but whole body 698 
in fly and worm. The datasets were normalized using RMA normalization algorithm 699 
(Irizarry et al., 2003) (Table S1). In case of multiple probes mapping to the genes on the 700 
array, the average of the probes was taken in further analysis. The annotation was used 701 
from Ensembl release 91. To call differentially expressed genes, we used limma 702 
between caloric restriction and control samples. The statistical significance of putatively 703 
age-dependent genes was determined with a false discovery rate (FDR) of 5%.  704 
 705 
Age group alignments between species. For deriving one-to-one orthologs, human 706 
genes were mapped to the homologs in the respective species using biomaRt v2.34.2. 707 
After detection of significant age-associated differentially expressed genes, we 708 
overlapped one-to-one orthologous genes between the species in order to observe the 709 
consistency of age groups between species. We took the limma voom corrected 710 
expression matrix for GTEx V6p and the expression matrices of model organisms, and 711 
selected only genes that were differentially expressed with an FDR of 5%. We then 712 
accounted for the laboratory batch effect by applying Combat on expression matrices 713 
(Leek et al., 2012).  714 
 715 
Gene-level analysis. To examine the relationship between aging in human and model 716 
organisms on single-gene level, we mapped one-to-one orthologous genes from human 717 
to model organisms and between the organisms downloaded from Ensembl (Aken et al., 718 
2016). We calculated Spearman correlations between sets of matched differentially 719 
expressed orthologous genes, between log2 fold-changes (Supplementary Figure S2). 720 
No cutoff for fold change was used. 721 
 722 
Constructing homologous quadruplets and enrichment analysis. We downloaded 723 
hierarchical orthologous groups (HOGs, in further text referring to orthologous groups 724 
(OG)) across four species from the OMA (orthologous matrix analysis) database 725 
(Altenhoff et al., 2015) at the Bilatera level (Amphimedon queenslandica (Cnidaria) was 726 
used as a metazoan outgroup), which resulted in 3232 orthologous groups. Briefly, 727 
hierarchical orthologous groups are gene families that contain orthologs (genes related 728 
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by speciation) and in-paralogs (genes related by duplication) at the taxonomic level 729 
which orthologous groups were defined. The sizes of orthologous groups in this study 730 
range from 4 to 246 genes. We filtered age-related genes per orthologous group per 731 
species in order to obtain representative species-specific genes per group. The genes 732 
within orthologous group were selected according to the P values from differentially 733 
expression analysis (Rittschof et al., 2014). We applied Bonferroni correction on each 734 
orthologous group to the differential expression P values in order to correct for the size 735 
of the orthologous group. We then combined the corrected differential gene expression 736 
P values across species using Fisher’s combined probability test generating a new P 737 
value from χ2 distribution with 2k degrees of freedom (Formula 2). 738 
 739 

 −2 ∑ ln(𝑃𝑖)𝑘
𝑖=1 ~ 𝜒2𝑘

2    [2], 740 
 741 

where 𝑃𝑖 is species-specific gene P value from differential expression analysis within a 742 
OG.  743 
 744 
We adjusted combined Fisher P values for multiple testing, and filtered orthologous 745 
groups with FDR of 10% for further analysis. This resulted in 2010 and 2075 common 746 
OGs for skeletal muscle and hippocampus, respectively. In caloric restriction 747 
experiments, we detected 1962 common OGs. 748 
We performed general GO enrichment analysis using Fisher’s test (topGO R package) 749 
on significant orthologous group genes and based on human gene set annotation to find 750 
functional enrichment of OGs in GO ‘biological process’ terms. To summarize the 751 
significantly enriched top 100 GO terms into main ones, we used the Wang GO semantic 752 
similarity method (Wang et al., 2007) that takes into account the hierarchy of gene 753 
ontology, and performed hierarchical clustering (11 clusters for skeletal muscle and 13 754 
clusters for hippocampus, 10 clusters for caloric restriction) on the semantic matrix for 755 
both aging and caloric restriction experiments (Table S5). The clusters were then named 756 
according to the common term of the cluster. We associated proteostasis-linked 757 
processes to GO terms associated with ‘translation’, ‘protein folding’, ‘proteasome 758 
assembly’, ‘macroautophagy’, ‘proteasome complex’, ‘endoplasmic reticulum’, 759 
‘lysosome’ and others.  760 
To perform the randomizations, we selected random genes from the differential 761 
expression matrices with the same number as the number of orthologous groups 762 
selected for skeletal muscle and hippocampus. The p-values associated with the random 763 
genes per species were then combined with the Fisher’s combined test. The GO 764 
enrichment analysis was performed as for the observed data with focus on the ‘biological 765 
process’ and based on the human annotation. The procedure was repeated 100 times 766 
(Figure S6). 767 
 768 

Prioritization of OG gene pairs in multi-species co-expression network. We aimed 769 
to detect gene sets that are perturbed in aging in different species. We selected the 770 
genes from previously formed significant age-related OGs per species and constructed 771 
the species-specific co-expression networks by calculating Pearson correlation 772 
coefficient between age-related OGs genes. In the resulting species-specific co-773 
expression network, nodes represent genes and edges connect genes that are above a 774 
set significant threshold from Pearson correlation calculation (P value < 0.05). Only 775 
positively correlated genes were taken into account, while the negatively correlated 776 
genes and genes correlating under the threshold were set to zero. Negatively correlated 777 
genes might be interesting to detect complex regulatory patterns, but are beyond the 778 
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scope of this study. The cross-species network was obtained as follows (Stuart et al., 779 
2003). Each co-expression link was assigned a rank within the species according to the 780 
Pearson correlation value. We then divided the species-specific ranks by the total 781 
number of OGs per tissue to normalize the ranks across the species (Formula 3, 782 
example for human, but same for other species).  783 

𝑟𝑛 =  
𝑟𝑐𝑥ℎ

𝑁𝑒𝑜𝑔
 [3], where 𝑟𝑛  is normalized gene pair rank, 𝑟𝑐𝑥ℎ  is the rank of co-784 

expression link in human and 𝑁𝑒𝑜𝑔 is the number of common evolutionary orthologous 785 
groups selected for tissue. 786 
 787 
The final gene-pair list was then obtained by integrating human, mouse, fly and worm 788 
ranked lists using robust aggregation, originally made for comparing two lists (Kolde et 789 
al., 2012). Briefly, using beta probability distribution on order statistics, we asked how 790 
probable is the co-expression link by taking into account the ranks of all four species. 791 
This method assigns a P value to each co-expression link in an aggregated list, 792 
indicating how much better it is ranked compared to the null model (random ordering). 793 
This yielded networks with 2887 and 3353 significant gene-pairs (edges) (P value < 794 
0.001) for skeletal muscle and hippocampus, respectively. 795 
To confirm that the integrated age-related multi-species networks are significant, we 796 
selected randomly collected genes from each species. The numbers of selected genes 797 
was the same as in the OGs. We then formed the quadruplets and performed the same 798 
integration analysis as before. We repeated the procedure 100 times, and obtained 100 799 
randomly integrated multi-species networks (Figure S7). In both cases, random and 800 
original analysis, the annotation was based on human. 801 
 802 
Clustering the integrated cross-species network. In order to identify aging-803 
associated functional modules, we created networks containing 1142 nodes (2887 804 
edges) in skeletal muscle and 1098 nodes (3353 edges) in hippocampus, from our 805 
prioritized gene pair list based on orthology and all edges between them. The negative 806 
logarithm (base 10) of P values from aggregated list was assigned as edge weights in 807 
both integrated networks. We decomposed the skeletal muscle and hippocampus 808 
integrated networks into components and the further analysis was restricted to analysis 809 
of a giant component. The giant component contained 1050 genes (nodes) in skeletal 810 
muscle and 1067 genes (nodes) in hippocampus. As before, we used human annotation. 811 
The modules within the cross-species networks of each tissue were obtained by using a 812 
multilevel community algorithm that takes into account edge weights (Yang, Algesheimer 813 
and Tessone, 2016) from igraph (Csárdi & Nepusz 2006). Briefly, the multilevel 814 
algorithm (Blondel et al., 2008) takes into account each node as its own and assigns it to 815 
the community with which it achieves the highest contribution to modularity. To obtain 816 
Figure 4, we summarized groups of module nodes to single meta-nodes according to 817 
their multilevel-algorithm calculated module membership, and showed the inter-modular 818 
connectivity using a circular layout. We selected the modules with size greater than 10, 819 
which returned 12 modules per tissue-specific cross-species network. We checked the 820 
functional enrichment of genes within selected modules in every network using Gene 821 
Ontology through topGO R package (See Figure 4).  822 
Moreover, we downloaded the pre-calculated file of gene-level summary statistics from 823 
37 GWASs from the Pascal method (Lamparter et al., 2016). We selected 22 out of 37 824 
GWAS studies (Marbach et al., 2016) (Table S9) that are associated with metabolic and 825 
neurological age-related diseases. To perform enrichment of the module genes within 826 
GWAS age-related diseases categories, we selected top-ranking genes (GWAS gene 827 
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score < 0.1) within each disease and formed the categories for enrichment. We ran 828 
enrichment analysis on final network modules to find disease-related modules (adjusted 829 
p-value < 0.2). The human genome was used as a background gene set. 830 
Finally, we used Kleinberg’s hub centrality score to determine the hub genes within 831 
interested modules and observed the hub-gene neighborhood. The final genes were 832 
then selected to show their P value association within GWAS studies (Figure 5C, Table 833 
S9). 834 
 835 
LXS and BXD mouse data. Male and female mice from those strains were fed with 836 
normal ad libitum diet, and median and maximum lifespan were calculated to represent 837 
longevity across strains. Microarray data as well as lifespan data were downloaded from 838 
GeneNetwork.org. Microarray data from prefrontal cortex of LXS mice was generated by 839 
Dr. Michael Miles using animals with the average age of 72 days (GN Accession: 840 
GN130). Microarray data from spleen of BXD mice was generated by Dr. Robert W. 841 
Williams using animals with the average age of 78 days (GN Accession: GN283). 842 
Microarray data from hippocampus of BXD mice was generated by Dr. Gerd 843 
Kempermann and Dr. Robert W. Williams using animals with the average age of 70 days 844 
(GN Accession: GN110). To correct for the population structure within the strains, a 845 
linear mixed model approach was applied. For enrichment analysis, genes were ranked 846 
based on their Pearson correlation coefficients with the lifespan data of the BXD strains, 847 
and Gene Set Enrichment Analysis (GSEA) was performed to find the enriched gene 848 
sets correlated with the lifespan (Subramanian et al., 2005). 849 
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