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Abstract

Graph-based representations are considered to be the future for reference genomes, as
they allow integrated representation of the steadily increasing data on individual
variation. Currently available tools allow de novo assembly of graph-based reference
genomes, alignment of new read sets to the graph representation as well as certain
analyses like variant calling and haplotyping. We here present a first method for calling
ChIP-Seq peaks on read data aligned to a graph-based reference genome. The method
is a graph generalization of the peak caller MACS2, and is implemented in an open
source tool, Graph Peak Caller. By using the existing tool vg to build a pan-genome of
Arabidopsis thaliana, we validate our approach by showing that Graph Peak Caller with
a pan-genome reference graph can trace variants within peaks that are not part of the
linear reference genome, and find peaks that in general are more motif-enriched than
those found by MACS2.

Introduction

Transcription factors are known to play a key role in gene regulation, and detecting
regions associated with transcription factor binding is an important step in
understanding their function. The most common technique used to detect transcription
factor binding sites is ChIP-seq, combining chromatin immunoprecipitation (ChIP)
assays with sequencing. Obtaining putative binding regions from ChIP-seq data is done
using computational techniques known collectively as performing peak calling. Several
peak callers, programs to perform peak calling, have been developed for this purpose, for
example MACS2 [1] and SPP [2]. Common for all current peak callers is that they take
reads mapped to a linear reference genome, such as GRCh38, as input.

Graph-based reference genomes offers a way to include known variants in the
reference structure [3]. The software package vg supports mapping reads to a
graph-based reference genome with potentially increased accuracy [4, 5] as compared to
mapping reads to a standard linear reference genome using tools like BWA-MEM [6] or
Bowtie [7]. Several types of genomic analyses, such as variant calling and haplotyping,
can now be performed using graph-based references [4, 5]. However, no tool currently
exists for performing peak calling on graph-based references.
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Results

We present Graph Peak Caller, a first method for detecting transcription factor binding
events from ChIP-seq reads mapped to a graph-based reference genome. Graph Peak
Caller is based on the same principles used by MACS2 (see Fig 1 for an overview), and
is able to call peaks with or without a set of control alignments. For the case of a graph
that merely reflects a linear reference genome, our peak-caller produces the same results
as MACS2. As input, it supports alignments in the Graph Alignment/Map format
(GAM) from vg, as well as reads represented as genomic intervals using the Offset Based
Graph Python package [8]. Graph Peak Caller can be run from the command line, and
is also available through Galaxy at
https://hyperbrowser.uio.no/graph-peak-caller. In the Github repository at
http://github.com/uio-bmi/graph_peak_caller, we provide a simple tutorial on
how to use vg and Graph Peak Caller together to go from raw ChIP-seq reads to peaks.

The output from Graph Peak Caller consists of graph intervals, but the tool is also
able to transform these into approximate positions on a linear reference genome (by
projecting them to the nearest position on the linear reference genome), making it
possible to analyse detected peaks further using existing “linear” approaches. Graph
Peak Caller is also able to output candidates for differentially expressed peaks.

To showcase and test Graph Peak Caller, we chose to perform peak calling on
Arabidopsis thaliana, as the the 1001 Genomes Project for A. thaliana makes it possible
to build a high-quality reference graph with a high density of variants (on average one
SNP or indel for every 9 base pairs, compared to one SNP or indel for every 27 base
pairs in The 1000 Genomes Project).

We called peaks on a graph-based reference genome for A. thaliana and compared
the results to peaks called on the Tair10 [13] linear reference genome by MACS2
(Methods). Table 1 shows an overview of peaks found by Graph Peak Caller and
MACS2. As expected, most of the peaks found by one peak caller are also found by the
other. Among these, the peaks found by Graph Peak Caller are slightly more enriched
for DNA-binding motifs than the peaks found by MACS2 for all transcription factors,
except SEP3, where the numbers are the same. Fig 2 shows an example of a peak
detected on chromosome 1, illustrating how both peak callers find a peak, but only the
peak found by Graph Peak Caller has a significant match against the motif.

For all transcription factors, except ERF115, the peaks uniquely found by Graph
Peak Caller (not overlapping peaks found by MACS2) are more enriched for
DNA-binding motifs than the peaks uniquely found by MACS2. In aggregate, the ratio
of motif-matches of the uniquely found peaks are 7.0% for Graph Peak Caller and 6.0%
for MACS2, yielding a z-value for the difference of 3.54 and a p-value of 0.02% using a
one-sided z-test. MACS2 in aggregate predicts 2443 more unique peaks than Graph
Peak Caller, but only finds 11 (0.5%) more peaks that are motif-enriched, which is less
than one would expect by chance, since the false discovery rate of motif-matches is
controlled at 5%. Fig 3 shows one of the cases on chromosome 1 where Graph Peak
Caller detects a peak that is not detected by MACS2, because the input reads are
aligned against an indel that is not part of the linear reference genome.

The peaks found uniquely by Graph Peak Caller have more than twice the number
of basepairs not part of the linear reference genome, compared to the peaks found by
Graph Peak Caller that also have been found by MACS2. Fig 4 shows the proportion of
peaks enriched for DNA-binding motifs for the peaks that are uniquely found by each
peak caller (for a similar plot including all peaks, see Fig S1). As seen in the figure,
Graph Peak Caller has a better correspondence between high peak scores and motif
enrichment for all transcription factors, except ERF115.

To validate that our peak caller works on other species, we also did the same
experiment on Drosophila melanogaster human (see Fig S2 and Table S1). In both
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Fig 1. Overview of how Graph Peak Caller works. Example of peak calling on
an example graph (nodes in gray, edges in black). After raw reads (a) in the form of
input reads (blue) and control reads (red) have been mapped to the graph-based
reference genome and filtered based on mapping quality (b), the fragment pileup is
created (c) by extending the forward input alignments (shown as resulting blue
fragments) and reverse input alignments (yellow fragments) along all possible paths in
their corresponding direction. A background track is created by projecting the
alignments resulting from the control reads onto a linear path and calculating a local
average read counts (here shown with a small window size). Then the linear track is
projected back to the graph again (not shown). The fragment pileup counts are treated
as counts and the background track as rates in a Poisson-distribution, and p-values are
computed for each position for the observed count, given the corresponding rate.
Adjusted q-values are computed to control the false discovery rate (d) (figure shows
q-scores, which are -log10(qvalue)). A set of peak candidates are selected by
thresholding the q-values on a user-defined threshold (default 0.05), resulting in a set of
candidate peaks with gaps between them (e). Small gaps are filled, resulting in a set of
peak areas (connected subgraphs)(f). Graph Peak Caller finds a single “maximum path”
(g, maximum path in blue) through each peak subgraph by selecting the path that has
the highest number of input reads mapped to it.
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Fig 2. Example of a motif match for a peak following a variant not part of
the linear reference genome. Showing part of the graph-based reference genome for
A. thaliana on chromosome 1 (top), within a peak found for the ERF115 transcription
factor that matches a DNA-binding motif. The peak detected by Graph Peak Caller
follows the linear reference genome (blue nodes) except for the first SNP shown
(green/blue), where the peak follow the green G instead of the blue A, making this a
significant match against the DNA-binding motif (shown as a sequence logo at the
bottom). The peak detected by MACS2 does not have a significant motif match.

cases Graph Peak Caller got a higher ratio of motif-matches on uniquely found peaks,
but not statistically significant (phuman = 7%, pD.melanogaster = 17%) on their own.

Fig 3. Example of part of a peak detected by Graph Peak Caller and not
by MACS2. Showing part of the graph-based reference genome for A. thaliana on
chromosome 1, containing two SNPs (black/blue) and an indel (red) that are not part of
the linear reference genome (blue). From the raw ChIP-seq data for the ERF115
transcription factor (NCBI SRA SRR931836) two reads (shown at the top) align
perfectly to the graph-based reference genome and Graph Peak Caller is able to detect a
peak in this area. BWA is not able to align these reads with sufficient mapping score to
the linear reference genome, and so the peak is missed by MACS2.
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Fig 4. Dna-binding motif enrichment plots. The proportion of peaks enriched for
a DNA-binding motif (Y-axis) when iteratively including more peaks from the complete
set of peaks sorted descending on score (X-axis) for MACS2 and Graph Peak Caller.

Graph Peak Caller MACS2

TF Total Shared Unique Total Shared Unique

ERF115 24847 1846/21164 165/3683 (4.5%) 23167 1826/21162 132/2005 (6.6%)
SEP3 13902 991/11304 123/2598 (4.7%) 15517 991/11302 161/4215 (3.8%)
AP1 15687 1023/12694 160/2993 (5.3%) 17030 996/12692 159/4338 (3.7%)

SOC1 14817 2258/13854 136/963 (14.1%) 16407 2242/13849 275/2558 (10.8%)
PI 16548 2171/13526 350/3022 (11.6%) 16084 2154/13525 218/2559 (8.5%)

Total 85801 8289/72542 934/13259 (7.0%) 88205 8209/72530 945/15675 (6.0%)

Table 1. Overview of peaks reported by Graph Peak Caller and MACS2 on A. thaliana
for 5 transcription factors (TFs). Total is the total number of peaks reported by the
peak caller, shared is the number of peaks reported by both peak callers (requiring
overlap between two peaks), and unique is the number of peaks reported by one peak
caller and not the other. In the categories shared and unique, both the number of peaks
matching motif (the number before the /) and the number of peaks found are shown
(percent of peaks matching motif are shown in parentheses). Here, all peaks have been
trimmed to 120 base pairs around the peak summit (position in peak with lowest
q-value), to make the comparison clearer.

Discussion

We have presented a first peak caller for ChIP-seq data mapped to a graph-based
reference genome. We have tested our method by calling peaks on a graph-based
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reference genome for A. thaliana and comparing the detected peaks to those found by
MACS2 using a linear reference genome of the same species. In the instances where the
peak callers find peaks that overlap, Graph Peak Caller is able to find peaks that are
more enriched for motifs (Table 1). This is likely because Graph Peak Caller can trace
variants within the peaks that are not part of the linear reference genome (Fig 2). Even
if such peaks are also found by MACS2, the specific sequence matching the
DNA-binding motif may not be part of the linear reference.

Furthermore, Graph Peak Caller has a significantly higher proportion of
motif-enriched peaks among its uniquely found peaks, showing that Graph Peak Caller
is finding peaks enriched for motifs that MACS2 is not finding, e.g. the peak seen in
Fig 3. As seen in Table 1 (last two columns), these peaks covers more variations from
the linear reference genome compared to the peaks found by both peak callers, and thus
seem to be in areas where the advantages of graph-based reference genomes are more
pronounced.

We developed Graph Peak Caller close to MACS2, so we easily could validate our
graph-based approach and accurately measure the benefits of doing peak calling on a
graph-based reference genome rather than on a linear reference-genome. Having this as
a working first approach to graph-based peak calling, it will now be natural and
interesting to extend our work by drawing ideas from other peak callers or develop new
peak calling principles to further improve graph-based peak calling. Also, Graph Peak
Caller currently assumes no known information about the specific paths of the diploid
genome of the individual that ChIP-seq data has been collected from. It would be
interesting to develop a ChIP-seq pipeline where the path(s) through the reference
graph are known (or estimated based on the ChIP-seq data), and compare that
approach to Graph Peak Caller.

There are a few challenges with a graph-based ChIP-seq approach. Mapping to
graphs is still in its infancy, and has not yet reached its full potential. Also, both
mapping to graph-based reference genomes as well as many of the operations required
for doing peak calling, such as expanding input reads, are, from our experience, still a
lot slower than existing solutions on linear reference genomes.

We believe that our peak caller represents an important step towards creating a
toolset for functional genomics on graph-based reference genomes, extending the possible
applications of graph-based reference genomes and bringing the genomics community an
important step closer to a widespread adoption of these reference structures.

Methods

Peak calling

Our approach to graph-based peak calling is implemented in an open source Python 3
package, Graph Peak Caller. Graph Peak Caller was developed by extending the
methodologies and concepts from MACS2 to directed acyclic graphs (DAGs). The
MACS2 algorithm can be divided into five steps: estimating the fragment length,
creating a fragment pileup by extending input reads to match the estimated fragment
length, calculating a background track based on local and global average number of
reads, calculation of p/q scores based on the fragment pileup and background track, and
finding peaks based on thresholded scores. We have adopted each of these steps to work
on DAGs. Fig 1 illustrates how this is done on a graph-based reference genome, and the
following describes the details of each step.

Graph Peak Caller generates the fragment pileup by extending each read to the
estimated fragment length f , and counting the number of extended reads that cover
each base pair in the graph. For a single read with length r, the extension is done by
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including all possible paths of length f − r in the graph that starts at the read’s end
position. The background track is an estimate of the expected number of reads mapping
to each position in the reference. This is, for a given position in the reference, estimated
by measuring the amount of reads mapping in the “neighbourhood” of that position.
The reads can either be the input reads or a set of control reads . On a linear reference
genome, the background track is simply estimated by taking the average pileup count in
a local window around each base pair. This is less trivial to do on a graph-based
reference genome, since the concept of neighborhood is not as well defined. We solve
this problem by projecting the graph onto a single linear path where parallel paths are
projected to the same position on the linear path. This allows us to perform
background track estimation much the same way as MACS2 does, using a linear
reference, and then projecting the resulting track back to the graph again. If control
reads are used to generate the background track, the background track is scaled with
the ratio of control reads to input reads.

The fragment pileup and background track is then treated as counts and rates in a
Poisson distributions, and p-values are computed for each position for the observed
count, given the corresponding rate. Since one test is performed for each position in the
graph, we compute q-values (adjusted p-values) to control the false discovery rate. The
q-values are thresholded at a user specified threshold, yielding a binary track of
potential binding regions.

Graph Peak Caller then removes small gaps (similarly to MACS2) between these
potential binding regions. On a graph, this is done by joining regions that are connected
by a path shorter than the read length. Then, the resulting regions are grouped into
connected subgraphs, representing areas of potential binding events. The final peaks are
selected by finding the path through each subgraph that has the highest number of
input reads mapped to it. Similarly to MACS2, peaks that are shorter than the
estimated fragment length are removed.

For each subgraph, Graph Peak Caller can also report an “alternative” peak in
addition to the main peak. This is done by using Fimo [9] to estimate the exact location
within the peak subgraph that matches the binding motif, and looking for an alternative
path through this area which is covered by at least one input read. Such alternative
peaks can be used to infer differential binding.

Validation and testing

To test our peak caller, we used vg [5] to create a whole genome Arabidopsis thaliana
reference graph by using variants from The 1001 Genomes Project. We selected all
transcription factors listed in the transcription factor database of Expresso [10] that also
had a motif in the Jaspar database of transcription factor binding profiles [11], resulting
in a set of 5 transcription factors: ERF115, SEP3, AP1, SOC1, and PI. (Two
transcription factors, SVP and ATAF1, were omitted due to invalid fastq files. AP2 and
AP3 were omitted based on their close relatedness to AP1. Also, PIF3 was omitted
since neither the detected binding events by Graph Peak Caller nor MACS2 had any
association with the motif we found in the Jaspar database). Raw ChiP-seq reads were
downloaded from the NCBI Sequence Read Archive (SRA) (SRA accession numbers in
S1 Appendix) and trimmed using Trim Galore! [12] (default parameters). Reads were
mapped both to our graph-based reference genome using vg and to the Tair10 [13]
reference genome using BWA ALN (default parameters). In both cases, the resulting
alignments were filtered using a mapping quality threshold of 37. MACS2 was used to
call peaks on the linear reference genome, using default parameters. We created
DNA-binding motif enrichment plots (Figure 4) for each set of detected peaks (URLs to
the motif models that were used are in S1 Appendix). We have created a Docker
repository with the A. thaliana graph-based reference genome, Graph Peak Caller, vg
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and all other software and scripts used to generate the results in this article. A simple
guide on how to re-run the experiments can be found in the Github repository for
Graph Peak Caller.

Conclusion

We have developed Graph Peak Caller, a tool for performing peak calling from ChIP-seq
reads mapped to a graph-based reference genome. Graph Peak Caller is based on the
same principles as MACS2. We have validated our approach by using both Graph Peak
Caller and MACS2 to call peaks using ChIP-seq datasets on A. thaliana, showing that
the peaks found by Graph Peak Caller in general are more enriched for DNA-binding
motifs than those found by MACS2 on a linear reference genome. Graph Peak Caller is
also able to provide candidates for differentially expressed peaks, and together with vg
it provides a first method for doing peak calling on graph-based reference genomes.

Supporting information

S1 Table Overview of peaks detected on human and D. melanogaster.

S1 Fig. DNA-binding motif enrichment plots (as Fig 4) for all peaks
detected on A. thaliana . Contrary to Fig 4, these plots include all peaks found by
both peak callers.

S2 Fig. DNA-binding motif enrichment plots (as Fig 4) for all peaks
detected on D. melanogaster and human. Left plots are proportion of peaks
matching motif when all peaks are included. Right plots are proportion of peaks
matching motif when only unique peaks found by each peak caller are included.

S1 Appendix. URLs to motifs and accession numbers to data used in
experiments.
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