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Abstract

The well-being of wildlife health involves many challenges, such as monitoring the movement of patho-
gens; expanding health surveillance beyond humans; collecting data and extracting information to identify
and predict risks; integrating specialists from different areas to handle data, species and distinct social and
environmental contexts; and, the commitment to bringing relevant information to society. In Brazil, there is
still the difficulty of building a mechanism that is not impaired by its large territorial extension and its poorly
integrated sectoral policies. The Brazilian Wildlife Health Information System, SISS-Geo, is a platform for
collaborative monitoring that intends to overcome the challenges in wildlife health. It aims integration
and participation of various segments of society, encompassing: the registration of occurrences by citizen
scientists; the reliable diagnosis of pathogens from the laboratory and expert networks; and computational
and mathematical challenges in analytical and predictive systems, knowledge extraction, data integration
and visualization, and geographic information systems. It has been successfully applied to support decision-
making on recent wildlife health events, such as a Yellow Fever epizooty.

1 Introduction

Environmental change, including climate change and biodiversity loss, are determining factors for the emer-
gence of diseases originating from wildlife [10] and can be the source of the selective forces of new genetic
variations that allow the disruption of biological barriers by pathogens and the increase in the potential for
spread of diseases to humans. Although not considered appropriately in health surveillance policies, the sit-
uation is relevant, since the majority (60.3%) of infectious diseases circulate between humans and animals
(zoonosis), of which 71.8% are caused by pathogens originating from wildlife [18]. Not to mention data
from a recent study [37] which makes explicit how delicate the situation is, especially because of the vast
and growing number of pathogens infecting humans and animals.

These emergences are widely associated with areas most affected by natural and anthropogenic impacts,
also composing the range of parameters that make social inequalities even more severe and unfair, with
strong repercussions and costs to health and quality of life [3, 32]. Over the past 15 years several studies
have shown the effect of biodiversity in the dilution and dispersion of pathogens and in the modulation of
their transmission rate [19, 39, 29].

However, studies and actions in the last century, despite the expansion of epidemiological knowledge,
only responded to emergency events of specific diseases in the human population, with some mitigation
attempts. Considering the low ability to reverse climate change and environmental impacts determined by
human growth, and our way of production and consumption of natural resources, it seems reasonable to
expect that we cannot stop the emergence of these diseases. This scenario is paradoxical in megadiverse
countries, such as Brazil. While species richness results in richness of parasites that are associated to them,
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and therefore a potential risk, it is this complexity of species and their relationships that protect and stabilize
the dynamics of transmission, reducing the outbreaks of diseases, one of the most important ecosystem
services. In this scenario, more than seeking effective responses to crisis situations, there is reason to pursue
actions that anticipate problems so that one can mitigate them where possible, and quickly respond to them
when prevention or mitigation fail.

This approach has been strengthened with international programs, such as “One world, one health” from
the WHO/OIE and the 2011-2020 Strategic Plan of the Convention on Biological Diversity (CBD) and strate-
gically in governmental programs of developed countries which already dedicate considerable resources and
efforts to tracking pathogens, whether to prevent pandemics, such as the recently occurred with the new
influenza and Ebola viruses, the development of new drugs or even biological warfare concerns. In Brazil,
systematized strategies for monitoring and predicting occurrences of diseases resulting from biodiversity are
incipient. They follow a notification model about diseases that already occurred in humans, which is insuffi-
cient for preventive action [5].

The relationships that link biodiversity to health are complex because they are often indirect, scattered in
space and time and dependent on numerous forces [29]. The problem is not restricted to identifying species
and their geographical distribution. In the context of the emergence of zoonoses there are various species
of pathogens, vectors and hosts that modulate evolutionarily each other, their populational dynamics and
composition, which collectively also undergo and react to environmental changes [19].

Therefore a multi-dimensional challenge is faced. The first is to sensitize decision-makers about the need
to monitor the movement of pathogens in wildlife before they impact humans, expanding health surveillance
actions beyond humans. The second dimension is building a mechanism that is not limited by the territorial
extension of Brazil, the poorly integrated sectoral policies, and by other outbreaks or emergencies that absorb
all the health staff. The third is how to integrate multiple skills, since this mechanism should contain special-
ists to handle data, species and distinct social and environmental contexts. The fourth is how to effectively
obtain information and treat them properly. The fifth is to extract the relevant information from data and to
really identify risks and predict them and, finally, the commitment to bring relevant information to society.

As evidenced, data collection, monitoring and extraction of knowledge and information about wildlife
health and its relationship to human health arise as challenging tasks involving several areas of knowledge,
characterized as interdisciplinary activities aimed at modeling a dynamic and complex system. It is also clear
that major areas of computing are essentially applicable in the context presented, such as computer modeling,
machine learning and parallel programming; however, their application is not obvious given the need to
integrate information in different ways, the complexity and dimensionality of the data to be manipulated
and the sensitivity involved in the use and dissemination of these data.

In this article, we present the Information System on Wildlife Health (SISS-Geo), a joint effort between
the Oswaldo Cruz Foundation (Fiocruz) and the National Laboratory for Scientific Computing (LNCC), is
an important step for moving forward on the challenges posed. Its conception aimed the integration and
participation of various segments of society, and encompasses: the registration of primary data by any person
interested; the application of the concept of citizen science; the reliable diagnosis of pathogens circulating
in wildlife that may potentially impact humans with the participation of laboratory and expert networks;
the computational and mathematical challenges that include analytical and predictive systems, data mining,
intensive processes, parallel programming, system integration, data (unstructured and heterogeneous) and
information, geographic information systems (GIS), machine learning, meta-heuristics, and data visualiza-
tion.

SISS-Geo is essentially characterized by managing its data in a spatially referenced environment. It aims
to:

• provide, quickly and efficiently, the flow of information between (i) the Information Center for Wildlife
at Fiocruz and the national system of health surveillance, with special contribution to the Strategic
Information Center on Health Surveillance (CIEVS, Ministry of Health); (ii) the participatory networks
in wildlife health and laboratories; (iii) the general population that wants to participate in the process;
and (iv) the different biodiversity monitoring centers, as the MCTI (Ministry of Science, Technology
and Innovation), ICMBio (Chico Mendes Institute for Biodiversity), JBRJ (Botanical Garden of Rio
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de Janeiro), MAP (Ministry of Agriculture, Livestock and Supply), Embrapa (Brazilian Agricultural
Research Corporation), etc.

• create, from the data and georeferenced information, warning and forecasting models on human and
wildlife diseases in order to act as a sentinel system for emerging and reemerging diseases as well as
provide the results of spatial modeling to scientific community and decision makers.

• allow for adequate means to integrate the georeferenced system with spatial databases partners from
governmental and non-governmental partners.

• adapt to the metadata standard of the National Spatial Data Infrastructure (INDE) (http://www.inde.
gov.br), aiming to provide, efficiently and with full compatibility, data related to wildlife health to the
scientific community and the general population.

2 Design and Implementation of SISS-Geo

SISS-Geo is built upon four high-level modules. The first one systematizes the capture of georeferenced
field observation records of animals, their physical conditions, and their surrounding environment, which are
stored in a database (Sections 2.1and 2.2). These observations are performed by collaborators through mo-
bile applications, for Android (Figure 1), iOS, and in a web interface (Figure 2). The second module analyzes
the data to generate automated alert models that take into account territorial distances, time interval, simi-
larity between taxonomic groups involved (notably for primates, chiroptera, rodents, and carnivores, but not
limited to them), the observed physical conditions of the animals in the field according to pre-categorized
clinical patterns, and the environmental characteristics of the site where the animal was observed (Sec-
tion 2.3.1). A georeferenced data explorer is available as well, allowing for multiple layers of information to
be overlayed. Figure 3 illustrates a visualization where records (green), alerts (red) and biomes are overlayed
in a map of Brazil.

Figure 1: Screenshots of the SISS-Geo mobile application.

From the indication of importance and emergency generated by the alert model, the participatory and
laboratory networks in wildlife health and the health and environmental services established in the country
are requested to collaborate on collecting biological samples in animals in the field and on providing reli-
able diagnosis. The reliable diagnosis feeds and validates the alert models which in turn, from the initial
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Figure 2: Screenshots of the SISS-Geo web application. Record details in the map (left), corresponding photo
with a dead marmoset (right).

correlation of the environmental conditions of the occurrence, allows for generation of forecast models of
ecological opportunities for disease occurrence that may result from biodiversity loss, thus opening up a
different research viewpoint. This is the third module (Section 2.3.2).

Finally, the fourth module approaches the challenge of understanding the relationships that govern the
phenomenon in question, from the trained models. In this context, the extraction of knowledge serves as the
main hypotheses suggestion mechanism for further investigation and validation by the expert (Section 2.3.3).
The main components found in SISS-Geo can be categorized into four classes: wildlife health data manage-
ment, GIS, machine learning and wildlife health, detailed below.

2.1 Data management in wildlife health

To monitor changes in biodiversity, it is essential to collect, document, store and analyze indicators of the
spatial and temporal distribution of the species, as well as information on how they interact with each other
and with the environment they live in [22]. The development and implementation of mechanisms to produce
these indicators [26] depend on access to reliable data from field surveys, automated sensors, biological
collections, and from the academic literature. This data is usually available in various institutions that use
different formats and identifiers, which makes it a challenging data integration task. The methods and
techniques used to manage and analyze this data define a research area often called Biodiversity Informatics
[16, 28]. Some initiatives for establishing of metadata and data publishing standards, such as EML [11] and
Darwin Core [38], were able to established standard vocabularies used to describe concepts of biodiversity.
Although these vocabularies cover only a fraction of possible concepts, they allow institutions to publish
their data about biodiversity using the same format, and for their automatic collection and processing by
aggregator systems.

Through the use of these standards, SISS-Geo is able to collect species occurrence data provided by various
contributors, as well as providing data stored in its own database to the community at large in an easy to
use format. Darwin Core has been extended to include concepts on specific topics, such as information about
interactions and pollinators (Darwin Core Extension for Interactions) and on species profiles (Plinian Core).
It would be important to evaluate and propose an extension of the standard to include information about
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Figure 3: Screenshots of the SISS-Geo georeferenced data explorer.

wildlife health on species observation records, which is normally carried out in the context of the Biodiversity
Information Standards1 (TDWG) organization.

SISS-Geo is a biodiversity informatics platform and, as such, it allows for users to upload species oc-
currence records. In SISS-Geo, these records are enriched with additional attributes, provided by the user,
to describe the health condition of the respective individuals. The term occurrence is used in this work to
refer to the observation of an individual that apparently carries a disease or not, which is a special case of
a species occurrence as commonly defined in the biodiversity informatics literature. Its geographical scope
is limited to Brazil and the users are given by citizen scientists and specialists. A relational database was
conceptually modelled and implemented for SISS-Geo comprising occurrences of organisms along with as-
sociated information about their health condition. Standard operations for creating, reading, updating and
deleting information are enabled by mobile and web applications that allow for both citizen scientists and
system managers to interact with the system (Figure 4 describes SISS-Geo use cases).

As can be observed in its database schema in Figure 5, SISS-Geo stores information about wildlife health
occurrences (Occurrence). These occurrences usually have an animal (Animal), a collaborator (Collabora-
tor) and a location (Location) associated to them. Specialists can require samples (Sample) related to the
occurrence to be collected, which are be analysed (Analysis) in the laboratory (Laboratory) network. Data
stored in this database is consumed by mathematical models that can produce and confirm wildlife health
alerts (Alert).

The architecture of SISS-Geo is described in Figure 6. It is comprised by the following components: a
mobile application, a web application server, a database server, and high-performance computing resources.
As described in the use cases diagram in Figure 4, citizen scientists use the mobile application to request,
for instance, the upload of their observations or queries to be executed. These requests are forwarded to the
web application server, which connects to the database server to answer these requests. Administrative users
and specialists can access the web application server directly to also send requests to SISS-Geo. Finally, the

1http://www.tdwg.org
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UC010 Send observation record

UC005 Maintain collaborator registration (web)

UC008 Maintain "Collaborate with Us" (web)

UC004 Log in (web)

UC003 Maintain observation record (mobile app)

UC002 Maintain collaborator registration (mobile app)

UC001 Log in (mobile app)

UC007 Maintain "Collaborate with Us" (mobile app)

Collaborator

Citizen

scientist

Specialist

CISS

Administrator

UC006 Maintain specialist spreadsheet (web)

UC009 Maintain supporting features (web)

Send collaborator data

Select animal

extend<< <<

include<< <<

Select location

Send "Collaborate with Us"

include<< <<

extend<< <<

extend<< <<

Download spreadsheet template

Upload filled spreadsheet

Download my filled spreadsheet

extend<< <<

extend<< <<

extend<< <<

Figure 4: Use cases of SISS-Geo.

Figure 5: Overview of the database schema of SISS-Geo.
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web application server can invoke the execution of computationally-intensive analyzes on high-performance
computing resources. A complete list of use cases is described in Figure 4.

Figure 6: Architecture of SISS-Geo.

2.2 Geoprocessing

Spatial and geographical visualization are today basic conditions for the management of information. It is
often difficult due to the need for normalization, update and access to qualified data. In studies of infec-
tious diseases, the spatialization of data needs additionally to consider populational pulses and fluctuations
determined by several factors such as seasonality, reproductive periods, migrations, among others [25].

SISS-Geo aims to generate relevant and reliable information that is able to support decision processes of
the Brazilian Ministries of Health, Agriculture, Livestock and Supply, and Environment, providing subsidies
for more agile and timely decision making.

Because it is an innovative project, the functionality developed is not straightforward and it was often
not available in similar initiatives. The construction of new methodologies and the use of different types of
geographic technologies that can meet the expectations and objectives of SISS-Geo is therefore necessary.
The GIS Infrastructure (GI) of SISS-Geo has strategic importance in this process, in which there is a need to
overcome challenges related to quality control of spatial data, minimize modeling positional errors, modeling
spatialization based on machine learning and the dissemination of models in the form of dynamic maps on
the Internet.

The modeling of ecological opportunity of diseases in SISS-Geo uses a big amount of spatial data with dif-
ferent scales, reference systems, sources and mapping methodologies. Therefore it is necessary to normalize
and integrate data in a geographic database. This is used both to consume information/data, and to store
the modeling results in the form of geographically distributed models. The data used as input for modeling
are obtained from the overlap of wildlife occurrence records and environmental, social and human impact
databases. Depending on the location of the records, spatial relationships of the types “within”, “close”,
“crosses”, etc. can be established.

Systematic databases available from official sources of the Brazilian federal, state and municipal gov-
ernments, are produced, mostly in small and medium scales (1:1,000,000, 1:500,000). Mapping at these
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scales provides only a reduced level of detail and accuracy. This can significantly influence modeling in SISS-
Geo, since it can result in a degree of uncertainty between the number of points registered and the national
cartographic data as they are related.

The uncertainty measurement generally corresponds to the Map Accuracy Standard (MAS)2, whose value
is estimated for each map and determines its classification. However, the use of the MAS is questionable when
it comes to digital cartography [34], whose development has introduced new mapping techniques and error
calculations. The Technical Specification for Vectorial Geospatial Data Acquisition (ET-ADGV), adopted by the
Brazilian National Spatial Data Infrastructure (INDE), also addresses this issue and sets new requirements to
be followed with respect to the systematic mapping of Brazil. This standard considers that the accuracy in
the acquisition of data is equal to the final digital cartographic product because, after vectorial acquisition
of an element, its geometry is not modified in subsequent processes. In addition, the accuracy standards
considered in this standard are more stringent than those based on analog mapping and are calculated based
on statistical comparison of field measurements and the digital product. The adoption of ET-ADGV is a trend,
but is still under a process of adaptation, hence few datasets have this information documented. Therefore,
the reference of the positional accuracy value of the data for spatial queries of SISS-Geo is initially be based
on the MAS.

To minimize the effect of positional error on SISS-Geo’s models takes into consideration the tolerance
in space intersections, based on the positional accuracy of the overlay data, using as reference the MAS.
This aims to establish models with sufficient positional quality to support decision-making in public health
policies.

The geoprocessing infrastructure also needs to make available the results, alerts and prediction models
produced by SISS-Geo to the public domain according to the Brazilian Information Access Act, except for
sensitive information. Therefore, adequating the geographic information system for the web environment,
which provides SISS-Geo’s results in the form of dynamic/interactive maps and graphical statistics, is an
ongoing development. An advantage of this technology is the ease of handling, analysis and interpretation
of models by the end user, as well as operating system independence and interaction with desktop systems
and other Internet systems (interoperability).

2.3 Machine Learning

2.3.1 Grouping of observation records and alert prediction

When a wild animal is observed, its physical condition and surrounding environment are recorded in SISS-
Geo, either by experts or volunteers. These records are grouped with other related records (previously
reported) resulting in a collection of events characterizing a phenomenon. This is the grouping stage and,
although it may sound trivial, it involves the challenge of conceiving/training models with discriminative
capacity to recognize similarities and dissimilarities between events, based on criteria such as spatial and
temporal distance between records, similarity between species and the reported physical conditions, among
others. This flow of learning is summarized in Figure 7.

The second part consists of modeling the characteristics of observation records that make them more
or less relevant, i.e. training the alert model. It means predicting the severity of records according to
information brought by events and the geographic/environmental context. For example, a record involving
an animal in isolation exhibiting symptoms is less severe, in general, than occurrences containing similar
events but covering groups of animals. Of course, in real situations the characterization of an alert situation
is usually much less obvious, commonly taking into consideration many factors for decision making. In some
cases, a single record is sufficient to generate an alert, such as the registration of a wild canid with symptoms
of rabies.

It can be seen that the above mentioned activities refer to the grouping and data classification task,
typical of machine learning, and well known for the wide variety of approaches and methodologies. They are
therefore complex tasks, both by nature as well as by the large volume of data expected for the system3.

2In Portuguese “Padrão de Exatidão Cartográfica (PEC)”; it is a Decree-Law regulatory technical standards of Brazilian mapping.
3After all, it is an ambitious system that aims to aggregate and store records on wildlife health of a vast country.
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Figure 7: Machine learning flow of SISS-Geo.
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However, the challenges of grouping and classification that are present in SISS-Geo go beyond the classic
challenges of these tasks.

Phenomenon characterization. The characterization of what defines a group of events (phenomenon) lies
in the problem of non-conventional similarity measurement formulation (e.g. not necessarily Euclidean).
Grouping rules based on expert experience are a reasonable alternative, but has as shortcoming the limited
formalization of knowledge and, consequently, the potential for the introduction of unwanted biases. Another
approach is to treat this problem as a machine learning process, aiming at the training of similarity models:
given a new record and the existing ones, determine to which group it belongs — or whether it characterizes
a new group. The process is characterized as supervised learning, since it is possible to determine reliably,
a priori or a posteriori, which records belong to which phenomenon, either by empirical tests or by expert
confidence.

Feature extraction. Once constituted the phenomena, it is necessary to evaluate them as to the poten-
tial threat to wildlife health and its possible outbreak in humans, as phenomena alone do not necessarily
constitute alert situations. In this sense, information characterizing a group of events needs to be extracted
and provided to the alert prediction model. The difficulty is thus to derive statistics which better represent
the phenomenon described by the group in order to maximize the performance of the prediction model; in
other words, raise the necessary information to facilitate the learning process. Experts recommend the use
of certain statistics, such as the type and quantity of affected animals, number and frequency of occurrences,
among others; however, the space of possible features goes well beyond that and could be used to improve
predictive performance. Thus, an open question is how to exploit this vast space automatically? An interest-
ing line of research and potential solution to this challenge is the investigation of automatic feature extraction
methods [15, 14].

Alert prediction model. Although its use in the system is similar to sufficiently known methods described in
the literature, the alert prediction model is probably the most strategic component of SISS-Geo’s intelligence.
The viability of the system is fundamentally based on the accuracy of the prediction model, both in detecting
true positives (alerts) as true negatives (non-alerts). The failure to detect an alert condition (false negative)
can result in serious consequences to wildlife, environmental and human health. On the other hand, false
positives would overwhelm the relatively small network of laboratories and experts responsible for confirming
or denying alerts (more details below). In this sense, methods that combine multiple models (ensemble
methods) usually produce more accurate and robust solutions, therefore they are promising candidates as
training algorithms for prediction models [31]. Still, since the large portion of the system’s data has no
associated class, that is, phenomena whose alert predictions have not yet been confirmed, the semi-supervised
learning is an interesting approach due to its ability to also leverage unlabelled instances in the training
process [6].

Alert confirmation. Another key component of SISS-Geo—in which all others depend—is the process of
alert confirmation. A great challenge and bottleneck result from the need for direct human participation in
the confirmation procedure, either in the field or laboratory; so it is an expensive and slow process, even
considering the extensive network of qualified collaborations linked to SISS-Geo. When there are more alerts
issued by the prediction model than the capacity of experts and the laboratory network to confirm them, the
phenomena need to be prioritized. In this situation, one can think of prioritizing the phenomena associated
with alerts (1) by alert severity weighted by confidence of prediction; or (2) by relevance to regions of great
interest, be it social, environmental and/or economic. However, a strategy focused on medium and long term
is the prioritization of confirmation (or denial) of alerts with greater potential for improving the accuracy of
the prediction model. This line of research is recent and it is called active learning [35]. The same method can
also be used in possible cases of false negative, thus avoiding the possibility of degeneration of the prediction
model4: the phenomena predicted as non-alerts but that are promising from the learning point of view would
be subject to confirmation (of the non-alert condition) by an expert.

4Consider the extreme situation where all the predictions are non-alerts, including both true as false negative. Since in principle only
the cases of alerts are of interest and subject to confirmation, in this scenario the model would be doomed to degeneration.
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2.3.2 Prediction of Ecological Opportunities for Disease Occurrence

Another line of fundamental importance in SISS-Geo is the prediction of scenarios and environments that
favor ecological opportunities for disease occurrence arising from wildlife or, put differently, raising scenarios
conducive to the occurrence of a certain event, such as an outbreak of a disease.

In short, trained alert models can be used to evaluate different scenarios and characterize those potentially
susceptible. The construction of predictive models should relate various environmental, social, and human
and animal health information, being a challenging area to current predictive models. Methods for linking of
environmental and animal variables, such as the ones applied to ecological niche modeling or even to more
traditional machine learning methods will be widely applied in this context, however, new approaches should
be developed, allowing for the integration of the variety of information cited.

Moreover, one should consider the computational challenges involved in the manipulation of information
from a large number of records, of different species and environmental conditions, which can be considered
a problem with high computational cost. However, despite the expected need to handle large amounts of
data, it is also expected for some specific disease or species that only a small number of information will be
available, leading to a new challenge: applying prediction techniques in a highly unbalanced setting.

2.3.3 Knowledge Extraction

An important feature of symbolic modeling methods, such as decision trees, rule extraction algorithms and
meta-heuristic genetic programming [20], is that the model is itself the explicit representation of knowledge
extracted from data. More specifically, it is the revelation—subject to human interpretation—of the existing
relationships between the input and output data.

It is remarkable the potential of this class of models to aid experts in the analysis and understanding of
the phenomenon investigated, leading to a man-machine interaction: the model suggests hypotheses that
best fit the data while the expert validates them.

The central challenge of knowledge extraction is in defining the structure/language of the model or,
in other words, the incorporation of expert knowledge. Therefore, it is also challenging to find the ideal
balance between bias, usually resulting from structural simplicity of the model, and variance, an issue usually
associated with structurally more complex models.

Depending on the parametrization of the learning algorithm and dimensionality of the database, a sec-
ond challenge arises: the associated computational demand is exacerbated by the fact that the process of
knowledge extraction is often performed interactively by the specialist. Typically, the strategies employed
in these situations include (1) reducing the dimensionality of the data [12] and (2) leveraging parallel and
distributed computing, in conventional architectures or accelerators [1].

3 Evaluation

As of February 2018, SISS-Geo was downloaded more that a thousand times from the Google Play store
and had an average rating of 4.8 out of 5 starts. Even though the potential number of observations related
to wildlife health usually being a fraction of the population of a species, SISS-Geo has 3,014 records in its
database performed by 1,881 citizen scientists. Its web interface has been accessed 4,463 times. These
records correpond to 764 mammals, 815 birds, 383 reptiles, 227 amphibians, 47 fish, and 540 not identified.
Table 1 lists the ten most recorded common names in SISS-Geo. It is important to emphasize that the records
were uploaded by volunteer collaborators that often do not have taxonomic knowledge, which can have
adverse effects on data quality. To tackle this issue and improve wild animal monitoring, which can lead to
better assertive models for the emergence of zoonoses, SISS-Geo has developed a tool for expert-supported
record validation. Figure 8 shows the geographic distribution of the observations recorded by SISS-Geo that
are georeferenced.

SISS-Geo integrates data-based computational modeling, development and high-performance computing.
It was selected in 2014 as the best project [4] in the “Health” category of the Grand Challenges of Computing
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Table 1: Ten most recorded common names in SISS-Geo

Common name Number of records %

Not identified 540 18.3
Birds (Other) 417 14.1
Birds (Penelopes, Seriemas, Toucans) 112 8.6
Amphibians 242 8.2
Snakes 189 6.4
Marmosets and Tamarins 177 6.0
Turtles 101 5.9
Lizards 75 3.4
Birds of prey 72 2.5
Capybaras 64 2.2

event of the Brazilian Computer Society. In 2017, SISS-Geo received the National Biodiversity Prize from
the Brazilian Ministry for the Environment5. It allows the monitoring of wildlife and can support the iden-
tification of zoonoses, such as the Yellow Fever zoonosis, which in its wild cycle circulates among primates.
The fact that monkeys become ill or die before there are human cases of Yellow Fever causes the surveillance
of outbreaks, such as the recent one [8, 24], in these animals to be of major importance in the control and
prevention of the disease. The collaboration of the population is very important, because prevention actions
can be improved and streamlined and everyone will benefit. With the participation of ordinary people, the
application makes available, in real time, the occurrences of dead or diseased animals for public health and
biodiversity conservation, assisting the Epizootics Surveillance System in Nonhuman Primates (PNH), of the
Brazilian Ministry of Health, and records of dead monkeys are reported to the responsible bodies investigat-
ing the cases. The information recorded in SISS-Geo serves to generate computational models for predicting
zoonoses and for the adoption of preventive measures. Tables 2 and 3 list the recorded conditions and the
most recorded abnormalities in SISS-Geo respectively.

Table 2: Recorded conditions in SISS-Geo

Condition Number of records %

Normal behavior 2,168 71.2
Dead animal 697 22.9
Strange behavior 112 3.7
Sick animal 67 2.2

Some of the observations performed with SISS-Geo triggered alerts and contributed to biodiversity con-
servation actions, such as: (i) 59 dead turtles were recorded in the south of the Brazilian state of Bahia,
generating a notification to the responsible environmental agency and a legal notice to those involved in
predatory fishing in the area; (ii) 73 dead monkeys were recorded during the recent Yellow Fever epizooty,
which directed health surveillance actions in the field; (iii) observations of dead foxes with rabies in the
Northeast were able to support decision-making by health surveillance agencies.

SISS-Geo also contributed to the monitoring of species on the IUCN Red List of Threatened Species, with
the availability of the location and information of some species already registered as: Panthera onca, Puma
concolor, Tapirus terrestris, Myrmecophaga tridactyla, Bradypus torquatus, Chrysocyon brachyurus e Chelonia

5http://www.mma.gov.br/index.php/comunicacao/agencia-informma?view=blog&id=2349%20 (In Portuguese)
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Figure 8: Geographic distribution of records (red dots) in Brazil.

mydas; Leontopithecus chrysomelas, Alouatta guariba guariba, Crax blumenbachii.

4 Related Work

He et al. [17] present the eMammal framework for wildlife monitoring supported by citizen scientists. Ani-
mal images collected with camera traps are sent to its database where visual animal recognition techniques
are applied. The species identification recommendations generated are reviewed by citizen scientists and,
subsequently, by experts. The resulting validated records are made available to wildlife and ecological re-
searchers. eBird [36] also leverages the capability of citizen scientists to gather bird observation records.
Automated data quality filters are used to support species identifications performed by citizen scientists.

More general biodiversity databases exist at the global, national and ecosystem levels. GBIF [9] gathers
species observation data at a global scale. In February 2018, it had 54 national nodes. Along with other types
of participants, GBIF gathers data from 1.152 institutions, totaling approximately a billion records. SiBBr
[13] is the Brazilian GBIF node, publishing species occurrence records and providing an ecological niche
modeling portal [33]. BaMBa [21] is a biodiversity database that focuses on marine ecosystems that is also
integrated with GBIF. These systems use the IPT tool [30] to extract observation records from local databases,
export them to Darwin Core [38], and publish them on GBIF.

SISS-Geo is both a citizen science application and a biodiversity database. eBird and eMammal, while
being citizen science applications as well, do not provide tools for data analysis as SISS-Geo does with the
application of machine learning techniques to generate wildlife health alerts. GBIF, SiBBr, and BaMBa focus
on data mobilization and publication and do not directly provide tools for enabling the participation of citizen
scientists.
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Table 3: Recorded abnormalities in SISS-Geo

Abnormality Number of records %

None 2,377 81.3
Wound 103 3.5
Other 101 3.5
Fracture 75 2.6
Blindness 74 2.5
Bleed 58 2.0
Skin problems 36 1.2
Swell 32 1.1
Myiasis 25 0.9
Secretion 18 0.6
Drool 16 0.5
Lump or Tumor 6 0.2
Diarrhea 3 0.1

5 Conclusion

The proposal was inspired by the desire to make public and seek reinforcements for a long walk that brings
together researchers, experts from multiple areas and society so that, through computing, information and
disease prevention actions reach the most remote regions of the country. It emerges from many years of
practice of field research in the Brazilian semi-arid region, where relevant information on diseases in wild
animals have been lost or dispersed and the lack of systematization turned important actions impossible both
for the containment of diseases in humans, as for conservation of species.

SISS-Geo was born of efforts to create innovative and integrated actions for the mainstreaming of biodi-
versity in the sectors of the country. It integrates the actions of the Oswaldo Cruz Foundation (Fiocruz) in
“Public-Private Actions for Biodiversity Project” – PROBIO II6, coordinated by the Brazilian Ministry of Envi-
ronment, and developed by FUNBIO, Embrapa, the Brazilian Ministries of Agriculture and Livestock, Health,
and Science Technology and Innovation, the Botanical Garden of Rio de Janeiro, ICMBio and Fiocruz. The
National Laboratory for Scientific Computing joined the Fiocruz project and ensured its execution in a long-
term knowledge-building partnership.

By automating the search for occurrence patterns, the information reaches more efficiently citizens na-
tionwide, from the general population through experts, as well as provides the opportunity for the acquisition
of knowledge about the possible patterns and parameters that contribute to the occurrence of diseases. In the
medium- and long-term it also builds the capacity of researchers to develop complex modeling in ecology of
diseases that can possibly exploit geographic information in order to improve accuracy. Moreover, occurrence
patterns yield data that can assist national policy on health and on biodiversity conservation.

In the context of SISS-Geo, we plan to incorporate provenance information to allow the alert genera-
tion process to be traceable, meaning that one can recover the data, configuration parameters, people and
computational activities involved. This enables many applications, such as assessing the quality of the alerts
generated, verifying compliance with governmental regulations, and the reproducibility [7, 2] of the alert
generation process. Provenance information [23, 27], which contains details about the planning and execu-
tion of computational processes, such as scientific workflows, describing the processes and data involved in
the generation of its results may be used to facilitate this task. They allow precise description of how a com-
putational process was planned, which is called prospective provenance, and what occurred during execution,
which is called retrospective provenance. Some applications of provenance include reproducibility of compu-

6http://www.funbio.org.br/probioii
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tational processes for validation, sharing and reuse of knowledge, data quality evaluation and attribution of
scientific results. One of the concepts commonly captured in provenance is causality, which is given by the
existing dependency relationships between computational activities and data sets. These dependencies can
derive, by transitivity, dependencies between data sets and between processes.

Availability

Web interface:
http://sissgeo.lncc.br
Geographical explorer:
http://morcego.siss.lncc.br/i3geo/interface/black_ol.htm
Mobile application (Android):
https://play.google.com/store/apps/details?id=siss.ui
Mobile application (iOS):
https://itunes.apple.com/br/app/siss-geo/id1291912325
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