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ABSTRACT  

The intention to forget can produce long-lasting effects. This ability has been linked to suppression of 

both rehearsal and retrieval of unwanted memories – processes that are mediated by prefrontal 

cortex and hippocampus. Here, we describe an alternative account of deliberate forgetting in which 

the intention to forget is associated with increased engagement with the unwanted information. We 

used pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a task in 

which participants viewed a series of pictures and were instructed to remember or forget each one. 

Pictures followed by a forget instruction elicited higher levels of processing in ventral temporal cortex 

compared to those followed by a remember instruction. This boost in processing led to more 

forgetting, particularly for items that showed moderate (vs. weak or strong) activation. This result is 

consistent with the non-monotonic plasticity hypothesis, which predicts weakening and forgetting of 

memories that are moderately activated.  
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 The human brain is not capable of remembering everything – in our lifetime we will forget the 

majority of our experiences.  While this may seem a bleak consequence, memory loss is essential to 

the human experience; we are bombarded with too much information each moment to possibly record 

and preserve every experience. Which information should be saved and which should be discarded? 

This challenge is often solved automatically by the brain (e.g., through automatic learning processes 

such as statistical learning1).  However, there are instances in which people have volitional control 

over what they will expunge from their memory2,3,4. In these cases, forgetting can be considered an 

adaptive feature of memory in which unwanted or irrelevant information is actively discarded to 

improve access to other memories.  

This ability to intentionally forget an unwanted experience has been shown to involve inhibitory 

processes in frontal control regions that act to suppress the undesired information. Attempts to forget 

new memories have been linked to increased activity in right dorsolateral prefrontal cortex and 

decreased activity in hippocampus5.6. Furthermore, these studies also show that an increase in the 

functional coupling between these two regions leads to successful intentional forgetting. It is unclear, 

however, how sensory representations of the ‘to-be-forgotten’ memories in posterior cortical areas7,8,9 

are related to the success of deliberate forgetting.  

In the present experiment, we hypothesized that deliberate forgetting is facilitated by the 

weakening of moderately active memories in sensory cortex. This idea is motivated by the non-

monotonic plasticity hypothesis10,11 which states that moderately active memory representations are 

weakened by local inhibitory mechanisms in brain regions supporting their representation12. Our prior 

work demonstrated that non-monotonic plasticity contributes to incidental forgetting of items in 

working memory13 . When participants did not decisively switch their attentional focus between two 

items in working memory, the previous item would linger in a state of moderate activation (as 

measured by pattern classifiers applied to fMRI data). According to the non-monotonic plasticity 

hypothesis, these items were susceptible to weakening, and indeed we found that they were 
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associated with worse subsequent memory, compared to trials with less lingering activation. Here, we 

sought to test whether the weakening of moderate memory activations might also play a role in 

deliberate forgetting. The non-monotonic plasticity hypothesis predicts that ‘to-be-forgotten’ items that 

have a moderate degree of activation during encoding should be associated with worse subsequent 

memory relative to items for which there is greater or lesser activation. 

To test this prediction, we used an item-method directed forgetting paradigm3,4 in which 

participants were presented with pictures of male/female faces and indoor/outdoor scenes, one at a 

time, with each picture followed by an instruction either to remember that picture for later, or to try and 

forget having ever seen it (Fig. 1c).  All pictures, regardless of memory instruction, were later 

presented along with novel pictures of faces and scenes in a recognition memory test at the end of 

experiment. No specific instructions were given to participants regarding how to remember or forget 

any of the pictures. We expected that participants would respond to a remember instruction by 

maintaining their focus on that item to strengthen its encoding via rehearsal or elaboration. We 

hypothesized that participants would respond to a forget instruction by changing the amount of 

attention directed towards that item, and hence to alter its state of memory activation14,15,16.  If 

participants withdrew attention from a ‘to-be-forgotten’ item, this would decrease that item’s activation 

relative to ‘to-be-remembered’ items. Alternatively, if participants increased their attentional focus on 

a ‘to-be-forgotten’ item, this would increase memory activation of that item. To quantify and track 

memory activation, we applied pattern classifiers to human fMRI data to measure processing of face 

and scene items throughout each trial. We focused our classifiers on activity in ventral temporal 

cortex, a region that serves as input to convergence zones (for example, in the medial temporal 

lobes) that are responsible for storing long-term memories17; this allowed us to treat our scene and 

face classifier evidence scores as reflecting the strength of the excitatory inputs into memory regions. 

We then related these neural measurements of memory activation (classifier evidence) to subsequent 

memory performance on the recognition test for these items at the end of the experiment. We found 
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that ‘to-be-forgotten’ items were associated with worse subsequent memory overall and higher post-

instruction classifier evidence, on average, compared with ‘to-be-remembered’ items. Moreover, the 

degree of activation for ‘to-be-forgotten’ items was predictive of their subsequent memory strength. 

This result suggests a new perspective on intentional forgetting in which, when trying to forget 

memories, people raise the amount of their lingering activity in order to weaken them. 

 

RESULTS 

Behavioral results. Figure 1a and 1c shows the design of the experiment. Participants performed a 

category localizer task in the scanner. fMRI data from this task were used to train a category-level 

classifier to distinguish processing of objects, faces, scenes, and rest in ventral temporal cortex. 

Participants then performed an item-method directed forgetting task on pictures of faces and scenes. 

On each trial, a stimulus appeared and participants made a subcategory judgment (male/female; 

indoor/outdoor), and then they received an instruction to remember or to forget that picture. No 

specific strategies were provided to participants. At the end of the experiment, participants were given 

a (behavioral) recognition test for the pictures that had been studied in the directed forgetting task.  

The perceptual localizer consisted of a 1-back task on miniblocks of same-category items (i.e. 

face, scene, object and rest) for category-level decoding. We obtained accuracy (successfully 

identifying a repeated image) and response latency behavioral performance measures. Outlier trials 

for which response latencies were greater than 3 standard deviations from each subject’s mean were 

removed from the analysis (2.2% of all trials). Accuracy on the 1-back task was at ceiling for faces 

(97.7%, 0.5%s.e.m.), scenes (98.2%, s.e.m. 0.4%), and objects (98.5%, s.e.m. 0.4%). Rest trials did 

not require a response. One-way analysis of variance (ANOVA) revealed no accuracy differences (P 

= .530) between these three categories. Further, one-way ANOVA test of reaction times across faces 

(593ms, s.e.m. 25ms), scenes (614ms, s.e.m. 33ms) and objects (600ms, s.e.m 28ms) revealed no 

differences between these categories (P = .871). Subcategory identification accuracy in the directed-
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forgetting task was high for both faces (97.7%, s.e.m. 0.4%) and scenes (98.0%, s.e.m. 0.4%), with 

no significant differences between them (P = .570 two-tailed paired t-test). Participants responded 

well within the 3-sec response deadline, and were faster to identify faces (1061 ms, s.e.m. 42 ms) 

than scenes (1236 ms, s.e.m. 45 ms; P < .001, two-tailed paired t-test). Performance on the 

subsequent memory test of these items is shown in Fig. 1d. For all subsequent memory analyses of 

old items described below, we treated recognition responses as a graded measure of memory 

strength (sure old = 1, probably old = 0.667, probably new = 0.333, sure new = 0), in which the ‘old’ 

responses corresponded to remembered items and ‘new’ responses corresponded to forgotten items. 

Recognition memory sensitivity was significantly above chance for both ‘to-be-remembered’ items 

(two-tailed t-test on area under the receiver operating characteristic curve, t(19) = 11.89, P < .001), 

and for ‘to-be-forgotten’ items (t(19) = 11.33, P < .001). Participants showed successful intentional 

forgetting7 as memory performance was significantly worse for ‘to-be-forgotten’ items (t(19) = 2.52, P 

= 0.021 two-tailed paired t-test).  
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Figure 1. Task procedures, classifier sensitivity, and subsequent memory performance. (a) Participants performed 
a category localizer (1-back task) in the scanner with objects, faces, scenes, and rest. (b) Classifier evidence scores 
(between 0 and 1) for each target category were obtained from cross-validation analysis of fMRI data from the localizer. 
(c) Next participants performed an item-method directed-forgetting task on faces and scenes in the scanner. They made a 
subcategory judgment on each picture, and then a cue appeared telling them either to remember (black cross) or to forget 
(yellow cross) that picture. (d) At the end of the experiment, participants were given a recognition memory test for faces 
and scenes that were studied, and for new faces and scenes. (e) Recognition memory sensitivity was assessed by 
receiver operating characteristic (ROC) analysis separately for Remember and Forget items. AUC, area under the ROC 
curve. * P = 0.021. Error bars indicate the s.e.m, n=20. 
 

Neural measures of directed forgetting. We conducted univariate fMRI analyses based on the 

general linear model to contrast brain regions engaged for ‘to-be-forgotten’ items that were forgotten 

and ‘to-be-remembered’ items that were remembered (see Methods). Consistent with prior work5,18,19, 

we found increased activity for successful forgetting in dorsolateral prefrontal cortex (DLPFC), left 

ventral medial prefrontal cortex (VMPFC), posterior cingulate, and precuneus (Supplementary Fig. 1) 

For successful remembering, we found increased activity in bilateral hippocampus and left ventral 

inferior frontal cortex. For a detailed report of the univariate results, please refer to Supplemental 
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Table 1. Together with the behavioral results reported above, these data confirm that our experiment 

is producing directed-forgetting results that are consistent with prior findings. 

 

Measuring memory processing with fMRI pattern classifiers. To assess the degree of memory 

processing on each trial, we applied pattern classifiers to the fMRI data7,8,20. Group-averaged results 

for the classifiers, trained separately for each participant’s localizer data, are shown in Fig. 1b. The 

classifier confusion matrix shows the mean classifier evidence for all categories (columns) on 

localizer blocks featuring stimuli from one target category (rows). The cross-validation procedure used 

to evaluate classifier performance entailed training a classifier on two runs of data and then applying 

that classifier to independent data from the held out third run; the runs were then rotated and this 

procedure was repeated until all three runs had been tested. Decoding accuracy for all categories 

was well above chance (25%). Face evidence was reliably higher than scene evidence for face 

blocks, and vice versa (both P’s < 0.001), but face and scene scores were not dissociable during rest 

periods (P = 0.650). To analyze data from the memory task, we applied classifiers that were retrained 

on all localizer data, again separately for each participant. For each trial, we computed a “target-

nontarget” classifier evidence score which reflects the relative balance between trial-relevant 

processing and trial-irrelevant processing (e.g., “face evidence minus scene evidence” on a face trial). 

These neural measures served as a proxy for item-specific processing on each trial. Averaged across 

trials, the classification results show that evidence for the memory item was higher after a Forget 

instruction compared to after a Remember instruction (between 6 and 8 s after stimulus onset, two-

tailed t-test, P = p<.001; Fig. 2a). This indicates stronger processing of ‘to-be-forgotten’ items. 

Importantly, this is inconsistent with a prominent view that item-method directed forgetting results 

from stronger encoding (e.g., selective rehearsal) of ‘to-be-remembered’ items21,22. Instead, it agrees 

with more recent reports that deliberate forgetting is associated with effortful processing following an 

instruction to forget23-27. Forgetting effects have been linked to a decrease in memory sensitivity for 
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‘to-be-forgotten’ items, as we found here, rather than outright forgetting of those items. For example, 

Zwissler and colleagues28 found that forget instructions result in active processing that reduces the 

false-alarm rate, but does not impair memory beyond an uncued baseline where only incidental 

encoding occurs. Here, our central hypothesis is that the degree of memory processing after a forget 

instruction will predict the degree of forgetting success for that item10-13. We now address this 

hypothesis by linking the neural measures of memory processing during directed forgetting with the 

behavior measures of memory sensitivity from the recognition test at the end of the experiment.  

 

Relating classifier evidence to subsequent memory. We hypothesized that across items, there 

would be a non-monotonic (U-shaped) relationship10,11 between target-nontarget classifier evidence 

for ‘to-be-forgotten’ items and subsequent recognition memory for those items at the end of the 

experiment. To formally test for the non-monotonic pattern in these data, we used the Probabilistic 

Curve Induction and Testing Toolbox (P-CIT11,13) Bayesian curve-fitting algorithm to estimate the 

shape of the ‘plasticity curve’ relating post-instruction memory processing in the directed-forgetting 

task (indexed by classifier evidence) and subsequent memory performance (indexed by recognition 

confidence). The P-CIT algorithm approximates the posterior distribution over plasticity curves (that 

is, which curves are most probable, given the neural and behavioral data). P-CIT generates this 

approximation by randomly sampling curves (piecewise-linear curves with three segments) and then 

assigning each curve an importance weight that quantifies how well the curve explains the observed 

relationship between the neural and behavioral data. Finally, these importance weights are used to 

compute the probability of each curve. To assess evidence for the non-monotonic plasticity 

hypothesis, P-CIT labels each sampled curve as theory consistent (if it shows a U shape, dropping 

below its starting point and then rising above its minimum value) or theory inconsistent, and then 

computes a log Bayes factor score that represents the log ratio of evidence for versus against the 

non-monotonic plasticity hypothesis; positive values of this score indicate a balance of evidence in 
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support of non-monotonic plasticity. P-CIT also computes a χ2-test that assesses how well the curve 

explains the data overall, regardless of its shape; the P-value for this χ2-test indicates the probability 

of obtaining the observed level of predictive accuracy, under a null model where classifier evidence is 

unrelated to memory behavior.  

For our P-CIT analyses, the pre-instruction interval and the post-instruction interval (for each 

item) were treated as separate learning events whose effects were summed to model recognition of 

that item. The fitted curves explained a significant amount of variance in subsequent recognition 

outcomes on both Forget trials (χ2 = 21.34, P < 0.001) and Remember trials (χ2 = 56.6, P <  0.001). 

Most importantly, the curves recovered by P-CIT on Forget trials revealed a U-shaped mapping 

between classifier evidence scores and subsequent memory outcomes, such that moderate levels of 

target-nontarget evidence were associated with worse subsequent memory than higher and lower 

levels of target-nontarget evidence (log Bayes factor = 3.90, Fig. 2c). That is, deliberate forgetting 

was most successful when the ‘to-be-forgotten’ item’s memory activation was sufficiently enhanced 

(but not too high) so as to produce moderate levels of activity during the forgetting attempt. This result 

held when using raw classifier evidence scores for the target category were used to quantify memory 

processing on each trial (e.g. “face” evidence instead of “face-scene” evidence on a face trial; see 

Supplementary Figure 2). This suggests that deliberate forgetting does not require competition per se 

between two or more items in memory, but rather depends on moderate activity of the targeted 

memory alone. This result is predicted by the non-monotonic plasticity hypothesis10, which links 

moderate activation with memory weakening. Note that competition between memories is one way to 

achieve moderate activation13, but it is not required10,11, 29.  

To assess the population-level reliability of the U-shaped curve (that is, were the results driven 

by a small subset of participants), we also ran a bootstrap resampling test in which we resampled 

data from participants with replacement and re-computed the log Bayes factor for the resampled 

data30. For Forget trials, 98% of these bootstrap samples (out of 1,000 total) showed evidence in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286534doi: bioRxiv preprint 

https://doi.org/10.1101/286534


support of the non-monotonic plasticity hypothesis (that is, a positive log Bayes factor), thereby 

indicating a high degree of population-level reliability in the shape of the curve (Fig. 2c). There was 

less population-level reliability in the shape of the curve for Remember trials (only 81% of bootstrap 

samples showed evidence in support of a U-shaped curve).  

 

Figure 2.  Pattern classification of fMRI data from directed-forgetting task. (a) Target-nontarget classifier 
evidence for Forget (yellow) and Remember (black) trials. Classifier evidence scores were not shifted to 
account for hemodynamic lag. (Ribbon thickness indicates s.e.m. across participants, n = 20; *P < .001. 
(bottom): Probability density distribution of the number of Forget (yellow) and Remember (black) trials based 
on classifier evidence scores during the peak response to each stimulus (6-8 sec post onset). (b) Empirically 
derived estimates (generated using the Bayesian P-CIT algorithm4) of the ‘plasticity curve’ characterizing the 
relationship between target-nontarget classifier evidence and subsequent memory performance (recognition 
confidence). Behavioral outcomes are modelled as depending on the summed effects of pre-instruction (1-3 s) 
and post-instruction (4-9 s) classifier evidence. Within each box, the line shows the mean of the posterior 
distribution over curves and the ribbon shows the 90% credible interval (such that 90% of the curve probability 
mass lies within the ribbon). The horizontal axis shows target-nontarget classifier evidence scores rescaled so 
that the minimum classifier evidence value = -1 and the maximum classifier evidence value = 1; the vertical 
axis represents the subsequent memory strength. (c) Violin plots describing the balance of evidence 
(operationalized in terms of log Bayes factor) in favor of the non-monotonic plasticity hypothesis, shown 
separately for the two conditions. These plots show the probability density (using kernel density estimation) of 
the log Bayes factor derived from 1,000 bootstrap iterations. The thick marker inside each plot indicates the 
mean. Positive values of the log Bayes factor correspond to evidence in favor of the non-monotonic plasticity 
hypothesis and negative values correspond to evidence against the hypothesis. (*P = 0.019). 
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DISCUSSION 

 Here, we applied machine learning methods to human fMRI data to reveal a novel mechanism 

that is involved in intentional forgetting: the weakening of moderately active representations of ‘to-be-

forgotten’ items in ventral temporal cortex. The intention to forget an item is associated with higher 

fMRI pattern classifier evidence, and worse subsequent memory, compared with the intention to 

remember an item. This boost in activation can render the memory vulnerable to disruption and 

therefore more susceptible to subsequent forgetting13. These findings are predicted by the non-

monotonic plasticity hypothesis10,11, and they converge with recent work that describes intentional 

forgetting as an active and effortful cognitive process18,19,24,26,31.  Prior work has linked forgetting to 

the suppression of sensory representations during the retrieval32 or simulation33 of episodic 

memories. We believe that the present findings provide a first step to understanding the role of 

modulating sensory representations during encoding to facilitate deliberate forgetting.    

Our findings are compatible with and extend existing explanations for intentional forgetting6. In 

one prominent view on the neural mechanics that support intentional forgetting, Anderson and 

colleagues5,6,34 have described distinct neural mechanisms associated with two common behavioral 

strategies described as ‘direct suppression’ and ‘thought substitution’. Behaviorally, direct 

suppression is thought to be a termination of the rehearsal of items that are given a forget cue35,36.  

Direct suppression is thought to occur when inhibitory signals from dorsolateral prefrontal cortex 

down-regulate hippocampal engagement related to memory encoding. Thought substitution, on the 

other hand, occurs when subjects replace a ‘to-be-forgotten’ item with some alternative item, for 

example an item that was studied previously or any other random thought.  During thought 

substitution, left ventral prefrontal cortex engages in cognitive control processes that result in 

demonstrative increases in hippocampal engagement5. In the current experiment, we did not 

constrain behavioral strategy to avoid any mitigation of directed-forgetting effects due to self-

evaluation of instructed strategies37. Therefore participants may have attempted either or both 
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thought-substitution and direct-suppression strategies, and perhaps other idiosyncratic strategies too. 

In spite of potentially varied strategy choices, our results show a consistent increase in memory 

processing following a forget instruction relative to a remember instruction. The degree of this boost in 

processing, specifically when it resulted in moderate activation of the item, was predictive of 

successful forgetting. This suggests a new route to successful forgetting: to forget a memory, its 

mental representation should be enhanced to trigger memory weakening (described by non-

monotonic plasticity10,11) via local inhibitory processes governing homeostatic regulation of neural 

activity. 

 A possible limitation to this interpretation of our data comes from the categorical nature of fMRI 

pattern classifiers used to measure memory processing. An increase in category-specific memory 

processing observed for ‘to-be-forgotten’ items could result, not from an increase in processing of the 

‘to-be-forgotten’ item, but perhaps from the selective retrieval and rehearsal of another item from the 

same category (e.g., rehearsing a previously studied ‘to-be-remembered’ face when instructed to 

forget a different face on the current trial). This would be an example of a thought-substitution 

strategy (described above). We argue, however, that if people were to engage in selective rehearsal 

of previous items, it is unlikely that they would be able to limit this process to only same-category 

items rather than rehearsing a mixture of previous ‘to-be-remembered’ items from both categories. 

The category status of a ‘to-be-forgotten’ item is an inefficient search query for previous items – the 

most recent same-category item would be most salient of those items in memory, and if this item had 

also been accompanied by a forget instruction, it would be counterproductive (for forgetting of that 

item) to direct attention towards it, even if to reject it, during a memory search on the current trial.  

 Turning to our data, we found that ‘to-be-forgotten’ items were associated with higher classifier 

evidence for the target category (e.g. “face” on a face trial), and also lower classifier evidence for the 

nontarget category (“scene”) relative to ‘to-be-remembered’ items (Supplemental Fig. 2). Following an 

instruction to forget, activation of the ‘to-be-forgotten’ item was selectively enhanced. On the other 
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hand, there was greater evidence for task-irrelevant processing (associated with the nontarget 

category) after a remember instruction. This would be consistent with the idea that, following an 

instruction to remember, a “covert rehearsal” strategy was used in which a mixture of previously 

studied ‘to-be-remembered’ items (some faces, some scenes) were rehearsed3. Critically, if the 

increase in target-related processing of ‘to-be-forgotten’ items reflected rehearsal of same-category 

alternatives, this would predict a linear relationship with subsequent memory such that higher 

processing (indicating more same-category substitution) would lead to more forgetting. Our analyses, 

however, revealed a U-shaped relationship with memory processing and forgetting success, such that 

a moderate level of processing (but not high levels) was associated with more forgetting.   

Another possible challenge to our interpretation is that an increase in category-specific 

information (as seen for ‘to-be-forgotten’ items) actually reflects a decrease in item-specific 

information38. That is, if the item-specific features of a representation are suppressed, leaving behind 

the category-generic features, this could produce higher category-specific classifier evidence scores. 

In order to eliminate this possibility entirely, future studies should incorporate item-level classification 

to determine the specificity of increased memory processing during intentional forgetting.  

  The strength of the current study is the identification of a relationship between lingering 

activation of ‘to-be-forgotten’ memories in ventral temporal cortex and their subsequent memory 

strength. We found that the intention to forget a memory is associated with increased processing (and 

neural activation) of that memory. In accordance with the non-monotonic plasticity hypothesis10,11,12, 

forgetting occurs when a memory has a moderate degree of activation (vs. too high or too low) 

following the instruction to forget. This highlights the contribution of an automatic memory weakening 

mechanism to deliberate forgetting, and it suggests an alternative strategy for successful forgetting: to 

weaken an unwanted memory, raise (rather than suppress) its level of activation.  
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METHODS  

Subjects 

  Twenty-four healthy subjects between the ages of 18 and 35 we recruited from the UT Austin 

student body as well as the surrounding community in accordance with the University of Texas 

Institutional Review Board. Subjects were compensated at $20 an hour. All subjects were right-

handed, had normal or corrected-to-normal vision. Exclusionary criteria included psychiatric disorder, 

substance abuse and use of psychotropic medication. During the data collection phase, two subjects 

were excluded for sleeping in the scanner and one additional subject was excluded for 

claustrophobia. One additional subject was excluded due to data storage malfunction. One final 

subject was excluded for behavioral performance > 1.5 standard deviations from average 

performance. A total of 20 subjects (10 female, mean = 23.6 yrs) are included in the reported 

analyses.  An fMRI response box malfunction affected behavioral data recorded for four subjects. As 

a consequence, in the localizer task, two subjects were not included in the analysis of response 

latency and accuracy while two others included only accuracy information. For the encoding phase, 

two subjects were not included in the analysis of encoding task accuracy and response latency, while 

a third subject contributed only task accuracy information. Critically, these three subjects completed 

the task and contributed recognition memory task data and were included in the main analyses. 

 

Stimulus Materials 

Experimental materials comprised of colored pictures of scenes, faces and objects. Face 

stimuli were drawn from a previously published experiment 19 and their sources (including www.mac-

brain.org/recources.htm). Faces were cropped from the neck down and shown over a white 

background. A subset of these faces was chosen based on moderate memorability ratings (2.33-4.10, 

mean: 3.17) from a stimulus evaluation experiment conducted through Amazon.com’s Mechanical 

Turk13. A subset of scenes from the Fine-Grained Image Memorability (FIGRM) Dataset39 were used 
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in the present experiment. Scenes were chosen by taking images comprising moderate memorability 

ratings (2.28–4.38, mean: 3.278, scaled from 1-5) for the task. Objects were drawn from various 

online sources including Google Images, cropped to exclude any original background, and displayed 

over a white background. All items were sized to 300 x 300 pixels, and presented using 

Psychophysics Toolbox Version 3 (PTB-3) in MATLAB 2014a running on an Apple MacBook Air 

computer running OS X 10.5.  

 

Procedural Details 

Each subject completed three phases for each experimental session (Fig 1). In the localizer 

phase, subjects performed a perceptual localizer task to train fMRI pattern classifiers on categories of 

scenes, faces, objects and rest. During the localizer, subjects performed a 1-back task with mini-

blocks of items from the three categories of pictures. For the rest category, 18 sec of continuous 

fixation served as the ‘rest’ mini-block condition. Otherwise, a mini-block consisted of 9 items from the 

same category shown in succession with 8 sec in between mini-blocks. For each mini-block, 1 or 2 

items repeated, thus there was a total of 7-8 unique items per mini-block. Subjects were required to 

respond ‘not a repeat’ with their right index finger button or ‘repeat’ with their right middle finger button 

for each item. Within the mini-blocks, each trial began with the presentation of a single item for 1.5 

sec, followed by a three horizontally aligned fixation crosses for 50 msec. The localizer phase 

consisted of 3 localizer runs. Each run included 4 blocks, each block included 1 mini-block of each 

category type. Across all three runs, the localizer included 90 faces, 90 scenes, 90 objects and 12 

mini-blocks of rest. The entire localizer phase lasted approximately 15 min.  

 The second phase comprised the encoding phase of an item-method directed forgetting task. 

In this task, subjects were shown either a face or a scene for 3 sec. During the presentation of each 

item, subjects were instructed to give a subcategory judgment. If a face was presented, subjects were 

to indicate whether the face was male or female. If a scene was presented, subjects were to indicate 
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whether the scene was of an indoor or outdoor scene. Following the presentation of the item, an 

instruction cue was given for 6 sec in the form of a yellow fixation cross (‘forget’) or black fixation 

cross (‘remember’). Subjects were instructed to apply the instruction represented by the cue to the 

preceding item. Notably, subjects were not encouraged to use any particular strategy, but rather to 

simply forget or remember the previously presented item. Importantly, critical forget trials were always 

preceded with a remember trial of the opposing category (e.g., if a face was presented on a forget 

trial, a scene preceded it in a remember trial) so that our category-specific pattern classification 

analyses could distinguish trial-specific memory processing (see MVPA section below). In order to 

discourage anticipation of the forget instruction, we included 60 additional remember trials that were 

distributed across the experiment to precede other remember trials. Therefore, there were instances 

in which a remember trial was followed by another remember trial, but a forget trial was never 

followed by another forget trial. The directed forgetting phase consisted of 6 study runs. Each run 

included 21 faces and 21 scenes. Across all 6 runs, this phase included 126 faces and 126 scenes, 

and lasted approximately 38 min.  

  The third phase of the experiment was a self-paced recognition test conducted outside the 

scanner. Subjects performed a recognition memory task on a large set of 504 items that included 252 

items from the study task (half faces, half scenes) and 252 new items. Subjects were asked to give 

confidence judgments (‘definitely old, probably old, probably new or definitely new’) to each item 

presented at test. In order to encourage recognition responses that reflect actual memory of the 

items, and to discourage responses that reflected the instruction cue given at study (e.g., to 

discourage a ‘definitely old’ response being given to an item for which the subject remembers being 

told to forget), confidence responses were assigned points. Subjects were informed of the point 

system, instructed to maximize their points, and the total point sum was reported to the subject at the 

end of the test. The point system was as follows: For each old item, a new response (‘probably new’ 

or ‘definitely new’) was penalized with -1 point while an old response (‘probably old’ or ‘definitely old’) 
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was awarded +1 point. For each new item, an old response (‘probably old’ or ‘definitely old’) was 

penalized -1 point while a new response (‘probably new’ or ‘definitely new’) was awarded +1 point. 

Practice items for both localizer and study items were administered prior to the scan session. Test 

items were not practiced.  

Receiver Operating Characteristic (ROC) curve construction and analysis.  

Receiver Operating Characteristic (ROC) curve analysis provides a quantitative comparison of 

memory sensitivity40. ROC curve analysis compares memory sensitivity by plotting the proportion of 

hits (saying an item is old when it was seen before) against the proportion of false alarms (FA, saying 

an item is old when it was not seen before) over a range of response thresholds. Here we used 

memory confidence in place of response thresholds41.  Remember and Forget ROC curves were 

constructed by plotting hit rate/FA rate pairings from most to least confident, building in a cumulative 

fashion for each condition. Importantly, as hits rates increase, FA rates also increase – but a more 

rapid rise in hit rate compared to FA rate in turn, increases the area under the curve produced by the 

ROC. Greater area below a recognition memory ROC curve describes increased memory sensitivity.  

We calculated and compared the area under each curve for both Forget and Remember ROC curves.  

fMRI data acquisition 

Functional and anatomical MRI data were acquired on a 3T Siemens MRI Scanner (Magnetom 

Skyra, Siemens AG, Germany) equipped with a 32-channel parallel imaging head coil. Functional 

scans were acquired with a T2* weighted echo-planar image (EPI) sequence with the following 

parameters: (TR=1s TE=30 ms, flip angle= 63°, 2.4 mm slices, no gap, 110x110 matrix, 

FOV=230mm, 56 oblique axial slices, multiband acceleration factor = 4). Slices were acquired in 

interleaved order. Automatic high order shim was used to orient acquisition parallel to the AC-PC line 

for full coverage of the brain with limited coverage of the cerebellum. Data was acquired for both 

localizer and study phases while the test phase was acquired outside the scanner. High-resolution 

T1-weighted anatomical images were acquired for all subjects using a 3D magnetization-prepared 
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rapid gradient echo (MP-RAGE) pulse sequence (TR = 1.9s, TE = 2.43ms, flip angle = 9°, FOV = 

256mm, matrix size 256x256, voxel size 1mm3, 192 slices, sagittal acquisition).  

fMRI data analyses  

Univariate analyses 

Functional EPI images were preprocessed and analyzed using SPM12, 

(http://www.fil.ion.ucl.ac.uk/spm/) implemented under MATLAB R2014a. EPI images were spatially 

aligned to the mean volume and reoriented parallel to the anterior to posterior commissure plane prior 

to normalization. All volumes were normalized to the MNI (Montreal Neurological Institute) template 

EPI* brain and further smoothed 6mm FWHM. We implemented a mass univariate, general linear 

model analysis primarily to confirm the presence of directed forgetting effects found in previous 

experiments that used item-method directed forgetting paradigm18,19. We implemented a 2 stage 

mixed-effects model by first convolving the onset of each Remember and Forget instruction with a 

canonical hemodynamic response function (HRF) with its temporal and dispersion derivatives. In the 

first stage, we used the subsequent memory procedure to sort trials from study into items 

subsequently forgotten or subsequently remembered. Further, we segregated these items into those 

previously presented with a ‘to-be-forgotten’ instruction or a ‘to-be-remembered’ instruction. In the 

second stage. we carried these effects of interest forward into a random-effects analysis.   We were 

interested in two primary comparisons: 1) successful forgetting effects – regions demonstrating 

greater activity for subsequently forgotten, ‘to-be-forgotten’ items than subsequently remembered, ‘to-

be-remembered’ items. 2) successful remembering effects - regions demonstrating greater activity for 

subsequently remembered, ‘to-be-remembered’ items than subsequently forgotten, ‘to-be-forgotten’ 

items. All effects are reported at an uncorrected threshold of P < .001(one sided) with a 20-voxel 

cluster extent threshold unless otherwise specified.  

 

Multivariate Pattern Analysis (MVPA) 
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 For MVPA20, functional EPI images were preprocessed and analyzed using FSL 5.0 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)42,43 subroutines implemented under MATLAB R2014a. Functional 

images were realigned to the middle volume of the middle (fifth overall) run to correct for motion, and 

high-pass filtered (128s) to eliminate slow drift. All MVPA analyses were done in native space for 

each participant (using the Princeton MVPA toolbox (https://github.com/PrincetonUniversity/princeton-

mvpa-toolbox) and custom code in MATLAB R2014a).  

 We used MVPA to quantify the degree of face and scene category-specific neural activity 

associated with items on forget trials and remember trials. In order to ensure accurate decoding of 

face and scene categories, we trained a L2–penalized logistic regression classifier (with a penalty 

(lambda) of 50) on faces, scenes, objects and rest-related activity from the category localizer task. 

For each mini-block, we trained and tested the classifier on the preprocessed BOLD data from the 18 

TRs after the onset of the first item. We shifted regressors by 5 sec to account for hemodynamic 

delay. Classifier training consisted of using the “leave-one-run-out” method on the 3 localizer runs in 

which the classifier trains on one run, and tests on the two others, rotating through until all runs are 

tested. Fig. 1b shows the mean classifier evidence for each category, showing that the classifiers 

have sufficient sensitivity to discriminate each category of interest. 

To decode the directed forgetting task for each participant, we trained classifiers on all localizer 

data (separately for each participant) and applied them to each TR of the remember trials and forget 

trials. Here, we produced classification evidence output scores for each 1-sec TR after the trial onset 

(uncorrected for hemodynamic delay). From the decoded classifier evidence at each time point in 

each trial, we calculated ‘target’ and ‘nontarget’ evidence by appropriately relabeling the data (e.g., 

‘face’ evidence became ‘target’ evidence, and ‘scene’ evidence became ‘nontarget’ evidence on a 

face trial). Finally, we calculated the differences between target and nontarget evidence to reflect the 

relative balance of trial-relevant and trial-irrelevant processing at every time point.  
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Critically, each ‘to-be-forgotten’ item was followed by a ‘to-be-remembered’ item of the 

opposite category (e.g., a ‘to-be-forgotten’ face followed by a ‘to-be-remembered’ scene).  On the 

other hand, ‘to-be-remembered’ items could be followed by either type of item, including a ‘to-be-

remembered’ item from the same category. These trials (38.4% of all remember trials) were not 

included in any of the analyses to ensure that all items were preceded by an item that was given an 

opposite instruction (forget or remember) and was drawn from the opposite category (scene or face). 

While this may seem a considerable proportion of remember trials, it was critical that subjects were 

unable to anticipate forget trials while during the encoding phase of the trial.  

Regions of interest 

All MVPA analyses were conducted within an anatomical ventral temporal mask for each 

participant. The ventral temporal mask (in MNI space; Montreal Neurological Institute) was defined 

using boundaries delineated by Grill-Spector and Weiner42 and created by merging the temporal 

fusiform cortex, parahippocampal gyrus, occipital fusiform gyrus and temporal occipital fusiform 

cortex regions from the Harvard-Oxford atla43,44,45 found in FSL 5.0. To create subject-specific masks 

we co-registered EPI volumes to their own MPRAGE structural volume using FSL FMRIB’s Linear 

Image Registration Tool (FLIRT)46,47. We then used FSL FMRIB’s Non-linear Image Registration Tool 

(FNIRT) to register structural volumes to MNI space. Individual, native-space ventral temporal masks 

were created by combining (with the registration parameters for the MPRAGE) and applying a 

reversed transformation matrix from EPI to MNI stereotaxic space on the ventral temporal mask 

described above.  

Relating classifier evidence to subsequent memory performance 

We utilized the Probabilistic Curve Induction and Testing Toolbox (P-CIT)11,13 developed in 

MATLAB (https://code.google.com/p/p-cit-toolbox) which uses a Bayesian curve-fitting algorithm to 

estimate the shape of a ‘plasticity curve’ relating neural data (category-specific classifier evidence) 

and behavioral data (recognition memory confidence scores). In this analysis, we used a ‘super-
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subject’ procedure in which each participant contributed 96 trials for a total of 1,824 trials for each 

Forget and Remember instruction condition. We used this fixed-effects analysis because data from 

each individual subject was insufficient for random effects analysis (see Lewis-Peacock and 

Norman13 for a more detailed explanation) across subjects. Additionally, for this application of P-CIT, 

we treated pre-instruction (and post-item onset, 1-3s) and post-instruction (4-9s) time intervals as 

separate events with distinctive processes (perceptual encoding vs. mnemonic processing). This 

approach to modeling each trial with two neural data points uses the “net effects” procedure12 to sum 

their individual contributions to the single behavioral outcome of remembered or forgotten (see the P-

CIT manual for further details). In order to evaluate the reliability of these results, we also 

implemented a bootstrap resampling procedure30 with 1000 iterations.  

Visualization of Results 

GLM and GLM-related surface results are visualized the SPM12 canonical render. All 

subcortical findings are visualized over an MPRAGE volume that is comprised of averaging the 

MPRAGE volumes specific to this dataset.  

Data and Code Availability 

The data and software code used to support the findings of this study are available from the 

corresponding upon reasonable request.  
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