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Abstract 1 
A fundamental question in systems neuroscience is how spontaneous activity at rest is 2 
reorganized during task performance. Recent studies suggest a strong relationship between 3 
resting and task FC. Furthermore, the relationship between resting and task FC has been 4 
shown to reflect individual differences. Particularly, various studies have demonstrated that the 5 
FC has higher reliability and provides enhanced detection of individual differences while 6 
viewing natural scenes. Although the large-scale organization of FC during rest and movie-7 
viewing conditions have been well studied in relation to individual variations, the re-organization 8 
of FC during viewing natural scenes have not been studied in depth. In this study, we used 9 
principal component analysis on FC during rest and movie-viewing condition to characterize 10 
the dimensionality of FC patterns across conditions and subjects. We found that the variations 11 
in FC patterns related to viewing natural scenes can be explained by a single component, which 12 
enables identification of the task over subjects with 100% accuracy. We showed that the FC 13 
mode associated to viewing natural scenes better reflects individual variations. Furthermore, 14 
we investigated the signatures of movie-viewing-specific functional modes in dynamic FC 15 
based on phase-locking values between brain regions. We found that the movie-specific 16 
functional mode is persistent across time; suggesting the emergence of a stable processing 17 
mode. To explain the reorganization of whole-brain FC through the changes in local dynamics, 18 
we appeal to a large-scale computational model. This modelling suggested that the 19 
reorganization of whole-brain FC is associated to the interaction between frontal-parietal and 20 
frontal-temporal activation patterns. 21 
  22 
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Introduction 23 
Neural dynamics underwrite information processing at multiple spatiotemporal scales. The 24 
neural correlates of information processing at a local scale have been widely studied. However, 25 
the integration of information in whole-brain level is also crucial for understanding brain function 26 
(Baars, 1993; Tononi, 2004). Long-range synchronization of oscillatory activity has been 27 
proposed as dynamical mechanism for mediating the interaction between brain areas in a task-28 
dependent manner (Engel et al., 2001; Fries, 2005). Recent studies showed that neuronal 29 
synchronization mediates neuronal communication in large-scale cortical networks during task 30 
performance (Betti et al., 2013) and resting state (de Pasquale et al., 2010).  31 
 32 
Resting state functional connectivity (rs-FC) is a powerful technique to characterize large-scale 33 
organization of brain activity based on the temporal correlations between blood oxygen level-34 
dependent (BOLD) signals (Biswal et al., 1995). Rs-FC patterns have been shown to provide 35 
‘fingerprints’ for the functional brain organization of individuals (Finn et al., 2015). Furthermore, 36 
recent studies showed strong relationship between the FC during resting state and task 37 
performance (Betti et al., 2013; Cole et al., 2014, 2016; Rosenberg et al., 2015). The 38 
relationship between resting state and task FC has been shown to reflect individual differences 39 
(Tavor et al., 2016). In particular, experimental paradigms such as viewing natural scenes (i.e. 40 
movie watching) are of interest due to their ecological validity (Betti et al., 2013). Several studies 41 
found that FC has higher reliability and provides enhanced detection of individual differences 42 
while viewing natural scenes (Kim et al., 2017; Vanderwal et al., 2015, 2017). However, the 43 
features underlying the enhanced reliability of FC are not clear given that the large-scale 44 
organization of FC is very similar during rest and viewing natural scenes. Theoretical studies 45 
have proposed that entropy of the cortical activity space is reduced during task (Ponce-Alvarez 46 
et al., 2015). Therefore, the functional reorganization during viewing natural scenes is expected 47 
to reflect not only individual subject-specific variations but also task-specific variations. 48 
Nevertheless, the task-dependent reorganization of FC during viewing natural scenes and its 49 
relationship to individual subject-specific variations are poorly understood.  50 
 51 
Understanding the organization of whole-brain FC during distinct conditions is challenging 52 
because of enormous dimensionality, which increases quadratically with the number of brain 53 
regions. Principal component analysis (PCA) is widely known and intuitive mathematical 54 
procedure to characterize the dimensionality of data. PCA transforms a set of observations into 55 
orthogonal components and allows characterizing the relationship between these orthogonal 56 
components and the projections of individual observations. PCA and associated techniques 57 
have been used to characterize resting-state fluctuations (Carbonell et al., 2011), whole-brain 58 
connectivity dynamics (Allen et al., 2012) and disease-related rs-FC states (Craddock et al., 59 
2009). In this paper, we used PCA to investigate the dimensionality of FC during rest and 60 
movie-viewing condition. Based on the projections of individual subjects and sessions on 61 
principal components, we identified FC-states specific to natural viewing condition. Then, we 62 
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studied the consistency of this principal component across sessions, subjects, and under 63 
different preprocessing approaches. 64 
 65 
Another important question related to the task-dependent reorganization of FC is whether 66 
alterations in grand-average FC (over the whole session) reflect a persistent (temporally stable) 67 
functional state or they reflect the emergence of various functional states fluctuating over time 68 
(Gonzalez-Castillo et al., 2015). To answer this question, we extended our analysis beyond 69 
grand-average FC states and investigated the temporal fluctuations in FC states based on the 70 
dynamics of phase-coupling among brain regions. 71 
 72 
Although empirical findings provide insights on the task-dependent reorganization of whole-73 
brain FC, these results may not offer a mechanistic understanding. We therefore adopted a 74 
mechanistic approach for task-dependent reorganization of whole-brain FC using large-scale 75 
by physically plausible modelling framework. We constraint the long-range interactions 76 
between brain regions by diffusion weight imaging-derived (DWI) structural connectivity, and 77 
studied the alterations in local dynamics of each brain regions during natural viewing conditions.  78 
  79 
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Results 80 
Principal component analysis reveals distinctive FC mode during movie watching 81 
condition 82 
The grand average FC during resting state and movie exhibited similar patterns (r = 0.8, p-83 
value < 0.0001) (Figure 1A). However, the similarity across FCs of individual subjects was 84 
substantially higher under the same condition (resting state r = 0.46 ± 0.06; movie r = 0.49 ± 85 
0.06) than across conditions (r = 0.40 ± 0.07). To characterize the variations in FC during rest-86 
state and movie viewing conditions, we performed principal component analysis (PCA) across 87 
FCs of individual subjects (Figure 1B-C). 88 
 89 
We concatenated FCs of 21 individuals during 2 separate sessions of resting state and movie 90 
watching conditions and then employed PCA. We found that the first principal component (PC-91 
1) explaining 25.8% of the variance (Figure 2A) reflected the dominant FC pattern that were 92 
conserved over conditions. The projections of PC-1 were significantly correlated with global 93 
signal standard deviations of individual subjects/session (r = 0.99, p-value < 0.0001) (Figure 94 
2J). This result suggested that the principal mode of variation in FC reflects the global signal 95 
variance and associated overall synchronization levels. However, the second principal 96 
component (PC-2) (Figure 2C) explaining 7.2% of the variance clearly distinguished the movie 97 
condition from resting state. Based on the projections of two principal components (i.e. 2-98 
dimensional projections of subject/session data on principal components), we found that movie-99 
specific PC-2 separates the two conditions with 100% accuracy (Figure 2D). 100 
 101 
Previous studies have shown restricted subject movements and increased arousal while 102 
watching natural scenes (Vanderwal et al., 2015). Therefore, the movie-specific PC may also 103 
reflect the contributions of artefactual signal changes. To rule out possible artefactual 104 
contributions, we repeated the analyses after regressing out the global signal (Figure 2E-H). 105 
We found that after global signal regression (GSR) the first principal component (PC-1) 106 
explaining 9.69% of the variance reflected movie-specific variations in FC. The projections of 107 
PC-1 separated two conditions with 100% accuracy (Figure 2H). Furthermore, the topologies 108 
of movie-specific component modes were highly consistent with and without GSR (r = 0.81, p-109 
value < 0.0001). These results showed that the movie-specific variations in FC patterns can be 110 
explained by a single dimension. 111 
 112 
Movie-specific FC variations are consistent across sessions and they reflect individual 113 
variations better than non-specific principal components  114 
We repeated the PCA (with and without GSR) using 2 sessions separately. For both sessions 115 
we found the movie-specific and non-specific components without GSR (Figure 3A-B) and with 116 
GSR (Figure 3C-D). Without GSR, PC-1 (global signal component) of session 1 and session 2 117 
was significantly correlated (r = 0.75, p-value < 0.0001). However, the similarity between movie-118 
specific PC-2 of session 1 and session 2 was substantially higher than that of PC-1 (r = 0.83, 119 
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p < 0.0001). Similarly, with GSR, we found higher similarity between session 1 and session 2 120 
for movie-specific PC-1 (r = 0.82, p-value < 0.0001) than for non-specific PC-2 (r = 0.54, p-121 
value < 0.0001). These results show that the movie-specific principal component is highly 122 
consistent across sessions. 123 
 124 
To investigate the individual variations associated to each principal component, we compared 125 
the PC projections across sessions. We found that the projections of movie-specific 126 
components were highly consistent across sessions (without GSR r = 0.92, p-value < 0.0001; 127 
with GSR r = 0.93, p-value < 0.0001), and the correlations were substantially higher than those 128 
of non-specific components (without GSR r = 0.76, p-value < 0.0001; with GSR r = 0.52, p-129 
value < 0.0001). These results show that the FC topography related to movie-watching 130 
conditions reflects individual variations better than that related to resting condition.  131 
 132 
Movie-specific FC patterns are temporally stable 133 
We investigated whether the movie-specific FC patterns are temporally stable in time or 134 
whether they emerge as a consequence of the fluctuations in FC (i.e. collection of single or 135 
multiple transient states). We constructed dynamic FC (dFC) based on the time-dependent 136 
fluctuations in phase-locking values (PLVs) between brain regions. First, we band-pass filtered 137 
the BOLD time-series in 0.04-0.07Hz narrow-band. After employing Hilbert transform, we 138 
calculated the PLVs at each time point using instantaneous phases of each brain region (Figure 139 
4A). Then, we calculated the correlation between the instantaneous PLVs and average PLVs 140 
of resting state and movie sessions. To avoid any session-specific bias, we calculated the 141 
correlations between average PLVs of resting state and movie from session 1 and 142 
instantaneous PLVs of session 2 (and vice versa). We also repeated the PCA on average PLV 143 
matrices for session 1 and session 2 (Figure 4C, F). We found that the principal components 144 
based on PLVs exhibit movie condition specificity for both sessions. Furthermore, movie-145 
specific PC of PLVs were highly correlated with that of Pearson correlation based FC (r = 0.88, 146 
p-value < 0.0001). 147 
 148 
For resting state sessions, the correlations between PLVs and average PLVs of movie sessions 149 
were significantly lower than that for resting state sessions across time points (Wilcoxon signed-150 
rank test p-value < 0.0001, for both session 1 and session 2). For movie sessions, the 151 
correlations between PLVs and average PLVs of movie sessions were significantly higher than 152 
that for resting state sessions across time points (Wilcoxon signed-rank test p-value < 0.0001, 153 
for both session 1 and session 2) (Figure 4D-E). The results were the same when the analyses 154 
were repeated using movie-specific and non-specific principal components instead of average 155 
PLVs (Supplementary Figure 1). In addition, we constructed the average dFC across subjects 156 
and estimated the correlation between the average PLVs at each time-point and average PLVs 157 
of resting-state and movie sessions. We found that for both resting state and movie sessions, 158 
the PLVs at each time-point exhibited higher correlations with grand-average PLVs of matching 159 
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condition (Supplementary Figure 1). We further employed PCA over the PLV fluctuations 160 
concatenated across sessions for each subject. The trajectories of the principle components 161 
revealed emergence of movie-specific FC as a distinct mode for most of the subjects 162 
(Supplementary Figure 2). Nevertheless, we did not find task-specific components for PLVs 163 
concatenated across all subjects and all sessions. These results suggest that the movie-164 
specific FC pattern emerges as a temporally stable mode during movie watching sessions, 165 
although the time-resolved FC states is difficult to estimate.  166 
 167 
Large-scale computational modelling of the regional dynamics underlying movie-168 
watching FC 169 
We used a large-scale computational model to characterize the alterations in regional dynamics 170 
associated to the movie-watching condition. We used Hopf normal model to characterize the 171 
BOLD activity of each region (Deco et al., 2017). The regions were coupled to each other via 172 
DWI-derived structural connectivity scaled by a global coupling parameter (Figure 5A). The 173 
dynamics of each region were governed by local bifurcation parameter (a). The local bifurcation 174 
parameters (a) reflects whether an individual region is dominantly in a noise-driven regime (a 175 
< 0), oscillatory regime (a > 0), or alternates between the two regimes (a ~ 0) (Figure 5A). We 176 
estimated the optimal global coupling and local bifurcation parameters of each subject/session 177 
by maximizing the similarity (i.e. Pearson correlation) between empirical and model FCs using 178 
gradient-descent optimization. There was no significant difference in the model fit for resting-179 
state (r = 0.518 ± 0.057) and movie sessions (r = 0.497 ± 0.045) (T = 1.256, p-value = 0.219, 180 
permutation t-test). 181 
 182 
To characterize the overall topology underlying each condition, first we estimated the optimal 183 
global coupling parameter (g) and optimal bifurcation parameters (a) for resting state and movie 184 
watching condition based on the similarity between average empirical and model FC. At rest, 185 
the average optimal bifurcation parameters were low in parietal and temporal regions, whereas 186 
they were higher in occipital and frontal regions (Figure 5B). For movie condition, the bifurcation 187 
parameters were increased in parietal and temporal regions and decreased in anterior 188 
cingulate, lateral prefrontal cortices and in supramarginal gyrus (Figure 5C). There was no 189 
significant difference between the mean optimal bifurcation parameters of rest and movie 190 
conditions (Figure 5D).  191 
 192 
To quantify the group differences, we compared regional optimal bifurcation parameters of 193 
resting state and movie sessions (Figure 6A). We found no significant differences in global 194 
coupling parameters between rest and movie conditions (Figure 6B). In movie condition, the 195 
local bifurcation parameters were significantly decreased towards negative values in bilateral 196 
caudal anterior and posterior cingulate, right supramarginal gyrus, and left post- and para-197 
central cortices (Figure 6D). In contrast, the bifurcation parameters were significantly increased 198 
in bilateral orbital frontal cortex, right lateral orbital frontal cortex, right middle rostral frontal 199 
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cortex, right superior parietal cortex, right fusiform gyrus, and left frontal pole and left medial 200 
temporal cortex (Figure 6D). 201 
 202 
Finally, we repeated the PCA on optimal bifurcation parameters across subjects and conditions 203 
(Figure 6E-G). The first principal component (PC-1) explaining 41.77% of the variation and the 204 
second principal component (PC-2) explaining 10.25% of the variation were both significantly 205 
correlated with the contrast between average bifurcation parameters of movie and resting-state 206 
sessions (PC-1 r = 0.38, p-value = 0.002; PC-2 r = 0.73, p-value < 0.0001). The first principal 207 
component (PC-1) exhibited a strong positive peak in precuneus and isthmus of cingulate, 208 
slightly higher values in medial frontal and temporal regions, which is very similar to default 209 
mode network (DMN) topography (Figure 6E). The second principal component (PC-2) showed 210 
higher values in temporal and frontal regions (Figure 6F). Furthermore, the second principal 211 
component (PC-2) exhibited movie specificity (Figure 6G). This result shows that the alterations 212 
in regional dynamics in the movie-condition reflect at enhanced influence of frontal-temporal 213 
brain regions on whole-brain dynamics.  214 
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Discussion 215 
We characterized the reorganization of FC during natural viewing condition compared to resting 216 
state. Using principal component analysis, we found that the alterations in FC during natural 217 
viewing condition can be explained along a single dimension or mode of variation (i.e. a 218 
condition-specific pattern of connectivity that captures the variations across subjects). The 219 
projections of the FCs of each subject on the movie-specific principal component provided a 220 
clear separation between conditions with classification accuracy of 100%.  221 
 222 
FC signatures of viewing natural scenes 223 
 224 
The movie-specific FC topology exhibited enhanced connectivity between occipital-temporal 225 
regions and frontal-parietal regions (Supplementary Figure 3). This result can be interpreted as 226 
enhanced communication between sensory and association regions during natural viewing 227 
condition. Previous studies reported that the subjects show decreased head movements and 228 
higher arousal while natural viewing condition (Vanderwal et al., 2015). Therefore, the 229 
exceptionally high classification power can also reflect systematic artifacts. To rule of this 230 
possibility we repeated the analysis after global signal regression (GSR), separate sessions, 231 
bandpass filtered signals, and phase-locking values. We found that the results are invariant to 232 
different preprocessing approaches. Furthermore, the movie-specific FC mode was highly 233 
consistent before and after GSR, and across sessions. The correlations between movie-234 
specific components across sessions were higher than those for non-specific components. 235 
These findings confirmed previous studies showing the enhanced reliability and individual 236 
subject detection during natural viewing conditions (Kim et al., 2017; Vanderwal et al., 2017). 237 
In addition, we showed that the enhanced reliability and individual subject detection during 238 
natural viewing conditions are driven by task-specific reorganization of FC, which is distinct 239 
from the resting-state related individual variations. 240 
 241 
Before GSR, the first principal component reflected the overall synchronization in FC (as well 242 
as global signal variance). This was an expected result, since the global signal was consistently 243 
reported as explaining the large amount of variation in BOLD signals (Carbonell et al., 2011). 244 
However, our results showed that the global signal component is not related to the movie 245 
condition. After GSR the global synchronization component disappeared, whereas the movie-246 
specific component remained intact. It is important to note that the global signal component 247 
reflects the common FC topology across subjects and it was strongly correlated across 248 
sessions. The high correlations between the projections of global signal components across 249 
sessions suggest that the global signal component also explains individual variations. In other 250 
words, the variations and similarities across subjects during resting-state are mostly driven by 251 
the differences in global signal variance. However, in this study, it cannot be known to what 252 
extend the global signal-related component and individual variations reflect neural, 253 
hemodynamic and/or artefactual differences. The relationship between global signal 254 
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fluctuations and whole-brain synchronization is essential to understand individual subject 255 
variations at resting-state.  256 
 257 
Stable task-specific FC patterns in dynamic FC 258 
 259 
We also investigated how movie-specific FC topography relates to the dynamic FC. We used 260 
Hilbert transform on narrowband filtered time-series and characterized dynamic FC based on 261 
phase-locking values across time. We found that the movie-specific principal components also 262 
appear in FC and average PLVs of the narrowband filtered time-series. Then, we calculated 263 
the similarity between grand-average PLVs of resting state and movie during one session and 264 
the PLV fluctuations during the other session. We found that for movie sessions the PLV of 265 
each time point was persistently more similar to the average PLVs of the movie sessions than 266 
to those of the resting state sessions. In contrast, for resting sessions the PLV of each time 267 
point was more similar to the resting state FC than to the movie FC. Overall, these results 268 
showed that during natural viewing condition the FC is persistently reorganized into its 269 
associated mode. One limitation of this approach is the substantial observation noise of 270 
instantaneous PLVs in conjunction with limited variance explained by the PCs, which leads to 271 
very low correlations between instantaneous PLVs. The stability of task-related FC patterns is 272 
important for the assumptions behind large-scale computational modeling. Our results suggest 273 
that whole-brain FC (at the time-scale of BOLD signals) is persistently reconfigured into a 274 
distinct mode rather than an epiphenomenon reflecting activation of several transient states.  275 
 276 
Computational modeling of task-specific alterations 277 
 278 
Although variations related to the natural viewing condition can be explained in a single 279 
dimension, it is very difficult interpret a whole-brain connectivity pattern. We proposed a 280 
computational model to link the alterations in local dynamics to reorganization of whole-brain 281 
FC. We used Hopf normal model to characterize BOLD signals. The motivation behind using 282 
this model was that noise-driven and oscillatory dynamics can be modeled using a single 283 
parameter (local bifurcation parameter). When the local bifurcation parameter of a particular 284 
region is negative, the region exhibits noise-driven dynamics. For positive bifurcation parameter 285 
values, the region exhibits sustained oscillations. Therefore, higher parameters values of a 286 
region in the model indicate that the region has higher influence on its connected regions. The 287 
model revealed significant decreases in bifurcation parameters particularly in cingulate cortex 288 
(anterior and posterior cingulate) and in supramarginal gyrus. In contrast, the bifurcation 289 
parameters significantly increased in lateral prefrontal cortex, medial temporal cortex and 290 
superior parietal regions. These results showed that during movie condition, the influence of 291 
frontal, temporal and parietal association regions on the whole-brain FC is enhanced. 292 
Nevertheless, it is important to note that the model describes the BOLD signals in the 293 
associated low-frequency narrow-band. Therefore, higher values of the bifurcation parameters 294 
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can also be interpreted as the contribution of low-frequency fluctuations in the regions is 295 
enhanced since hemodynamic responses act as a low-pass filter. Furthermore, BOLD signals 296 
are known to have negative relationship with the neural activity in middle frequency ranges 297 
(Schölvinck et al., 2013). Therefore, the increased/decreased local bifurcation parameters 298 
should be interpreted only in relation to low-frequency fluctuations. 299 
 300 
Since the empirical data provided a clear separation of rest and movie conditions, we also 301 
employed PCA on the bifurcation parameters of the model. The first PC mode showed a typical 302 
pattern associated to the default mode network (DMN), in which the high values were observed 303 
in isthmus cingulate, precuneus, medial frontal and temporal cortices. The second principal 304 
component mode, characterized by higher bifurcation parameter values in temporal and frontal 305 
regions, showed movie-specificity. These results suggested that the variations in bifurcation 306 
parameters in frontal-parietal and frontal-temporal networks have exclusive contributions to the 307 
organization of whole-brain FC during movie-viewing condition. Furthermore, we found that the 308 
projections of the first and second principal components on movie sessions were negatively 309 
correlated (spearman rank r = -0.496, p-value= 0.02). Therefore, the variations across both 310 
task-specific and DMN-like activation patterns, and the antagonistic relationship between these 311 
patterns are associated to task-related organization of FC. Nevertheless, based on these 312 
results, it is not possible to draw conclusions on the causal mechanisms that drive the 313 
relationship between DMN and task-related networks. The results may indicate that several 314 
regions of DMN (particularly precuneus) having a role in mediating the switch between distinct 315 
functional states, which is consistent with previous studies showing that precuneus dynamically 316 
binds to distinct functional networks (Utevsky et al., 2014). An alternative explanation may 317 
involve the variations of arousal and vigilance levels. This explanation is consistent with a 318 
selective neuromodulatory enabling of intrinsic synaptic connections by ascending modulatory 319 
neurotransmitter systems (e.g., noradrenaline). This is particularly relevant in light of the 320 
systematic changes in the local bifurcation parameter that showed regionally-specific and 321 
condition-sensitive effects in our modelling analyses. 322 
 323 
Limitations 324 
 325 
One limitation of our modeling results is that the model relies on DWI-derived SC, which has 326 
limited performance on detecting interhemispheric connections, individual variations, and also 327 
directions of the connections. In addition, the changes in directed effective connectivity may 328 
also play role in defining the reorganization of FC during task (Gilson et al., 2017). We re-329 
analyzed the alterations in EC (Gilson et al., 2017) based on our current findings: the PCA 330 
analysis of EC exhibited a better and clearer separation between resting-state and movie 331 
sessions than FC (Supplementary Figure 4). Furthermore, the movie-specific principal 332 
component of EC revealed enhanced connectivity from frontal regions towards parietal and 333 
occipital brain regions, and from occipital and temporal regions toward parietal and frontal 334 
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regions (Supplementary Figure 3). Therefore, during natural viewing condition lower sensory 335 
regions in occipital and temporal regions project to frontal and parietal higher-order association 336 
regions, and that this pattern is completed as a recurrent loop by the frontal regions projecting 337 
towards parietal regions and parietal regions projecting towards temporal and occipital regions. 338 
These results are consistent with the alterations that we found in the local dynamics (i.e. under 339 
fixed-connectivity assumption) such that frontal and parietal regions play crucial role in re-340 
organization of FC during task. In contrast, the model based on local dynamics cannot resolve 341 
the alterations in sensory regions. Effective connectivity – as assessed using dynamic causal 342 
modelling studies of the resting state – again point to a modulation of regional excitability by 343 
different components of the default mode. For example, previous studies revealed that the 344 
influence of the SN (salience network) and DAN (dorsal attention network) on the DMN (default 345 
mode network) regions is inhibitory; whereas the DMN exerted an excitatory influence on the 346 
SN and DAN regions (Zhou et al., 2018). Therefore, we speculate that the alterations in higher-347 
order association regions are better captured by the local dynamics because these regions 348 
contribute to whole-brain organization through strong bidirectional connections across the 349 
cortex, whereas the influence of sensory regions is dominantly unidirectional. 350 
 351 
Conclusion and future directions 352 
 353 
Current experimental paradigms are optimal to study task-dependent changes in BOLD signals, 354 
but these are not optimal to study task-dependent re-organization of whole-brain FC. 355 
Naturalistic condition, such as movie watching, that is comparable to the resting-state, may 356 
have important implications on understanding the dynamic organization of whole-brain activity. 357 
Here, we proposed a novel approach to link task-dependent functional organization and 358 
dynamic functional connectivity. Nevertheless, it may not be possible to exploit the full potential 359 
of dynamic organization of the brain through natural viewing paradigms. The major limitation of 360 
this approach is that the natural viewing condition is a trivial task. Future studies may explore 361 
other natural experimental paradigms that involve more challenging conditions such as problem 362 
solving, navigation, social interactions, task engagement during present distractors. We 363 
speculate that sophisticated natural tasks that require enhanced cognitive control may reveal 364 
richer dynamical manifestation of functional reorganization. For example, certain challenging 365 
tasks may show a better picture of dynamic reorganization of the whole-brain such as 366 
consolidation of particular functional states in time (i.e. slow adaptation) and/or emergence of 367 
observable transient functional states (i.e. multistability).  368 
 369 
  370 
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 371 
Materials and Methods 372 
Study design 373 
The fMRI imaging data used in this paper have been described in details elsewhere (Betti et 374 
al., 2013; Mantini et al., 2012). Twenty-four right-handed young, healthy volunteers (15 375 
females, 20–31 years old) participated in the study. They were informed about the experimental 376 
procedures, which were approved by the Ethics Committee of the Chieti University, and signed 377 
a written informed consent. The study included a resting state and a natural vision condition. In 378 
the resting state, participants fixated a red target with a diameter of 0.3 visual degrees on a 379 
black screen. In the natural-vision condition, subjects watched (and listened) to 30 minutes of 380 
the movie “The Good, the Bad and the Ugly” in a window of 24x10.2 visual degrees. Visual 381 
stimuli were projected on a translucent screen using an LCD projector, and viewed by the 382 
participants through a mirror tilted by 45 degrees. Auditory stimuli were delivered using MR-383 
compatible headphones. 384 
 385 
Data acquisition 386 
Functional imaging was performed with a 3T MR scanner (Achieva; Philips Medical Systems, 387 
Best, The Netherlands) at the Institute for Advanced Biomedical Technologies in Chieti, Italy. 388 
The functional images were obtained using T2*-weighted echo-planar images (EPI) with BOLD 389 
contrast using SENSE imaging. EPIs comprised of 32 axial slices acquired in ascending order 390 
and covering the entire brain (32 slices, 230 x 230 in-plane matrix, TR/TE=2000/35, flip angle 391 
= 90°, voxel size=2.875×2.875×3.5 mm3). For each subject, 2 and 3 scanning runs of 10 392 
minutes duration were acquired for resting state and natural vision, respectively. Each run 393 
included 5 dummy volumes – allowing the MRI signal to reach steady state, and an additional 394 
300 functional volumes that were used for analysis. Eye position was monitored during 395 
scanning using a pupil-corneal reflection system at 120 Hz (Iscan, Burlington, MA, USA). A 396 
three-dimensional high-resolution T1-weighted image, for anatomical reference, was acquired 397 
using an MP-RAGE sequence (TR/TE=8.1/3.7, voxel size=0.938x0.938x1 mm3) at the end of 398 
the scanning session. 399 
 400 
Data preprocessing 401 
Data preprocessing was performed using SPM5 (Wellcome Department of Cognitive 402 
Neurology, London, UK) running under MATLAB (The Mathworks, Natick, MA). The 403 
preprocessing steps involved the following: (1) correction for slice-timing differences (2) 404 
correction of head-motion across functional images, (3) coregistration of the anatomical image 405 
and the mean functional image, and (4) spatial normalization of all images to a standard 406 
stereotaxic space (Montreal Neurological Institute, MNI) with a voxel size of 3×3×3 mm3. 407 
Furthermore, the BOLD time series in MNI space were subjected to spatial independent 408 
component analysis (ICA) for the identification and removal of artifacts related to blood 409 
pulsation, head movement and instrumental spikes (Smith et al., 2010). This BOLD artifact 410 
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removal procedure was performed by means of the GIFT toolbox (Medical Image Analysis Lab, 411 
University of New Mexico). No global signal regression or spatial smoothing was applied.  412 
For each recording session (subject and run), we extracted the mean BOLD time series from 413 
the 66 regions of interest (ROIs) of the brain atlas (Hagmann et al., 2008)(see Supplementary 414 
Table 1). 2 subjects were excluded due to signal dropout and 1 subject was excluded due to 415 
substantial spikes in the time-series. 416 
 417 
Anatomical Connectivity 418 
Anatomical connectivity was estimated from Diffusion Spectrum Imaging (DSI) data collected 419 
in five healthy right-handed male participants (Hagmann et al., 2008; Honey et al., 2009). The 420 
grey matter was first parcellated into 66 ROIs, using the same low-resolution atlas used for the 421 
FC analysis. For each subject, we performed white matter tractography between pairs of 422 
cortical areas to estimate a neuroanatomical connectivity matrix. The coupling weights between 423 
two brain areas were quantified using the fiber tract density, and were proportional to a 424 
normalized number of detected tracts. The structural matrix (SC) was then obtained by 425 
averaging the matrices over subjects. 426 
 427 
Principal component analysis 428 
For all subjects and sessions (i.e. 21 subjects, 2 resting state and 2 movie sessions) the 429 
functional connectivity matrices were constructed based on Pearson correlation coefficient 430 
between all pairs of ROIs. 431 
The upper triangular parts of FC (i.e. 66(66 − 1) 2⁄  connections) matrices were concatenated 432 
across subjects/sessions (21x4 session/subjects) leading to the feature matrix with dimensions 433 
2145 x 84 (number of connections x number of sessions/subjects). Then, principal component 434 
analysis was applied to the resulting feature matrix. The analyses were repeated for 1000 435 
surrogates time-series with preserved power-spectrum based on each session/subject. The 436 
dimensionality of the data was characterized by explained variance of the principal components 437 
that are larger than those of the surrogates.  438 
To quantify the consistency of principal components, we repeated the analysis using 2 separate 439 
sessions. For both sessions, the feature matrices comprised the concatenated upper triangular 440 
FC matrices of 1 resting state session and 1 movie session (i.e. 2145 x 42 matrices). The 441 
consistency across sessions was quantified as Pearson correlation coefficients of the 442 
components and the projection of components between sessions. 443 
Since during natural viewing condition the individuals are shown to have restricted movements 444 
and increase arousal (Vanderwal et al., 2015), the differences in FC can be substantially 445 
affected by underlying artifacts. For this reason, we repeated all the analyses after regressing 446 
out global signal from the time-series of each ROI.  447 
 448 
Dynamic functional connectivity 449 
Preprocessed time series were band-pass filtered in 0.04-0.07Hz range in order to reduce the 450 
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effects of low-frequency drift and high-frequency noise (Glerean et al., 2012). Then, Hilbert 451 
transform was used for the assessment of dynamic functional connectivity (Demirtaş et al., 452 
2016; Glerean et al., 2012). The Hilbert transform, S(t) = Acos(φ(t))  of the preprocessed 453 
BOLD time series broke the signal down to an analytical signal S(t) with an instantaneous phase 454 
φ(t) and amplitude A. For each time point t, the difference ∆𝜑23(𝑡) between the phases of the 455 
respective ROIs was calculated, where i and j are the indices of each ROI. The phase 456 
differences were adjusted between 0 and π such that: 457 
 458 

∆𝜑23(𝑡) =
5𝜑2(𝑡) − 𝜑3(𝑡)5, 𝑖𝑓	5𝜑2(𝑡) − 𝜑3(𝑡)5 ≤ 𝜋

2𝜋 − 5𝜑2(𝑡) − 𝜑3(𝑡)5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1 459 

 460 
Then, the phase-locking values (PLVs), PLVEF(t) were constructed using the phase differences 461 
normalized between 0 and 1, thereby representing perfect anti-synchronization and perfect 462 
synchronization respectively, such that: PLV23(t) = 1 − ∆𝜑23(𝑡)/𝜋.  463 
We computed the grand-average PLVs for each session (i.e. resting state and movie watching). 464 
Then, for each subject, we calculated the similarity (Pearson correlation coefficient) between 465 
grand-average PLVs and time-resolved PLVs. In brief, for each subject two quantities were 466 
estimated and compared as a function of time: the correlation between instantaneous PLVs 467 
and grand-average PLVs for resting state and that for movie condition. To avoid the bias caused 468 
by shared variability within each session, we calculated the grand-average PLVs of one 469 
session, and then the similarities were calculated for the other session. Therefore, the analysis 470 
was performed twice: the grand-average PLVs of session 1 projected to the PLVs of session 2 471 
and the grand-average PLVs of session 2 projected to the PLVs of session 1. To provide a 472 
better illustration for the magnitudes of correlations, we performed a same analysis averaging 473 
the time-resolved PLVs across subjects (Supplementary Figure 1).  474 
The principal component analysis was repeated for band-pass filtered time-series and average 475 
PLVs. Since the PLVs were much more sensitive to global synchronization levels, we 476 
subtracted the mean from each average PLV matrix. We also repeated the time-resolved 477 
analysis using movie-specific and non-specific principal component instead of grand-average 478 
PLVs. After identifying the principal component whose projections distinguish the resting 479 
condition from movie condition, we re-projected each component on the instantaneous PLVs 480 
using Pearson correlation coefficient (Supplementary Figure 1). We also performed PCA over 481 
the concatenated time courses (i.e. 2 resting state and 2 movie sessions) of individual subject 482 
PLVs. The trajectories of the first 2 principal components were plotted to illustrate the switch 483 
between resting and movie watching conditions (Supplementary Figure 2).  484 
 485 
Computational modeling 486 
We modeled the whole-brain rs-fMRI BOLD signals using 66 nodes. Each node was coupled 487 
with each other via DWI-derived structural connectivity (SC) matrix. We described the local 488 
dynamics of each individual node using normal form of a supercritical Hopf bifurcation (Deco 489 
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et al., 2017). The advantage of this model is that it allows transitions between asynchronous 490 
noise activity and oscillations. Where ω is the intrinsic frequency of each node, a is the local 491 
bifurcation parameter, η is additive Gaussian noise with standard deviation β, the temporal 492 
evolution of the activity, z, in node j is given in complex domain as: 493 

𝑑𝑧3
𝑑𝑡 =

J𝑎3 + 𝑖𝜔3 − 5𝑧3N5O + 𝛽𝜂3(𝑡) 2 494 

 495 
and, 496 

𝑧3 = 𝜌3𝑒2ST = 𝑥3 + 𝑖𝑦3 3 497 
 498 
This system shows a supercritical bifurcation at aj = 0. Being specific, if aj is smaller than 0, the 499 
local dynamics has a stable fixed point at zj = 0, and for aj values larger than 0, there exists a 500 
stable limit cycle oscillation with a frequency f = ω/2π. Finally, the whole-brain dynamics is 501 
described by the following coupled equations: 502 

𝑑𝑥3
𝑑𝑡 =

J𝑎3 − 𝑥3N − 𝑦3NO𝑥3 − 𝜔3𝑦3 + 𝑔Y𝐶23[𝑥2 − 𝑥3\
2

+ 𝛽𝜂]3(𝑡) 4 503 

 504 
𝑑𝑦3
𝑑𝑡 =

J𝑎3 − 𝑥3N − 𝑦3NO𝑦3 + 𝜔3𝑥3 + 𝑔Y𝐶23[𝑦2 − 𝑦3\
2

+ 𝛽𝜂_3(𝑡) 5 505 

 506 
Where Cij is the Structural Connectivity (SC) between nodes i and j, g is the global coupling 507 
factor, and the standard deviation of Gaussian noise, β = 0.02. The natural frequency (f) of 508 
each region was taken as the peak frequency in the given narrowband of the corresponding 509 
region in the empirical time-series.  510 
Following a similar approach previously employed on biophysically-based computational model 511 
(Deco et al., 2014), we analytically estimated the model FC using linearization of the system 512 
around a stable fix point. Where 𝛿𝐮 = {𝛿𝑥d …𝛿𝑥ff, 𝛿𝑦d… 𝛿𝑦ff} represents the Taylor expansion 513 
of the system, A is the Jacobian matrix, and 𝜀(𝑡) is the noise term, the fluctuations around the 514 
fix point can be described as: 515 

𝑑𝛿𝐮
𝑑𝑡 = 𝐀𝛿𝐮+ 𝜀(𝑡) 6 516 

Where the deterministic parts of right-hand side of equations 4 and 5 are described by −𝐹3 and 517 
−𝐺3, respectively, the Jacobian matrix of the system evaluated at the fixed point 𝑥lm 	, 𝑦lm 	, 𝑗	 ∈518 
{1…66} can be constructed as: 519 
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𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐹d
𝜕𝑥d

⋯
𝜕𝐹d
𝜕𝑥u

⋮ ⋱ ⋮
𝜕𝐹u
𝜕𝑥d

⋯
𝜕𝐹u
𝜕𝑥u

𝜕𝐹d
𝜕𝑦d

⋯
𝜕𝐹d
𝜕𝑦u

⋮ ⋱ ⋮
𝜕𝐹u
𝜕𝑦d

⋯
𝜕𝐹u
𝜕𝑦u

𝜕𝐺3
𝜕𝑥d

⋯
𝜕𝐺d
𝜕𝑥u

⋮ ⋱ ⋮
𝜕𝐺u
𝜕𝑥d

⋯
𝜕𝐺u
𝜕𝑥u

𝜕𝐺d
𝜕𝑦d

⋯
𝜕𝐺u
𝜕𝑦d

⋮ ⋱ ⋮
𝜕𝐺d
𝜕𝑦u

⋯
𝜕𝐺u
𝜕𝑦u⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 520 

Where 𝑖, 𝑗	 ∈ {1… 66}, each element of matrix A can be calculated as: 521 
𝜕𝐹3
𝜕𝑥3

=
𝜕𝐺3
𝜕𝑦3

= 𝑎 − 𝑔Y 𝐶3{
{

7 522 

 523 
𝜕𝐹3
𝜕𝑥}

=
𝜕𝐺3
𝜕𝑦}

= 𝑔𝐶3} 8 524 

 525 
𝜕𝐹3
𝜕𝑦3

= −𝜔� 9 526 

 527 
𝜕𝐺3
𝜕𝑦3

= 𝜔� 10 528 

 529 
𝜕𝐹3
𝜕𝑥}

=
𝜕𝐺3
𝜕𝑦}

= 0 11 530 

 531 
Where Q is the noise covariance matrix, the covariance matrix of the system P can be estimated 532 
by solving Lyapunov equation: 533 

𝐀𝐏+ 𝐏𝐀𝐓 = −𝐐 12 534 
 535 
 536 
Finally, the model correlation matric (FC) can be extracted from the covariance matrix as: 537 

𝑚𝐹𝐶23 =
𝑃23

�𝑃22𝑃33
, 𝑖, 𝑗	 ∈ {1… 66} 13 538 

 539 
We estimated the model optimal parameters a and g by maximizing the similarity between 540 
model FC (equation 13) and empirical FC using gradient descent optimization. To avoid the 541 
solutions reflecting a local minimum, for each subject/session we estimated the best solution 542 
after repeating the optimization with 100 random initial conditions. The similarity between model 543 
FC and empirical FC was quantified as Pearson correlation coefficient. For each subject, the 544 
empirical functional connectivity was calculated as the average FC across the corresponding 545 
conditions (i.e. resting state or movie sessions) of the corresponding subject.  546 
The group comparisons for resting state versus movie sessions (optimal bifurcation parameters 547 
and global coupling parameter) were done using permutation t-test (5000 permutations). For 548 
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optimal bifurcation parameters, the p-values were corrected using FDR approach with 549 
Benjamini&Hochberg algorithm if necessary (Hochberg and Benjamini, 1990). 550 
 551 
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Figures and captions 658 
 659 

 660 
Figure 1. Conceptual overview. A Mean FC across subjects during resting state (top) and 661 
movie (bottom) sessions. For convenience the matrices were ordered by pre-defined networks 662 
involving visual, auditory, motor, integration and frontal regions. B-C Overview of principal 663 
component analysis (PCA). The FCs of the subjects at each session were concatenated into a 664 
single feature matrix. Then PCs of the feature matrix was calculated (B). Note that the 665 
(vectorized) FC features pertain to correlations over the number of regions squared. However, 666 
the principal components of these FC features can be reorganized into a connectivity matrix 667 
that has the same size as the number of connections – as shown on the right (of panel B).The 668 
projections of each subject/session of the first two principal components were plotted against 669 
each other (C). The second principal component projections revealed a clear distinction 670 
between rest and movie sessions (top) leading to representation of FC variations in two 671 
dimensions (bottom). 672 
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 674 
Figure 2. Principal component analysis of FC based on 2 resting state and 2 movie sessions 675 
concatenated across 21 subjects. A-D. Results without global signal regression (GSR). A 676 
Explained variance by each PC (black) and random surrogates (gray) without GSR. Compared 677 
to 1000 random surrogates the dimensionality of FCs without GSR is 13. The first PC (B) 678 
explains 25.8% of the variation, whereas second PC (C) explains 7.2% of the variation. The 679 
projections of first two PCs reveals that the second component is specific to movie sessions 680 
(D). The first PC of the FCs without GSR reflects global signal standard deviation (J). E-H. 681 
Results with global signal regression (GSR). E Explained variance by each PC (black) and 682 
random surrogates (gray) with GSR. Compared to random surrogates the dimensionality of 683 
FCs with GSR is 22. The first PC, which is specific to movie sessions explains 9.69% of the 684 
variation (F). The movie-specific components with and without GSR is highly consistent. *** p-685 
value < 0.0001. 686 
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 688 
Figure 3. The consistency of principal components across sessions. The second PC is specific 689 
to movie session in both session 1 (A) and session 2 (B) without GSR, whereas the first PC is 690 
movie-specific in session 1 (C) and session 2 (D) with GSR. The consistency of the movie-691 
specific component (F without GSR; G with GSR) is substantially higher than that of the non-692 
specific components (E without GSR; H with GSR). Similarly, the consistency of the projections 693 
for movie-specific component (J without GSR; K with GSR) is substantially higher than that of 694 
the non-specific components (I without GSR; L with GSR). *** p-value < 0.0001. 695 
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 697 
Figure 4. Stability of movie-specific components in dynamic FC. A The schematic describing 698 
the derivation of phase-locking value (PLV) dynamics. B Kernel density estimates of the 699 
correlations across PLVs. C Components projections of session 1. D Correlations between 700 
average PLVs at rest (black), during movie condition (red) and PLVs of resting state session 2. 701 
E Correlations between average PLVs at rest (black), during movie condition (red) and PLVs 702 
of movie session 2. F-H The same procedure as C-E, where the average PLVs were calculated 703 
for session 2 and projected on session 1 PLVs. The similarity between average resting-state 704 
PLVs and instantaneous PLVs of resting state sessions are significantly higher than those of 705 
movie sessions (Wilcoxon signed-rank test, p-value < 0.0001) (D,G). Conversely, The similarity 706 
between average movie PLVs and instantaneous PLVs of movie sessions are significantly 707 
higher than those of resting state sessions (Wilcoxon signed-rank test, p-value < 0.0001) (E,H). 708 
Shaded regions indicate standard error of mean. *** indicates p-values < 0.0001.  709 
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 711 
Figure 5. Large-scale computational modeling. A The schematic of the modeling framework. 712 
The BOLD activity of each region was described using Hopf normal model, where the local 713 
bifurcation parameters (a) mediate the local dynamics. Negative values of bifurcation 714 
parameter, a, indicates noise-driven activity, whereas positive values indicate oscillatory activity 715 
with increasing amplitude. Brain regions are coupled each other through DWI-derived SC 716 
matrix. The optimal model parameters were estimated using gradient descent optimization, 717 
which maximizes the similarity between empirical and model FC. B Mean optimal bifurcation 718 
parameter topography at resting state. C Mean optimal bifurcation parameter topography 719 
during movie condition. D The distributions of the bifurcation parameters during movie condition 720 
and resting state.  721 
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 723 
Figure 6. Modeling results for individual subject fitting. A The schematic of individual subject 724 
fitting. B The group differences for global coupling parameters did not show significant 725 
difference. C-D The group differences between optimal bifurcation parameters at rest (black) 726 
and during movie condition (red) (permutation t-test, 5000 permutations). C The topography of 727 
the group differences (T-statistics; hot colors indicate larger values during movie condition). D 728 
Boxplots of the regions showing significantly difference after FDR correction. E-G Principal 729 
component analysis applied to optimal bifurcation parameters in the model. E The topography 730 
of the first principal component. F The topography of the second principal component. PC-1 731 
has higher values in precueus, posterior cingulate, medial temporal and frontal regions, 732 
exhibiting typical pattern associated to default mode network. PC-2 exhibit increased values in 733 
frontal and temporal regions, and decreased values particularly in supramarginal gyri and in 734 
medial brain regions. G The projections of the principal components on rest and movie 735 
sessions. *** indicate p-value < 0.0001. 736 
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Supplementary Figures 738 

 739 
Supplementary Figure 1. A-D The similarity between mean PLVs and instantaneous PLVs 740 
of each condition. The mean-PLVs were computed for resting-state and movie sessions, and 741 
then the correlation coefficient between condition-specific mean-PLVs and instantaneous 742 
PLVs (averaged across subjects) were calculated. Since higher correlations are expected 743 
between average and instantaneous PLVs for the same sessions, the analyses were done 744 
cross-sessions: We calculated the correlation between mean-PLVs of rest/movie sessions 1 745 
and instantaneous PLVs of rest/movie sessions 2, and vice versa. E-F The similarity between 746 
movie-specific and non-specific principal components and instantaneous PLVs. 747 
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 749 
Supplementary Figure 2. The trajectories extracted from the PCA on dynamic functional 750 
connectivity of each subject. Gray colors indicate the time course of the components at rest, 751 
red colors indicate time course of the components while watching movie.  752 
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 754 
Supplementary Figure 3. The visualization of the highest 1% of the connections of PC-1 (A) 755 
and PC-2 (B) of FC, and PC-1 of EC (C-D). A The non-specific component of FC exhibits 756 
larger connectivity strengths across posterior cingulate and precuneus, medial temporal and 757 
frontal regions as well as occipital cortex, which suggests default-mode network connectivity. 758 
B The movie-specific component of FC shows high connectivity between occipital and 759 
parietal regions, and between temporal and frontal regions. For effective connectivity (EC), 760 
movie-specific component reveals enhanced connectivity from frontal regions towards parietal 761 
and occipital brain regions (C), and enhanced connectivity from occipital and temporal 762 
regions toward parietal and frontal regions (D).  763 
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 765 
Supplementary Figure 4. The PCA on functional connectivity (left) and effective connectivity 766 
(right). The separation between resting-state and movie conditions are clearer in EC. 767 
Furthermore, there is a strong correlation between the projections of movie-specific and non-768 
specific components only for movie sessions for effective connectivity. 769 
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