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Abstract 

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a massively multiplexed, phage-display based 
methodology for analyzing antibody binding specificities, with several advantages over existing 
techniques, including the uniformity and completeness of proteomic libraries, as well as high sample 
throughput and low cost. Data generated by the PhIP-Seq assay are unique in many ways. The only 
published analytical approach for these data suffers from important limitations. Here, we propose a new 
statistical framework with several improvements. Using a set of replicate mock immunoprecipitations 
(negative controls lacking antibody input) to generate background binding distributions, we establish a 
statistical model to quantify antibody-dependent changes in phage clone abundance. Our approach 
incorporates robust regression of experimental samples against the mock IPs as a means to calculate the 
expected phage clone abundance, and provides a generalized model for calculating each clone's 
expected abundance-associated standard deviation. In terms of bias removal and detection sensitivity, 
we demonstrate that this z-score algorithm outperforms the previous approach. Further, in a large 
cohort of autoantibody-defined Sjögren's Syndrome (SS) patient sera, PhIP-Seq robustly identified 
Ro52, Ro60, and SSB/La as known autoantigens associated with SS. In an effort to identify novel SS-
specific binding specificities, SS z-scores were compared with z-scores obtained by screening Ro-
positive sera from patients with systemic lupus erythematosus (SLE). This analysis did not yield any 
commonly targeted SS-specific autoantigens, suggesting that if they exist at all, their epitopes are likely 
to be discontinuous or post-translationally modified. In summary, we have developed an improved 
algorithm for PhIP-Seq data analysis, which was validated using a large set of sera with clinically 
characterized autoantibodies. This z-score approach will substantially improve the ability of PhIP-Seq 
to detect and interpret antibody binding specificities. The associated Python code is freely available for 
download here: https://github.com/LarmanLab/PhIP-Seq-Analyzer. 
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Introduction 

The binding specificities of circulating immunoglobulins harbor a wealth of information related to the 
exposure history and health status of vertebrate organisms. Unbiased techniques to extract this 
information provide new opportunities for linking environmental exposures to disease, and discovering 
antigenic determinants of complex immune-related pathologies, including autoimmunity, allergic 
response, and malignancy. Several complementary high-throughput platforms have been developed to 
address the challenges of antibody profiling.(1-4) We have previously described the development of 
Phage ImmunoPrecipitation Sequencing (PhIP-Seq), which is based on T7 bacteriophage display of 
synthetic oligonucleotide encoded peptidome libraries. Antibody-peptide binding is quantified via high-
throughput DNA sequencing of the immunoprecipitated phage libraries (5-9).  

The PhIP-Seq method provides several key advantages over alternative approaches. First, synthetic 
DNA libraries can be made to cover complete or partial proteomes, including meta-genomically 
defined proteins and protein variants that do not exist in nature. This database-driven design feature 
was utilized for the construction and screening of the phage displayed human virome ('VirScan'), which 
was accompanied by simultaneous high resolution alanine scanning of several dominant epitopes.(9) 
Further, the streamlined assay protocol takes place in solution phase (versus array-based solid phase 
techniques), requires no specialized equipment or instrumentation, and can be easily automated on 
standard liquid handling robots.(6) Perhaps the most important advantages of PhIP-Seq, however, 
derive from the use of high-throughput DNA sequencing technology as the assay readout. Sequencing 
of phage libraries is used to quantify clonal abundance with linear behavior over a large dynamic range. 
Critical to scalability, sample multiplexing via DNA barcoding enables screening at a per sample cost 
that is roughly one hundred fold less expensive than comparable array-based techniques. 

Sequence reads, generated by deep sequencing of phage displayed peptidome libraries, are first 
demultiplexed and then aligned to the reference library sequences. For simplicity, we use exact 
sequence matching, which is computationally efficient and captures the vast majority of reads that arise 
from unmutated library members. Post-alignment read count data is then subjected to enrichment 
analysis, in order to detect peptide-antibody binding interactions (or peptide-bait interactions more 
generally). An ideal enrichment analysis approach should (i) account for inherent bias in the starting 
phage library as well as any bias introduced throughout the assay, (ii) appropriately incorporate the 
technical variation inherent to sequencing-based measurements, and (iii) consider characteristics of the 
data which are specific to the PhIP-Seq assay. 

Our previous PhIP-Seq analytical strategy implemented a Generalized Poisson (GP) model to estimate 
the p-values associated with peptide enrichments. (5,6,9,10) Briefly, the clonal abundance distribution 
of the starting library was determined via sequencing. For intervals of abundance in the starting library, 
the observed abundance distribution of the corresponding peptides in an enriched library was fit to a 
GP distribution. Model parameters were estimated for each interval of the starting library. These 
parameters were regressed against the intervals of abundance, so that regressed model parameters could 
be used to formulate an expected GP distribution for all peptides, which varied smoothly over the entire 
range of starting abundance. This approach suffers from two main limitations. First, it does not 
consider the bias in the enriched library due to antibody-independent binding to the capture matrix. In 
the present work we demonstrate that this bias is significant. The GP distributions used to fit these 
biased populations are therefore overdispersed, compared to a model that uses matrix-alone enriched 
libraries to define the 'expected' distribution. The GP approach therefore produces both false positives 
(peptides that bind the capture matrix independent of antibody) and false negatives (peptides that are 
truly enriched but do not meet significance due to overdispersion of the model). The second limitation 
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relates to quantification of measurement uncertainty. In the GP model, a given peptide’s enrichment 
significance is a function of the variance observed among all peptides of similar starting abundance. 
Preferably, however, enrichment significance should instead be a function of each peptide's 
measurement variability, as determined by repeated measurement. Here we propose to address these 
limitations by developing a z-score enrichment algorithm that is based upon analysis of replicate 
negative controls (mock IPs).  

In a typical PhIP-Seq experiment, we perform immunoprecipitations containing patient antibodies, as 
well as multiple negative control immunoprecipitations that lack antibody (i.e. mock IPs). Any capture 
matrix, including protein A/G coated magnetic beads, will exhibit some degree of background binding 
to the phage library, while the binding of specific peptide-displaying clones may be further enhanced 
(resulting in false positives). Ideally then, antibody-bound libraries captured on protein A/G beads 
should therefore be compared to mock IPs (i.e. libraries captured on protein A/G beads alone). In 
addition, measurement uncertainty can theoretically be quantified by analysis of these same negative 
controls if they are performed in replicate. By comparing antibody-enriched libraries to replicate 
negative controls, one can thus quantify increased abundance versus expected abundance, as well as the 
expected uncertainty in the measurement of each clone. With these parameters, enrichments can thus be 
reported as z-scores, a common and intuitive measure familiar to biomedical researchers ('how many 
standard deviations away from the background value'). Rigorously, z-scores only apply to normally 
distributed continuous variables (rather than sequencing-generated discrete count data). In our view, 
however, the facile interpretation of z-scores balances this caveat. Compared to the GP-based method, 
the z-score approach should therefore increase the sensitivity and specificity of enrichment detection, 
as well as the interpretability of PhIP-Seq data.  

In order to assess the performance of the z-score algorithm, we screened a collection of Sjögren’s 
Syndrome (SS) patients’ sera against a 90 amino acid (90-aa) peptide library spanning the human 
proteome.(10) SS is a systemic autoimmune disease, characterized by inflammation of the lacrimal and 
salivary glands with resultant impairment of tear and saliva production, and dryness of ocular and oral 
mucosal membranes. It may occur alone or in association with a second systemic rheumatic disease, 
such as systemic lupus erythematosus (SLE), rheumatoid arthritis, or systemic sclerosis. Antibodies to 
the Ro/SSA ribonucleoprotein complex (with specificity for the Ro52/TRIM21 and/or Ro60/TROVE2 
antigens) are present in 60 - 80 % of SS patients, but are not specific for the disease, being also found 
in SLE and other rheumatic diseases, although at lower frequency. Antibodies to SSB/La (hereafter 
referred to as SSB) are also characteristic of the disease, but are present at lower prevalence and are 
almost always present in association with anti-Ro/SSA antibodies.(11) The presence of anti-Ro/SSA 
antibodies is a major criterion in current classification schema for SS, which are designed to ensure 
uniformity of disease definition for clinical trials or other research studies.(12) In the absence of anti-
Ro/SSA and anti-SSB antibodies, the diagnosis of SS can only be established with a labial gland biopsy 
showing a characteristic salivary gland histopathology (i.e. focal lymphocytic sialadenitis). We 
therefore sought to detect autoantibodies more specific to SS, particularly for individuals lacking 
Ro/SSB autoantibodies. 

Methods 

Patient cohorts and autoantibody testing   

The Johns Hopkins University Institutional Review Boards approved the collection of clinical data, 
serum and other biospecimens from patients for these studies. All patients were >18 years old and gave 
informed consent.  
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Sjögren’s syndrome. Sera were collected from 193 patients with Sjögren’s syndrome seen in the Johns 
Hopkins Jerome L. Greene Sjögren’s Syndrome Center between October 2008 and September 2015. 
All subjects met classification criteria for SS, 190 by the 2002 American-European consensus group 
criteria and 3 by the 2012 American College of Rheumatology criteria.(13,14) The predominant clinical 
phenotype in all patients was that of SS; however, some had overlap features with other systemic 
rheumatic diseases, including 10 with a non-erosive inflammatory arthritis and anti-CCP antibodies and 
4 with limited systemic sclerosis and anti-centromere antibodies.  
Systemic lupus erythematosus. The Hopkins Lupus Cohort is a prospective cohort in which patients 
with SLE are followed at least quarterly. Patient inclusion in the cohort is based on the clinical 
diagnosis of SLE by a member of the Rheumatology Division; 94% of the patients satisfied at least 
four of the 1982 American College of Rheumatology revised criteria for the classification of 
SLE.(15,16) For each patient, basic demographic characteristics, presenting and cumulative clinical 
manifestations, and immunologic markers have been recorded since cohort entry.  
Autoantibody testing. Serum from each of the 193 patients was tested in the Johns Hopkins Rheumatic 
Disease Research Core Center laboratory for the presence of anti-Ro52, anti-Ro60, and anti-La 
antibodies. Antibodies against Ro52 and SSB/La were assayed using commercially available ELISA 
kits, per the manufacturer’s protocol (QUANTA Lite, Inova Diagnostics). Values below 20U were 
called "negative", values between 20U and 79U were called "positive", and values greater than 80U 
were called "positive(+)". Ro60 antibodies were determined by immunoprecipitation of 35S-
methionine-labeled Ro60 generated by in vitro transcription and translation, as previously 
described.(17) Each of the antibody assays was performed on the same patient serum sample as used 
for the PhIP-seq assay. Two out of the 193 patients were missing anti-Ro52, anti-Ro60 or SSB antibody 
clinical data. 
 
PhIP-Seq screening  

PhIP-Seq screening was performed as described previously.(5,6,18) Briefly, we employed a mid-copy 
T7 bacteriophage display library spanning the human proteome, which consists of 259,345 90-aa 
peptide tiles that overlap adjacent tiles by 45-aa. After expanding the library to high titer using 
BLT5403 E. coli (Novagen), it was aliquoted and stored at -80 °C in 10% DMSO. Prior to 
immunoprecipitation, the IgG concentration of each serum sample was determined using an in house 
ELISA assay (capture and detection antibodies from Southern Biotech, catalog numbers 2040-01 and 
2042-05, respectively). Antibody binding reactions occurred in 1 ml mixture containing 2.5 × 1010 
particle forming unit of the human peptidome library (diluted in PBS) and 2 μg of IgG (typically ~0.2 
μl of serum). After rotating the antibody binding reaction overnight at 4 °C, 20 μl of protein A coated 
magnetic beads and 20 μl of protein G coated beads (Invitrogen catalog numbers 10002D and 10004D) 
were added to each reaction and rotated for another 4 hours at 4 °C. A Bravo (Agilent) liquid handling 
robot performed three bead washes, and then resuspended the beads in 20 μl of a PCR master mix 
containing Herculase II Polymerase (Agilent catalog number 600679). After 20 cycles of PCR, 2 μl of 
this reaction was added to a second 20 cycle PCR reaction, for the addition sample specific barcodes 
and the P5/P7 Illumina sequencing adapters. Sequencing was performed on an Illumina HiSeq 2500 in 
rapid mode (50 cycles, single end reads). 

Z-score algorithm   

After sample demultiplexing, we obtained about 0.7 - 2 million reads per sample, which were then 
aligned to the reference library sequences using the bowtie aligner.(19) For each sample j, the resulting 
read count of each peptide i (RCij) was normalized by total read counts for the sample (Tj), then 
multiplied by one million. Read counts per million (RPMj) given a peptide at a sample is thus defined 
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Calculation of pep-z scores of enrichment in an antibody-containing ('experimental') IP was performed 
as follows. 261 mock IPs across multiple PhIP-Seq experimental batches served as our negative control 
set. A cubic polynomial regression of the logarithm (base 10) of the standard deviations (D0) versus the 
logarithm (base 10) of the median RPMij’s (X0) was fitted (Figure 2): 

�� � ��  ����  ����
�  ����

�  � � �����|��  � 

The ordinary least square (OLS) coefficients β0, β1, β2, and β3 were estimated using the Python module 
statsmodels. This model was henceforth used to calculate the expected standard deviation for each 
peptide, given its RPMj. 

For a single PhIP-Seq experiment, a set of (typically eight) mock IPs served as batch-specific negative 
controls. For each sample j, we implemented a robust linear regression of the RPMj's (Yi) versus the 
mean of the mock IPs' RPMj's (Xi) (using the RLM function of Python model statsmodels, where the 
Huber loss function was used for M estimation).  

�� � ���  �����  �� � �����|���  �� 

The expected values of Yj, determined by Ej(Yj|Xj, γj0, γj1), were used as sample-specific background. 
The corresponding deviations vector (Dj) given Ej was determined by the function E0(D0|Ej, β0, β1, β2, 
β3). Therefore, the peptides’ z-scores vector for sample j is: 

pep-zj �
��	
����|��


����|
��������
 

Under the null hypothesis of a two-sided normal distribution, all positive pep-z scores could be 
converted into p-values where appropriate. At the protein level, for k peptides associated with a given 
protein, promax-z scores are calculated from the set of pep-z scores as follows: 

promax-z = MAX (pep-z1, pep-z2, pep-z3 … pep-zk) 

Bioinformatics Workflow  

PhIP-Seq data analysis by the PhIP-Seq Analyzer takes place in two stages. First, the 
bioTreatFASTQ.py script is run. This script demultiplexes fastq sequencing files, and build a sample 
information file, and sets parameters for running the pipeline. Second, the main script bioPHIPseq.py is 
run. This pipeline will launch the sequencing alignments, reads counting, data normalization and z-
score statistics, sequencing quality control, polynomial regression, enrichment analysis, etc. Sequence 
alignment utilizes the Bowtie aligner (version1) with default parameters -a --best --strata -l 40 -v 0 --
norc --nomaqround --sam-nohead. Only unique aligned reads were counted per peptide per sample, and 
a counting table with peptides in rows and samples in columns is constructed. Afterwards, tables are 
constructed, including RPMs, pep-z and promax-z scores tables with proteins defining the rows instead 
of peptides.  

Availability and requirements of the pipeline 
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The associated Python code is freely available for download at https://github.com/LarmanLab/PhIP-
Seq-Analyzer. The software user manual including its installation and the required running 
environments is also incorporated in the package. We developed PhIP-Seq Analyzer using Python 
(version 3.4.0) programming language on a Linux operating system. The development and testing 
environment was LinuxMint 17.2 (X_86 64 bits) on a computer equipped with one Intel Xeon E5-1603 
2.80GHz and 32 GB memory. The pipeline was also tested on the Maryland Advanced Research 
Computing Center (MARCC) computing cluster, running CentOS release 6.7.  

Results 

Accounting for library bias due to capture matrix binding 

In previous reports, we assumed a uniform background binding of the phage library to the capture 
matrix (i.e. perfect correlation with the input library).(5,9) However, capture matrices may introduce 
substantial library bias, which we quantified with a series of matrix only (no antibody input) PhIP-Seq 
mock immunoprecipitations ("mock IPs") using the human peptidome (10) and a mix of protein A/G 
coated magnetic beads (Figure 1A). At a Benjamini-Hochberg (BH) adjusted p-value ≤ 0.05, 313 
peptides were differentially abundant after immunoprecipitation, compared with the unenriched input 
library (n = 10; Mann-Whitney-Wilcoxon test). Furthermore, the background binding of the library to 
the capture matrix was highly reproducible, as shown in Figure 1B. These data suggest that sample IPs 
are more appropriately compared to mock IPs, versus comparison to the unenriched starting library. 

Though mock IPs better accounted for binding artifacts, they may fail to adequately sample the library 
due to bottlenecking of phage particles’ binding to the capture the matrix. In a mock IP, each library 
member's representation will depend on the total complexity of the library, population skewness, and 
the strength of the binding to the capture matrix. To address loss of representation, the data from 
multiple replicate mock IPs can be aggregated. In this study, protein A/G coated magnetic beads were 
used for serum IgG capture experiments; we observed sampling saturation on this matrix with roughly 
eight mock IPs (Figure 1C). For 96 well plates of protein A/G IPs, we therefore included eight mock 
IPs per plate. We suggest performing this type of saturation analysis for each new library and capture 
matrix employed. An important benefit of performing replicate negative control IPs is that technical 
variation can also be measured and incorporated into peptide enrichment analyses, as discussed below.  

Development of z-score enrichment metrics for PhIP-Seq data 

For biological measurements in which an expected 'background' value and standard deviation of 
measurement can be determined, the dimensionless 'z-score' (also referred to as 'z-value', 'standard 
score', or 'normal score') is commonly used to indicate the magnitude of a relative difference. Z-scores 
traditionally assume an underlying Gaussian distribution, which does not strictly apply to discrete 
PhIP-Seq read count data. We have nonetheless found this metric to be a useful and familiar concept 
for biomedical researchers wishing to interpret PhIP-Seq enrichment data. Here, we show how z-scores 
can be readily calculated by analysis of mock IPs.  

For both mock IPs and experimental IPs, each peptide’s raw read count is normalized by the total read 
counts of the sample, and then multiplied by one million, to get RPM values. Expected sample-specific 
experimental RPMs in an antibody-containing PhIP-Seq immunoprecipitation are determined by linear 
regression of experimental RPMs versus the average RPMs observed on the mock IP. This approach is 
important because strong peptide enrichments 'consume' reads that would otherwise be available to the 
remaining, unenriched peptides. Without correcting for this 'consumption bias', the unenriched peptides 
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would artifactually appear to be diminished compared to the mock IPs, and the magnitude of true 
enrichments would similarly be underestimated.(20,21)  

We next sought to calculate the expected standard deviation of each peptide, given its expected RPM. 
To this end, we fitted a cubic polynomial to the logarithm of the standard deviations of the mock IPs' 
RPMs plotted against the mock IPs' median RPMs (Figure 2A). Use of median RPMs instead of mean 
RPMs for calculation of each peptide’s expected abundance in the mock IPs provides protection against 
accidental contamination of mock IPs' with experimental IPs, spurious clone enrichments due to poor 
library preparations, and overly bottlenecked or undersequenced libraries.  

Each peptide's experimental 'pep-z score' is then equal to the difference between the experimental RPM 
and the expected RPM, divided by the expected standard deviation, as showed in Figure 2B. 
Experimental samples are regressed against the mean or median of the within-batch mock IPs (e.g. 
from same 96-well plate). For peptides with zero expected read counts, their expected standard 
deviations are set equal to the minimum value of the regression model. The resulting pep-z scores can 
then be used to rank peptides, or to identify which peptides are enriched above a threshold (as in 
Figure 2B at a threshold of 10, colored red). 

One important feature of any statistical model is the uniformity of the p-value distribution over the 
zero-to-one interval. Figure 2C shows the uniformity of p-value transformed z-scores for a set of 15 
negative controls, and compares this to the p-value distribution obtained from the same data but 
analyzed instead using our previously published GP-based p-value estimator.(5,6) This analysis 
revealed that a more uniform distribution of p-values, especially for RPMs greater than 20, is achieved 
using the z-score based analysis, consistent with a more accurate null model of peptide binding. 
Importantly, the z-score approach tended to provide better protection against type I error, compared to 
the GP approach.  

Next, we determined how false discovery rate (FDR) varied as a function of pep-z score threshold. For 
this analysis, we plotted the FDR versus z-score thresholds for 177 experimental IPs, assessed by 
comparison with the mock IPs from the same plate (Figure 3A). At an FDR of 0.05, the pep-z score 
threshold varied between 5 and 15, with a median value of ~10. In the current study, we therefore 
considered a pep-z score of 10 to be reliable. If enrichment scores are to be considered quantitative, the 
larger pep-z scores should be systematically associated with increased reproducibility. We assessed this 
property of the pep-z scores by determining the correlations of three sets of technical duplicate 
experimental IPs. Pep-z scores of peptides enriched in either duplicate exhibited predominantly tight 
correlations over at least two logs (Figure 3B). Importantly, the number of significant hits above the 
pep-z score threshold was also relatively consistent between duplicates (Figure 3C).  

Use of z-scores to characterize autoantibodies in SS patients 

We next assessed the performance of PhIP-Seq in a comprehensive analysis of 193 SS patients' 
autoantibodies using the 90-aa human peptidome library.(10) Each serum sample was clinically tested 
for the presence of the three most widely measured autoantibodies: anti-Ro52, anti-Ro60 and anti-SSB. 
The results of these routine clinical assays were considered to be ground truth in this study. In order to 
directly compare peptide z-scores with the corresponding clinical full-length protein based assays, we 
extracted the maximum pep-z from the set of peptides designed to represent each of these proteins 
('promax-z score'). Figure 4 compares the results of the clinical assays with the corresponding promax-
z scores. At a promax-z score threshold of 10, PhIP-Seq status was roughly consistent with their 
clinical serostatus; PhIP-Seq sensitivity was the highest for sera strongly anti-Ro52 positive. 
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Comparing Ro52 versus Ro60 promax-z scores revealed a pattern of exclusivity. Whereas anti-Ro52 
antibodies were frequently detected in the absence of Ro60 antibodies (~27%, upper left quadrant of 
Figure 5), the converse was almost never the case (~1%, lower right quadrant of Figure 5). This 
pattern of fine specificities has been previously noted with other assay systems.(22-26) In contrast, 
however, anti-Ro60 antibodies were present in 12% of Ro52 negative patients by clinical assay. 

At the epitope level, PhIP-Seq revealed the most frequently targeted peptides from these dominant SS 
antigens; we identified at least three non-overlapping common epitopes within Ro52, at least one in 
Ro60, and at least two in SSB. To visualize these data, we clustered the patients based on their patterns 
of peptide enrichments for each of the three autoantigens. Interestingly, several samples classified as 
Ro60 negative by the clinical assay, clustered tightly with the true positives based on their PhIP-Seq 
peptide enrichment pattern (Figure 6). This result raises the possibility that the peptidome library 
presents cryptic epitopes not accessible to patient antibodies tested against the native protein. 
Comparison of protein-level and peptide-level analyses may therefore provide complementary disease-
relevant insight, such as patterns of epitope spreading or antigen hierarchy, for example. 

We next performed receiver operator characteristic (ROC) analyses on the SS data set, again assuming 
the clinical assays to be ground truth. PhIP-Seq achieved an AUC of 93.2%, 71.5% and 73.4% for 
Ro52, Ro60, and SSB using the z-score method, compared with an AUC 92.1%, 71.7%, and 69.0%, 
respectively, using the GP method (Figure 7). The z-score method therefore slightly improves 
discrimination between cases and controls using these three autoantibody biomarkers. 

Finally, we employed the z-score method to search for novel SS-specific autoantigens. We used Fisher's 
exact test to calculate the significance of differential autoantibody frequency for each human protein 
among SS patients and a set of 301 non-SS controls. A volcano plot of this result is shown in Figure 
8A. SSB, Enrichments of Ro52, Ro60, and SSB in SS patients were statistically significant (p-values < 
10-12) by this analysis. SS is considered a systemic rheumatic disease, and as such shares Ro52, Ro60, 
and SSB autoantibody prevalence with other systemic rheumatic diseases, such as lupus. We therefore 
sought to identify SS-specific autoantibodies by comparison with autoantibodies in lupus patients who 
did not have SS, but who harbored Ro52 antibodies. In this analysis, neither SSB nor Ro60 were 
significant using Fisher's exact test (Figure 8B). Several previously reported lupus-specific 
autoantibodies were identified in this comparison (not shown), but no unreported SS-specific 
autoantigens were identified. These results are in agreement with other antibody assay systems, 
including gel diffusion with extracts of human B-lymphocytes, (27,28) homogenates of calf thymus 
and human spleen, (29) as well as solid phase assays using purified or recombinant antigens, (30-33) 
suggesting that common SS-specific autoantibodies, if they exist, are most likely directed against 
discontinuous or post-translationally modified epitopes not present in our human peptidome library. 
Our results also confirm findings of Burbelo et. al. regarding the extraordinary antigenicity of the Ro52 
antigen in SS, when studied with a luciferase immunoprecipitation system.(34)  

Discussion 

The PhIP-Seq z-score algorithm presented here provides several key advantages over our previously 
published generalized Poisson (GP) approach. It removes bias due to nonspecific binding of the capture 
matrix, exhibits increased sensitivity and specificity, and provides a measure of antibody-dependent 
peptide enrichment that is more intuitive to biomedical researchers. The z-score method also provides 
additional flexibility, in that sample-to-sample comparisons can similarly be made (instead of the 
sample-to-mock IP comparisons made here). Disadvantages associated with the z-score approach 
include the requirements for additional negative controls (mock IPs) and the construction of a model 
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for the expected standard deviations specific to the capture matrix. Given the findings presented here, 
however, we conclude that the superior performance of the z-score algorithm outweighs these 
additional requirements. 

Compared with more traditional antibody binding assays, such as ELISA or western blotting for 
instance, PhIP-Seq is an indirect measurement, and involves additional sources of potential artifacts. 
For example, analysis of the phage DNA requires PCR amplification, so that even small differences in 
per-cycle amplification efficiency may introduce nonlinear differences in the resulting normalized read 
counts for the same clone in two different samples. At the Illumina sequencing stage, differential 
clustering efficiency may also skew the final read counts. During sequence demultiplexing and 
alignment, stringency-defining parameters may impact the final data set in subtle and unpredictable 
ways. Perhaps most importantly, however, are the effects of clonal dropout, which can be due to either 
population bottlenecking or insufficient sequencing depth.  

The inability to accurately estimate the abundance of undersampled clones makes quantifying their 
enrichment particularly challenging. Relatively undersampled clones will exhibit a high level of 
variability, and thus uncertainty; importantly, this uncertainty is naturally incorporated into the z-score 
metric. An uncertainty-incorporating metric is essential for comparing enrichments to one another, and 
thus ranking them in order of their likelihood for validation using a secondary assay. If however, certain 
peptides are a priori known to be enriched, the magnitude of their relative changes may more 
accurately be quantified using the fold change of their normalized read counts, rather than using their z-
scores. 

Discrepancies between PhIP-Seq and clinical assay results were most prominent for Ro60. The clinical 
assay, using immunoprecipitation of Ro60 antigen generated by in vitro translation and transcription 
(IP/IVTT), detected anti-Ro60 antibodies in a significantly higher number of sera than PhIP-Seq. This 
suggests the importance of conformational epitopes in this reactivity. With PhIP-Seq, anti-Ro60 
antibodies were almost exclusively found with anti-Ro52 antibodies. They were present alone in ~1% 
of SS subjects when assayed by PhIP-Seq and in ~12% of SS subjects, when assayed by IP/IVTT. Ro52 
and Ro60 are encoded by different genes, localize to different cell compartments and are not part of the 
same stable macromolecular complex.(35-38) Reactivity to the Ro60 has been previously shown to 
depend on conformational epitopes; reactivity is largely lost with denaturation of the protein.(39) In 
contrast, most sera recognize linear epitopes of the denatured Ro52 antigen, in agreement with the high 
rate of detection via PhIP-Seq.(38)  

One important advantage of PhIP-Seq over full-length protein based assays is the determination of 
peptide level binding specificities. These data may provide disease relevant information, such as 
epitope-disease phenotype relationships,(40) or guide the development of improved diagnostic 
assays.(34) Screening SS sera, we determined the presence of multiple non-overlapping commonly 
targeted epitopes within Ro52, Ro60, and SSB. Furthermore, several patients who tested negative for 
Ro60 using a clinical assay were found to be convincingly positive by looking at the peptide-level 
PhIP-Seq z-scores, suggesting the presence of a cryptic epitope not available to certain patients' 
antibodies in the form of a native protein. The most striking discordance between PhIP-Seq data and 
the clinical tests, however, is its high rate of false negativity, particularly for SSB (A total of 40 and 91 
out of 193 SS patients were detected by PhIP-seq and ELISA, respectively.). This poor sensitivity may 
be the result of several limitations associated with PhIP-Seq. The dominant epitope(s) may be absent 
from the phage library due to their discontinuous nature, requirement for disulfide bond formation or 
other post translational modification, or the epitope displaying phage may happen to be missing or 
under-represented in the library. Alternatively, the targeted protein's individual peptide enrichments 
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may be weak (resulting in a low promax-z), whereas a more aggregated statistic may reveal a signal 
above background. Such metrics have been proposed for the analysis of RNA-Seq data but have not 
been explored here.  

There are ways in which future analyses of PhIP-Seq data may be improved. For example, small 
differences among clones’ PCR amplification efficiency may be quantified using serial dilution of the 
input library. Computationally correcting for these differences may enable more accurate comparisons 
across samples and/or peptides. Experimental spike-ins may also prove useful for data calibration. For 
instance, addition of a fixed number of monoclonal phage particles to the first PCR reaction may 
facilitate estimation of particle numbers, particularly when PCR primers are depleted during 
amplification. One could also spike a monoclonal antibody into the immunoprecipitation reaction, 
which may improve calibration by accounting for differences in washing stringency, etc. These and 
other experimental modifications, designed to improve the robustness and/or sensitivity of the PhIP-
Seq assay, can readily be incorporated into the z-score paradigm developed in this study. Ongoing 
development of the open source PhIP-Seq-Analyzer software package is therefore anticipated. 
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Figure Legends 

 

Figure 1. Accounting for matrix binding bias. (A) Volcano plot showing fold change of the median
peptide RPMs of the mock IP versus those of the unenriched input library. Differentially enriched 
peptides identified by Wilcoxon test (BH-adjusted p-value ≤ 0.05) are shown as red dots. (B) 
Comparison of each peptide's RPM from duplicate mock IPs. (C) Saturation analysis of mock IPs. A 
range of 1-50 mock IPs were randomly selected from 261 mock IPs, and the number of peptides 
detected was counted. For each number of mock IPs, the process was repeated and plotted 100 times
The horizontal line marks the number of peptides detected by sequencing the unenriched input library
The recommended minimum number of mock IPs is ~8 (vertical line) when using the 90-aa human 
library and protein A/G beads as capture matrix.  
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Figure 2. The z-score peptide enrichment metric. (A) Cubic polynomial regression (blue line) of 
standard deviations of peptides' logged RPMs versus their logged median values among 261 mock IP
(B) Robust linear regression (blue line) of RPMs from an experimental sample versus the mean RPM
of eight mock IPs from one 96 well PhIP-Seq experiment. Red triangles indicate peptides with pep-z
scores above 10. (C) Histogram of p-values over the 0-1 interval, assessed at different sampling dept
(n=15 mock IPs); comparing uniformity of the z-score method (open boxes) versus the GP method 
(gray boxes). The horizontal dotted line at 0.05 is shown to represent ideal fitting to the null model. 
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Figure 3. Detecting significantly enriched peptides. (A) False discovery rates (FDR) of significant
enriched peptides. FDR is the ratio of the numbers of significant peptide enrichments for each of 176
experimental IPs to the average number of peptide enrichments from 15 mock IPs, over the range of
score thresholds shown. The blue line is the median FDRs at each pep-z score threshold. The 
intersection of the 10% FDR line (red horizontal line) with median FDR curve (blue line) occurs at a
pep-z score threshold of ~10. (B) Reproducibility of pep-z scores across three independent sets of 
technical replicates. Correlation factors are provided at the top of the plot. Peptides above threshold 
(>10) in either duplicate are colored. (C) The number of peptides enriched above threshold are shown
for each set of technical duplicates. 
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Figure 4. Comparison of  PhIP-Seq z-scores with standard clinical assays. PhIP-Seq promax-z 
scores for Ro52 (A), Ro60 (B), and SSB (C) were compared against the results of the corresponding 
clinical diagnostic tests with the number of patients shown below. The promax-z score threshold (>10
is shown by horizontal lines. 
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Figure 5. Ro52 versus Ro60 PhIP-Seq single positives. Whereas PhIP-Seq Ro52+/Ro60- patients 
were frequent (27%), Ro52-/Ro60+ patients were rare (1%). Percent positives are labeled in each 
quadrant.  
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Figure 6. Epitope level analysis of SS antigens. Enrichment of each overlapping peptide are shown
for each protein: Ro52 (A), Ro60 (B), and SSB (C). The amino acid positions from N- to C-terminus
(top to bottom) are labeled on the right. The density of gradient color bar shows log2 pep-z scores. 
Patients in columns identified as positive or negative by the corresponding clinical test (red or blue 
along the top bar) were clustered by pattern of peptide enrichment.  
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Figure 7. ROC comparison of z-score versus GP analysis. (A) ROC analysis using promax-z score
for Ro52, Ro60, and SSB considering the clinical test results to be ground truth. (B) ROC curves for 
SSB determined using z-scores (blue) or the GP statistic (gray). 
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Figure 8. Proteome-wide analysis of SS autoantibodies. (A) All promax-z scores were assessed for
disease association in an analysis of SS autoantibodies versus non-SS control autoantibodies. (B) 
Promax-z scores were then used to identify SS-specific autoantibodies by comparison with Ro52 
positive lupus patient autoantibodies. 
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