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Abstract
Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that
gives information about the structure of a genome [21]. Recently it has been used for sca�olding contigs and assembly
validation for large-scale sequencing projects, including the maize [32], goat [6], and amborella [4] genomes. However, a
major impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are
called Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in
the alignment of long reads. Moreover, they are arguably harder to tackle since the data is numerical and susceptible to
inaccuracy. We develop cOMet to error correct Rmap data, which to the best of our knowledge is the only optical mapping
error correction method. Our experimental results demonstrate that cOMet has high prevision and corrects 82.49% of
insertion errors and 77.38% of deletion errors in Rmap data generated from the E. coli K-12 reference genome. Out of the
deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It
also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat
genomes, respectively. Lastly, we show the utility of error correction by demonstrating how it improves the assembly of
Rmap data. Error corrected Rmap data results in an assembly that is more contiguous, and covers a larger fraction of the
genome.
Key words: Optical mapping; Error correction.

Introduction

In 1993 Schwartz et al. developed optical mapping, a system
for creating an ordered, genome-wide, high-resolution restric-
tion map of a given organism’s genome. Since this initial de-
velopment, genome-wide optical maps have found numerous
applications including discovering structural variations and re-
arrangements [24], sca�olding and validating contigs for sev-
eral large sequencing projects [7, 9, 4], and detecting misas-
sembled regions in draft genomes [16]. Thus, optical mapping
has assisted in the assembly of a variety of species–including
various prokaryote species [18, 29, 30], rice [31], maize [32],
mouse [5], goat [7], parrot [9], and amborella trichopoda [4].
The raw optical mapping data is generated by a biological ex-
periment in which large DNA molecules cling to the surface of

a microscope slide using electrostatic charge and are digested
with one or more restriction enzymes. The restriction enzymes
cut the DNA molecule at occurrences of the enzyme’s recogni-
tion sequence, forming a number of DNA fragments. The frag-
ments formed by digestion are painted with a �uorescent dye,
to allow visibility under laser light and a CCD camera. Com-
puter vision algorithms then estimate fragment length from
consolidated intensity of �uorescent dye and apparent distance
between fragment ends.
The resulting data from an experiment are in the form of an

ordered series of fragment lengths [33]. The data for each sin-
gle molecule produced by the system is called an Rmap. Rmap
data has a number of errors due to the experimental conditions
and system limitations. In an optical mapping experiment, it
is unlikely to achieve perfectly uniform �uorescent staining.
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This leads to an erroneous estimation of fragment sizes. Also,
restriction enzymes often fail to digest all occurrences of their
recognition sequence across the DNA molecule. This manifests
as missing restriction sites. Additionally, due to the fragile na-
ture of DNA, additional breaks can incorrectly appear as restric-
tion sites. Lastly, the limitations of the imaging component of
the optical mapping system and the propensity for the DNA
to ball up at the ends introduces more sizing error for smaller
fragments. Interested readers will �nd more details about the
causes of these errors in Valouev et al. [26] and Li et al. [12].
Because of all these experimental conditions, Rmap data gener-
ated through optical mapping experiment has insertion (added
cut sites) and deletion (missed cut sites) errors along with frag-
ment sizing errors.
In most applications of optical map data, the Rmaps need to

be assembled into a genome wide optical map. This is because
the single molecule maps need redundant sampling to over-
come the presence of the aforementioned errors, and because
single molecule maps only span on the order of 500 Kbp [26].
The �rst step of this assembly process involves �nding pair-
wise alignments amongst the Rmaps. In order to accomplish
this, the challenge of dealing with missing fragment sizes has
to be overcome. This challenge is analogous to dealing with
insertions and deletions in the alignment of long reads [2]—
in fact, it is arguably harder since the data is numerical. At
present, the only non-proprietary algorithmic method for pair-
wise alignment of Rmaps is the dynamic programming based
method of Valouev et al. [26] which runs in O(α×β) time where
α and β are the number of fragments in the two Rmaps being
aligned. To align an optical map dataset containing n Rmaps,
the complexity becomes O(n2 × `2) where ` is the average size
of an Rmap.
This method is inherently computationally intensive but if

the error rate of the data could be improved then non-dynamic-
programming based methods that are orders of magnitude
faster such as Twin [15], OMBlast [10], and Maligner [13] could
be used for alignment. This would greatly improve the time
required to assemble Rmap data. Thus, we present cOMet in
order to address this need. To the best of our knowledge, it is
the �rst Rmap error correction method. Our experimental re-
sults demonstrate that cOMet has high precision and corrects
82.49% of insertion errors and 77.38% of deletion errors in
Rmap data generated from the E.coli K-12 reference genome.
Out of the deletion errors corrected, 98.26% are true errors.
Similarly, out of the insertion errors corrected, 82.19% are true
errors. Furthermore we show that the assembly of Rmaps is
more contiguous and covers a larger fraction of the genome if
the Rmaps are �rst error corrected. It also successfully scales
to large genomes, improving the quality of 78% and 99% of
the Rmaps in the plum and goat genome, respectively.

Background

From a computer science perspective, optical mapping can be
seen as a process that takes in two strings: a nucleotide se-
quence Si[1,n] and a restriction sequence B[1, b], and producesan array (string) of integers Ri[1,m]. The array Ri is an Rmapcorresponding to Si and contains the string-lengths betweencuts produced by B on Si. Formally, Ri is de�ned as follows:
Ri[j] = y – x where y represents the location(starting index) of
jth occurrence of B in Si and x represents the location of (j–1)thoccurrence of B in Si and Ri[1] = y – 1 and Ri[m] = n – x. For ex-ample, say we have B = act and Si = atacttactggactactaaact. Thelocations of B in Si are as follows: 3,7,12,15,20. Then Ri will berepresented as Ri = 2, 4, 5, 3, 5, 2. The size of an Rmap denotesthe number of fragments in that Rmap. Therefore the size of
Ri is 6.

We note that millions of Rmaps are produced for a single
genome since optical mapping is performed on many cells of
the organism and each cell provides thousands of Rmaps. The
Rmaps can be assembled to produce a genomewide optical map.
This is analogous to next generation shotgun sequencing where
Rmaps are analogous to reads and a genome-wide optical map
is analogous to the assembled whole genome.
There are three types of errors that can occur in optical map-

ping: (1) missing cut sites which are caused by an enzyme not
cleaving at a speci�c site, (2) additional cut sites which can
occur due to random DNA breakage and (3) inaccuracy in the
fragment size due to the inability of the system to accurately
estimate the fragment size. Continuing again with the exam-
ple above, a more representative example Rmap would include
these errors, such as R′i = 7, 6, 3, 4.The error rates of optical maps depends on the platform
used for generating the maps. A recent paper by Li et al. [12]
studied the error rates of optical maps produced by the Irys
system from BioNano Genomics. According to their study, a
missing cut site type of error i.e., error type (1) happens when
a restriction site is incompletely digested by the enzyme and
causes two �anking fragments to merge into one large frag-
ment. The probability of complete digestion of a restriction site
can be modeled as a Bernoulli trial whose probability of success
is a function of the size of the two �anking fragments. Addi-
tional cut sites i.e., error type (2) results from random breaks
of the DNA molecule. The number of false cuts per unit length
of DNA follows a Poisson distribution. The inaccuracy of the
fragment sizes, i.e., error type (3), is modeled using a Laplace
distribution. If the observed and actual size of a fragment are okand rk respectively, then the sizing error is de�ned as sk = ok/rkand

sk ∼ Laplace(µ,β)
where µ and β - the parameters of the laplace distribution -
are functions of rk. In practice, when aligning a pair of Rmaps,one should allow for twice the error rate of a single Rmap since
each Rmap will deviate from the genomic map by the above
parameters.
Valouev et al. [26] provides a dynamic programming algo-

rithm for pairwise alignment, which generates a score for ev-
ery possible alignment between two Rmaps and returns the
alignment which achieves the highest score, which is referred
to as the S-score. It is computed within a standard dynamic
programming framework, similar to Smith-Waterman align-
ment [23]. The scoring function is based on a probabilistic
model built on the following assumptions: the fragment sizes
follow an exponential distribution, the restriction sites follow
an independent Bernoulli process, the number of false cuts in
a given genomic length is a Poisson process, and the sizing er-
ror follows a normal distribution with mean zero and variance
following a linear function of the true size. Lastly, a di�erent
sizing error function is used for fragments less than 4 kbp in
length since they do not converge to the de�ned normal distri-
bution. The score of an alignment is calculated as the sum of
two functions; one function that estimates and scores the siz-
ing error, and a second that predicts and scores the presence
of additional and/or missing cut sites between the fragments.
The S-score will be used later in this paper to evaluate the error
correction process.

Methods

Given a set of n Rmaps R = {R1, ..,Rn} our method aims to de-tect and correct all errors in R by considering each Ri ∈ R and�nding a set of Rmaps that originate from the same part of the
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genome as Ri. This step is performed heuristically in order toavoid aligning every pair of Rmaps in R.

Preprocessing

Our �rst step is to remove the �rst and last fragments from
each Rmap in R. These fragments have one of their edges
sheared by artifacts of the DNA prep process (preceding the op-
tical mapping process) and not by restriction enzymes. Unless
removed, they can misguide alignment between two Rmaps
during the error correction process. In addition, short Rmaps,
i.e., those that have less than 10 fragments, are removed at
this stage since any Rmap that contains less than 10 frag-
ments is typically deemed too small for analysis even in con-
sensus maps [1]. Next, the data is quantized so that a given ge-
nomic fragment is represented by the same value across mul-
tiple Rmaps despite the noise. Our quantization method as-
signs a unique value to a range of fragment sizes by divid-
ing each fragment size by a �xed integer, denoted as b, and
rounding to the nearest integer. For example, if an Rmap
Ri = {36, 13, 15, 20, 16, 5, 21, 17} is quantized using b = 3 then
the quantized Rmap will be Rquantizedi = {12, 4, 5, 7, 5, 2, 7, 6}.
Say another Rmap, Rj = {17, 23, 34, 12, 14, 21, 14, 5} has over-lap with Ri; however, due to noise in the data, this relationis not apparent. By quantizing Rj using the same b = 3 we get
Rquantizedj = {6, 8, 11, 4, 5, 7, 5, 1}. This allows us to uncover a
region (in this case {4, 5, 7, 5}) which is common to both the
Rmaps. It should be noted that in some cases, a fragment may
have di�erent values across two Rmaps even after quantization
(for example the fragment values 36 from Ri and 34 from Rj arequantized to 12 and 11 respectively). The quantized data is used
to �nd the set of related Rmaps as explained in the next section.
The setting of parameter b depends on the amount of sizing

error in the optical map data. With zero sizing error b can be
set at 1. As sizing error increases, the value of b is increased ac-
cordingly. If the value of b is too small, we are not be able to un-
cover relations between overlapping Rmaps and if the value is
too large then unrelated Rmaps have common regions in their
quantized states — which makes them appear related. Consid-
ering the error rate of optical maps from BioNano genomics,
the default value of b = 4000.

Finding Related Rmaps

We refer to two Rmaps as related if their corresponding error-
free Rmaps originate from overlapping regions of the genome.
Next, we de�ne a k-mer as a string of k consecutive fragments
from a (quantized) Rmap. For example if we have the Rmap
R = {3, 3, 5, 2, 6, 5, 5, 1} and k=4 then the following k-mers can
be extracted from R: (3,3,5,2), (3,5,2,6), (5,2,6,5), (2,6,5,5) and
(6,5,5,1). In order to avoid aligning all pairs of Rmaps to �nd
the related Rmaps, we use the number of common k-mers to
discriminate between pairs of Rmaps that are related and those
that are not. To accomplish this e�ciently, we �rst extract all
unique k-mers in each quantized Rmap, and construct a hash
table storing each unique k-mer as a key and the list of Rmaps
containing an occurrence of that k-mer as the value. We call
this the k-mer index. Next, we consider each Ri in R and use the
k-mer index to identify the set of Rmaps that have m or more
k-mers in common with Ri. Unfortunately, this set, althoughit contains all related Rmaps, it also likely contains Rmaps that
are not related to Ri. Therefore, we �lter this set of Rmaps us-ing a simple heuristic that tries to match each Rmap in this set
with Ri in order to ascertain if it is related to Ri. The heuristictraverses through two Rmaps (Ri and one Rmap from the set,
say Rj) attempting tomatch subsets of the fragments from each

until it either reaches the end of one Rmap or it fails to match
the fragments. We start the traversal from the �rst matching
k-mer between Ri and Rj. We denote the position of the nextfragment to bematched in Ri and Rj as x and y, respectively, andassume that each fragment prior to these positions is matched.
Next, we consider all combinations of matching the fragments
at positions x, x+1 and x+2 of Ri with fragments at positions y,
y + 1 and y + 2 of Rj. We evaluate the cost of each combinationbased on the di�erence in the total size of fragments from Riand Rj. That is ∀α,β = [0, 2],

cost(x + α, y +β) =
∣∣∣ x+α∑
g=x Ri[g] –

y+β∑
h=y
Rj[h]

∣∣∣
where Ri[g] and Rj[h] denotes the g-th and h-th fragments of
Ri and Rj respectively. We select the combination with the leastcost; if there exists a tie, we select the match that has the least
number of added or missing cut sites (That is, the combination
with the least value of α + β). If this selected match leads to
a cost that is greater than a speci�ed threshold (which was
set to 25% of the larger sized fragment in practice), then we
conclude that there is not a match at these positions and return
that Ri and Rj are unrelated. Otherwise, we increment x and yaccordingly andmove onto the next fragments. If this heuristic
continues until the last fragment of either Ri or Rj is reachedthen we return that Ri and Rj are related. Using this heuristicwe �lter out the Rmaps that were deemed to be related based
on the number of k-mers in common with Ri but are infactunrelated to Ri.The setting of parameters k and m are correlated. If the
value of k is increased, that makes the k-mers more speci�c,
hence, the value of m is lowered. On the other hand, if the
value of k is reduced, then we increase the value ofm. The value
of k is increased when there are fewer insertion and deletion
errors and decreased otherwise. The default values are k = 4
and m = 1.

Rmap Alignment

Next, for each Ri in R, we use the alignment method of Valouev
et al. [26] to �nd the S-score of all pairwise alignments be-
tween Ri and each Rmap in its set of related rmaps. The Rmapsthat have an alignment score, i.e., S-score less than a de�ned
threshold (which we denote as St), are removed from the set
of related Rmaps and the alignments of the remaining Rmaps
are stored in a multiple alignment grid, denoted as Ai. This gridis a two-dimensional array of integer pairs, where the num-
ber of rows is equal to the number of remaining Rmaps in the
set of related Rmaps of Ri and the number of columns is equalto the number of fragments in Ri. An element of this array,
Ai[j, k] stores an integer pair in the form of (x, y) representing
that x fragments of Ri, (which includes the k-th fragment of
Ri) matches to y fragments of Rj in the optimal alignment be-tween Ri and Rj. Figure 1 illustrates an example of Ai. The �rstfragment of Ri does not match with any fragment of Rj andtherefore, (0, 0) is stored at this position. Fragments 2, 5, 6, 8
and 9 of Ri each matches with one fragment of Rj, e.g., 1, 3, 4, 7and 8, respectively. To represent these matches, we store a (1,1)
in 2nd, 5th, 6th, 8th and 9th column of row j. Fragments 3 and
4 of Ri match with one fragment of Rj, i.e., the 2nd fragment.To represent this, we store (2,1) in Ai[j, 3] and Ai[j, 4]. Frag-ment 7 of Ri matches with two fragments of Rj, i.e., the 5thand 6th fragments. To represent this, we store (1,2) in Ai[j, 7].Fragments 10 and 11 of Ri match with two fragments of Rj, i.e.,the 9th and 10th fragments. To represent this, we store (2,2)
in positions Ai[j, 10] and Ai[j, 11]. Finally, fragments 12 and 13match with three fragments of Rj, i.e., fragments 11, 12 and 13.In this case, we store (2,3) in positions Ai[j, 12] and Ai[j, 13].
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Figure 1. An alignment between Ri and Rj as given by Valouev et al. [26] and its corresponding entry in the multiple alignment grid Ai. Each column of Ai representsone fragment from Ri and each row represents one Rmap from its’ set of related Rmaps. The fragment sizes are in Kbp.

The setting of parameter St controls the number of Rmapsthat are included in the multiple-alignment-grid of an Rmap.
If we increase the value of St, fewer Rmaps will be added to thegrid— but the ones included will be of higher quality (i.e. have
greater overlap with the Rmap under consideration). The de-
fault value for the parameter St = 8. We show in the experimentsection how we select this value.

Error Correcting Using the Consensus

The multiple alignment grid is used to �nd the consensus grid,
denoted as Ci, for Rmap Ri. The grid Ci is a one-dimensionalarray of integer pairs with size equal to the number of frag-
ments in Ri. The grid is constructed for each Ri in R by iteratingthrough each column of Ai and �nding the most frequent inte-ger pair, breaking ties arbitrarily. The most frequent integer-
pair is stored at each position of Ci if the frequency is abovea given threshold d; otherwise, (0,0) is stored. Figure 2 illus-
trates the construction of a consensus grid from an alignment
grid. The type of error in each fragment of Ri can be identi-�ed using Ci[k] = (x, y) as follows: if x and y are equal then asizing error occurs at the k-th fragment of Ri, otherwise, if xis greater than y then an additional cut site exists, and lastly,
if x is less than y then a missing cut site exists. Next, we use
Ci and Ai to correct these errors in Ri. For each fragment of Ri,we consider the consensus stored at the corresponding position
of Ci, identify the positions in the corresponding column of Aithat are equal to it, and replace the fragment of Ri with themean total fragment size computed using the values at those
positions in Ai. If Ci is equal to (0,0) at any position then thefragment at that position in Ri remains unchanged since it im-plies that there is no de�nitive result about the type of error
in that position. In addition, if consecutive positions in Ci arediscordant then the fragments in those positions in Ri also re-mains unchanged. For example, if there is a (2,1) consensus
at some position of Ci, then we expect the preceding or succes-sive position to also have a (2,1) consensus. However, if this
is not the case, then we do not error correct those fragments
since the consensus is discordant at those positions. Figure 2
shows this error correction. As it is illustrated, to error cor-
rect the second fragment of Ri, we compute the average of thematched fragments from related Rmaps 2, 3, 4, 5 and 6 and
replace the second fragment of Ri with that value as shownin Figure 2. Similarly, to correct the third fragment in this ex-
ample, we identify that (2,1) is in the consensus, which implies
that majority of the related Rmaps are such that two fragments
of Ri match with one fragment from the set of related Rmaps,
and therefore, replace the third and fourth fragments with the

average from the corresponding Rmaps and positions.
The threshold d determines the accuracy and precision of

error correction. A high value of d improves precision but low-
ers accuracy as many fragments are left uncorrected. Similarly,
low value of d improves accuracy but lowers precision. The de-
fault setting is d = 3.

Complexity

We de�ne ` to be the length of the longest Rmap in R. Quan-
tization of the Rmaps takes O(` × n) time. Constructing the
k-mer index also takes O(` × n) time. The k-mer index stores
the occurances of each quantized k-mer across all Rmaps. Let
u be maximum frequency of a k-mer. That is, a k-mer occurs
in max u Rmaps (in practice u << n). Then the complexity of
�nding related Rmaps from the k-mer index is O(n×`×u). For
each Rmap, the �ltering heuristic runs in time linear to the
size of the Rmap. Therefore, �ltering the set of related Rmaps
also takes linear O(`× n) time. The most expensive step is the
pair-wise alignment which uses the Valouev aligner. As men-
tioned earlier, this aligner is based on DP and therefore has a
O(`2) time complexity to perform one pairwise alignment. If
the maximum cardinality of the set of related Rmaps for any
Rmap is v, then the total complexity of this step is bounded by
O(n × v × `2). The value of v depends on the coverage of the
optical map data. The alignment generated using Valouev et
al. method is stored in the multiple alignment grid in constant
time and it takes O(n × v × `) time to generate the consensus
maps for n Rmaps and error correct them. Thus, the runtime
of cOMet is O(n× v× `2).

Datasets

We perform experiments on both simulated and real data. For
the real data, we used the Rmap data from the plum [28] and
domestic goat [7] sequencing projects. These datasets were
built on the OpGen mapping platform and are more error-
prone. We also experimented on a human dataset [22] built
on the new BioNano platform. This dataset is built using the
latest optical mapping technology and has signi�cantly better
quality than the plum and goat genomes.The genome size and
number of Rmaps for these species are shown in Tables 1 and
1.
In addition, we simulated Rmap data from E. coli K-12 sub-

str. MG 1655 as follows: �rst, the reference genome was copied
200 times and then uniformly distributed random loci were se-
lected for each of these copies. These loci form the ends of
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Figure 2. Example of multiple alignment grid and consensus grid. The �gure shows the multiple alignment grid Ai for an Rmap Ri and its consensus grid Ci. Eachrow of the multiple alignment grid represents the alignment of Ri with one of its related Rmaps while the columns represents the fragments of Ri. The �gure alsodemonstrates error correction using the consensus grid, with the error corrected Rmap denoted as R′i . The fragment sizes are in Kbp. To demonstrate the errorcorrection process for the 3rd, 4th and 5th fragments, we also include the fragments (in parentheses) to which they align. The error corrected fragment is the
mean of the fragments from the corresponding positions which have the same alignment as the consensus. For example for the 5th fragment, the consensus is
(1,1). Therefore the mean of the aligned fragments with (1,1) alignment i.e. 8.488, 8.132, 8.964 and 9.432 is the error-corrected value for the 5th fragment.

Figure 3. Distribution of S-scores of Rmap alignments between related Rmaps and unrelated Rmaps. The percentage of Related Rmaps with S-score less than 8
is 6.06%. Therefore we choose St = 8.

single molecule that would undergo in silico digestion. Next,
molecules smaller than 150 Kbp were discarded and the cleav-
age sites for the RsrII enzyme were then identi�ed within each
of these simulated molecules. This error free Rmap data is
used for validating the output of our method. Lastly, deletion,
insertion and sizing errors were incorporated into the error-
free Rmaps according to the error model discussed in Li et al.
[12]. The error model was described earlier in the Background
section. This simulation resulted in 2,505 Rmaps, containing
7,485 deletion and 554 insertion errors.

Lastly, we simulated optical map data from a simulation
software called OMSim [14] that generates synthetic optical
maps which mimics real Bionano Genomics data. The soft-
ware takes two parameters as input: the False Positive Rate
(FP), which is the number of additional cut sites erroneously
inserted per 100kbp, and the False Negative Rate (FN), which
is the percentage of times a cut site is missed. Using this
method, we simulated eight datasets of Rmaps from E. coli K-
12 substr. MG 1655 using the restriction enzyme BspQI. The
default FP and FN rates for BspQI are 1 and 15% respectively.
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We generated additional datasets with the following error rates
(FP,FN) : (0.5,15%), (1.0,15%), (2.0,15%),(5.0,15%), (1.0,5%),
(1.0,25%),(2.0,5%) and (2.0,25%).

Table 1. Summary of the real and simulated data. Rmaps with lessthan 10 fragments were omitted from all the experiments. cOMetwas ran on the remaining 2,504, 548,779 and 3,049,439 Rmaps forthe E. coli, plum and goat genomes, respectively..
Genome Size No. of Rmaps
E. coli 4.6 Mbp 2,504
Plum 284 Mbp 749,895
Goat 2.66 Gbp 3,447,997

Table 2. Summary of the real and simulated BioNano data. OM-Sim was used to simulate eight di�erent BioNano datasets; each ofwhich had varying error rates and thus, had a di�erent number ofRmaps.
Genome Size No. of Rmaps
E. coli 4.6 Mbp 123,251 - 157,743
Human 3.2 Gbp 793,199

Experiments and Discussion

We performed all experiments on Intel E5-2698v3 processors
with 192 GB of RAM running 64-bit Linux. The input param-
eters to cOMet include: b (quantization bucket size), k (k-mer
value), m (the number of k-mers needed to be conserved be-
tween two Rmaps) and d (the minimum number of Rmaps re-
quired to form consensus at a position). The default parame-
ters are b=4000, k=4, m=1 and d=3, and led to the best result
across all datasets.

Determining the value of St

The setting of the parameter St depends on the sensitivity of theValouev aligner. If the alignment score between two Rmaps is
less than St, then the aligned Rmaps are deemed to be unrelated.We say an Rmap, Rs is overlapping with an Rmap, Rt if at least50% of Rs overlaps with Rt. That is, either the �rst half orthe second half of Rs is entirely and exactly (exact fragmentmatches) contained in Rt.We carried out the following experiment to determine the
optimum setting for St. From the set of simulated error-free
Rmaps, we computed the set of overlapping Rmaps for each
Rmap. We denote this set as related Rmaps. Then we used the
Valouev aligner to score all pairwise wise alignments between
the simulated Rmaps (with errors added) and plot the scores in
form of a histogram which is shown in Figure 3. The percent-
age of related Rmaps with S-score less than 8 is 6.06%. Hence
we choose the setting of St = 8.

Experiments with our Simulated Data

The cOMet error correction was ran on the simulated E. coli
data. The corrected Rmaps were then aligned to the error-free
Rmaps to determine the number of corrected insertions and
deletions. The results of this experiment are shown in Table 4.
To determine the quality of error correction, we computed the

true positive rate (TPR), which is the ratio between the num-
ber of insertion (or deletion) errors that cOMet correctly identi-
�ed and removed and the number of insertion (deletion) errors,
and the false positive rate (FPR), which is the ratio between the
number of insertion (or deletion) errors that cOMet incorrectly
identi�ed and removed, and the total number of fragments not
containing an insertion (deletion) error. The TPR is 82.49%
and 77.38% with respect to the number of corrected insertions
and deletion errors; whereas, the FPR is 0.21% and 0.25% with
respect to the number of corrected insertions and deletion er-
rors. This demonstrates the high accuracy of the correction
made by cOMet. Our method also has high precision. Out of
the deletion errors corrected, 98.26% are true errors. Similarly,
out of the insertion errors corrected, 82.19% are true errors.
Additionally, for each corrected Rmap we computed the

alignment S-score of both the original Rmap and the corrected
Rmap with the error-free Rmap. We found that for 96.5% of
the Rmaps, the S-scores improved after error correction. In
other words, cOMet brought 96.5% Rmaps closer to their error-
free state. The mean S-score before error-correction was 44.91
and it improved by 14.03% to 51.30 after error correction. For
17.5% of the Rmaps, (415 Rmaps) the S-score improved bymore
than ten. Lastly, we mention that the error correction was
achieved in 241 CPU seconds and using 79.54 MB of memory.
To demonstrate the importance of error correction, we as-

sembled the Rmaps before and after error correction using the
Valouev assembler [25]. Table 3 summarizes the results of this
experiment. We assembled the uncorrected data into �ve as-
sembled optical maps and the error-corrected data into two
assembled optical maps. The N50 statistic of the assembly in-
creased from 1,242 Kbp for the uncorrected data to 3,348 Kbp
for the corrected data. Next, we aligned each assembled map to
the genome-wide (error-free) optical map using the Valouev
aligner in order to locate their positions on the genome and
calculate the percentage of the genome that was covered by at
least one of the assembled maps. The genome fraction cov-
ered by the �ve assembled maps from the uncorrected Rmaps
was 80%; while the genome fraction covered by the two assem-
bled maps from the corrected Rmaps was 82%. Moreover, the
assembled maps from the uncorrected data had 47 insertion
and deletion errors when aligned to the reference while the er-
ror corrected data had only 34 such errors. In order to further
contextualize these results, we assemble the error-free Rmap
dataset and summarize this assembly in Table 3.

Experiments with OMSim Data

To present the robustness of our method and its applicability
across datasets, we conducted experiments on synthetic data
from an optical map simulating software called OMSim [14].
As described in Section Datasets, we generated eight datasets
of synthetic optical maps by varying the insertion and deletion
error rates.
In the �rst experiment, we �xed the False Negative rate at

15% and varied the False Positive rate between 0.5, 1.0, 2.0 and
5.0 respectively. For each of the four datasets, we align each
Rmap (using the Valouev aligner) before and after error correc-
tion to the reference optical map obtained using the same re-
striction enzyme and report the percent of Rmaps whose align-
ment S-score increased after error correction and the mean in-
crease in the S-score. We note that for each Rmap, the aligner
returns the highest scored alignment and the score represents
how closely the Rmap aligns to the reference genome-wide op-
tical map. Table 6 summarizes the results from this experi-
ment. We observe that the e�ciency of error-correction im-
proves as the FP rate is initially increased. When the FP rate
reaches a high value of 5, the e�ciency of error-correction
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Table 3. Assembly results of Uncorrected Rmaps, Corrected Rmaps and Error-free Rmaps using the Valouev assembler. The Rmaps aresimulated from the E. coli genome. Each assembled map is aligned to the reference genome-wide (error-free) optical map using the Valouevaligner. The genome-wide optical map contains 383 fragments.
Rmap status Assembler Map_id Number of

fragments
Map length
(in Kbp)

Alignment location in reference
(start-loci, end-loci)

Uncorrected
Rmaps

Assembled Map_0 75 921.41 (246,321)
Assembled Map_1 88 1,242.40 (11,95)
Assembled Map_2 30 531.65 (225,255)
Assembled Map_3 44 759.16 (181,228)
Assembled Map_4 107 1,699.60 (87,194)

Corrected
Rmaps

Assembled Map_0 102 1,397.60 (225,322)
Assembled Map_1 237 3,348 (8,230)

Error-free
Rmaps

Assembled Map_0 60 808.74 (185,239)
Assembled Map_1 91 1,100.5 (241,324)
Assembled Map_2 104 2,474.4 (19,185)

Figure 4. Alignment scores of Rmaps from plum genome with the reference optical-map. Before error correction, the S-score had a mean of 8.6 with standard
deviation 6.49. After error correction, the mean S-score improved to 14.72, with standard deviation 6.72.

Table 4. Results on the data simulated from E.coli K-12 MG1655. The data was simulated according the algorithm describedin Datasets. This simulation resulted in 2,505 Rmaps, containing7,485 deletion and 554 insertion errors.
Total no. of insertion errors corrected 556
TPR of corrected insertions 82.49 % (457)
FPR of corrected insertions 0.21 % (99)
Total no. of deletion errors corrected 5,894
TPR of corrected deletions 77.38 % (5,792)
FPR of corrected deletions 0.25 % (102)

drops. The mean S-score improves by more than 9 (∼ 10%)
when the FP rate is reasonable.
In the second experiment, we �rst �x the False Positive rate

at 1.0 and vary the False Negative rate between 5%, 15% and
25%. We then �x the False Positive rate at 2 and vary the false
negative rate between 5%, 15% and 25%. We report the same
results as the previous experiment. Table 7 shows the results.
Similar to the previous experiment, we �nd that the e�ciency
of error correction improves as the FN rate increases from 5%
to 25%. The error correction improves the quality of a high
percentage of Rmaps (> 70%) for all values of parameters.

Table 5. Results on the Rmap data of plum and goat genomes. Peakmemory was measured as the maximum resident set size as re-ported by the operating system with su�cient RAM to avoid pag-ing. Running time is the user process time, also reported by theoperating system.
Genome name Plum Goat
Running time 7.4 days 105.7 days
Memory 12.20 GB 113.56 GB
No. of insertion errors corrected 433,282 2,530,060
No. of deletion errors corrected 430,329 3,187,023

Experiments with Real Data

Table 5 summaries the results of running cOMet on the plum
and goat datasets. The plum and goat datasets do not contain
error-free Rmaps. Therefore, we are restricted to reporting
the number of corrections made and the improvement to the
S-score. In order to compute the S-score before and after er-
ror correction, we generated an in silico digested genome-wide
optical map from the reference genome and aligned both the
uncorrected and corrected Rmap to the genome-wide optical
map. If it aligned to multiple positions then we considered
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Figure 5. Alignment scores of rmaps from goat genome with the reference optical-map. The mean and standard deviation of the S-scores before error correction
were 9.38 and 6.54, respectively. After error correction, the mean S-score improved to 16.97 with a standard deviation of 6.21.

Table 6. Table showing the e�ciency of error correction when the False Positive rate is varied. The False Negative rate is �xed at 15%.
FP
rate

No. of
Rmaps

Percent of Rmaps
with improved S-score

Mean S-score
before error-correction

Mean S-score
after error-correction

Mean S-score
improvement

0.5 129,820 93.42% 78.66 91.12 12.46
1.0 126,133 94.01% 76.25 89.44 13.19
2.0 140,623 92.99% 71.93 85.29 13.36
5.0 130,019 81.35% 64.65 71.36 6.71

Table 7. Table showing the e�ciency of error correction when the False Negative rate is varied.
FP
rate

FN
rate

No. of
Rmaps

Percent of Rmaps
with improved S-score

Mean S-score
before error-correction

Mean S-score
after error-correction

Mean S-score
improvement

1.0
5% 142,684 87.36% 81.32 87.62 6.3
15% 126,133 94.01% 76.25 89.44 13.19
25% 123,252 96.09% 70.24 87.44 17.20

2.0
5% 148,912 89.23% 76.54 84.47 7.93
15% 140,623 92.99% 71.93 85.29 13.36
25% 130,763 93.02% 66.95 81.65 14.7

the alignment position where the corrected Rmap aligned with
greatest S-score, and considered the di�erence in the S-score
when the uncorrected and corrected Rmap aligned to that posi-
tion. However, we note that this process is error prone because
of the fragmented nature of the draft genomes and possible
misassemblies present in the genomes. We observed that the
S-score after error correction improved for 78% of the plum
Rmaps and 99% of the goat Rmaps. Figures 4 and 5 show the
histograms of the distribution of S-scores, before and after er-
ror correction. For the plum genome, the mean S-score im-
proved from 8.60 before error correction, to 14.72 after error
correction (a 71% improvement in the score) while for the goat
genome, it improved from 9.38 before correction to 16.97 after
correction (a 80.92% improvement in the score).
We also measured the genome coverage, i.e. the fraction of

the genome covered by at least one Rmap, for both the original
Rmaps and the corrected Rmaps as follows. First we aligned

all Rmaps to the genome-wide optical map and then picked
the best alignment for each original Rmap and each corrected
Rmap. Based on these alignments we then computed the frac-
tion of the genome covered by at least one original Rmap and
the fraction of the genome covered by at least one corrected
Rmap. On the goat genome the genome coverage was 73.08%
before correction and it increased to 84.56% after correction.
The increase in genome coverage shows that our method is
able to correct Rmaps from across the genome. Furthermore
it shows that even if Rmaps could not originally be reliably
aligned to some regions of the genome, our method is sensitive
enough to recover similar Rmaps from these regions and thus
after correction the fraction of the genome covered by aligned
Rmaps is higher. For the plum, the genome coverage dropped
negligibly from 99.01% before error correction to 98.85% after
error correction(which is less than 1% of the genome size).
In addition, as shown in Table 5, the running time and peak
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memory usage was recorded for the plum and goat genome. Al-
though these experiments have signi�cant running times, (7.4
and 105.7 CPU days for plum and goat, respectively) these �g-
ures are not prohibitive given that this computation can easily
be parallelized since the error correction process for each Rmap
is independent. For example, we ran the goat genome on 20
machines and thus, it required a total of 126.84 hours for all
Rmaps to be corrected. In addition, we note that error correc-
tion of a dataset will likely only be done once for any dataset so
5.2 human days for a large genome is not unreasonable. Lastly,
the peak memory usage was 12.20 GB and 113.56 GB, for plum
and goat, respectively, and thus, cOMet is able to run on any
modern server.
Next, we ran experiments on the human dataset. Again,

since we do not possess the error free Rmaps corresponding
to the raw Rmaps for this dataset, we follow a similar evalua-
tion method as in the previous experiments. We performed our
evaluation on a in silico digested human reference genome (Gen-
Bank assembly accession: GCA_000001405.15, Genome Refer-
ence Consortium Human Build 38) using BspQI, which was the
restriction enzyme that was used for generating the Rmap data.
cOMet improves the S-score of 74.78% of the RMaps. The av-
erage S-score improves from 85.96 before error correction to
88.65 after error correction.

Conclusion

Error correction of high-throughput sequencing data has be-
come an imperative pre-processing step in genome assem-
bly since 2008 when Chaisson and Pevzner showed the dra-
matic improvement it can have on the quality of the assem-
bly [3, 8, 20]. For example, after error correction the contig
N50 size of an assembly of Rhodabacter sphaeroides improved
from 233 bp to 7,793 bp using the same assembler [20]. Due
to this inarguable bene�t on genome assembly, many methods
have been developed for error correction of sequence reads, in-
cluding BFC [11], Coral [19], EULER [17, 3] and Reptile [27]. Un-
fortunately, even though there has been a massive e�ort into
error correction of sequence data, there currently does not exist
a publicly releasedmethod for error correction of Rmap data—a
method that would likely improve the quality of genome-wide
optical map assemblies, and allow such assemblies to be com-
puted with greater e�ciency.
In this paper, we presented cOMet, an error correction

method for Rmap data, and demonstrate that it corrects and
improves the quality of a high percentage of Rmaps in both the
simulated and real datasets. As previously discussed, Rmap
data is subject to high error rates. In addition to insertion and
deletion errors, they contain sizing errors which necessitates
the use of dynamic programming algorithm for pairwise align-
ment, and subsequently, assembly. By correcting a signi�cant
number of errors in Rmap data, cOMet can make it possible
to use faster alignment methods [15, 10, 13], and explore the
development of more e�cient Rmap assembly algorithms.

Availability of source code

The cOMet software is written in C++ and is pub-
licly available under GNU General Public License at
https://github.com/kingu�/cOMet

Availability of Supporting Data

The optical mapping data for plum and goat is publicly available
and can be accessed from their respective manuscripts. The

simulated data for E.coli is provided in the github repository
along with the python scripts used to generate it.
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Supplementary material

In Figure 6 We show the distribution of lengths of Rmaps
whose S-score increases after error correction. From the dis-
tribution we can tell that our method is able to error correct
Rmaps of all sizes. We also show the distribution of fragment
sizes from Rmaps whose score increases after error correction
in Figure 7.
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Figure 6. Distribution of Rmap lengths whose S-score increased after error correction. The Rmaps are simulated from the Ecoli K-12 substr. MG 1655 as explained
in the text.

Figure 7. Distribution of fragment sizes of Rmaps whose S-score increased after error correction. The Rmaps are simulated from the Ecoli K-12 substr. MG 1655
as explained in the text.
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