Increased posterior default mode network activity and structural

2 connectivity in young adult *APOE*-ε4 carriers: a multi-modal imaging

3 investigation

- ⁴ Carl J. Hodgetts¹, Jonathan P. Shine², Huw Williams¹, Mark Postans¹,
- 5 Rebecca Sims³, Julie Williams³, Andrew D. Lawrence¹ & Kim S. Graham¹
- 6
- 7 (1) Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff
- 8 University, Maindy Road, Cardiff CF24 4HQ, Wales, UK
- 9 (2) German Center for Neurodegenerative Diseases (DZNE), Aging and Cognition Research
- 10 Group, 39120 Magdeburg, Germany.
- 11 (3) Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for
- 12 Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy
- 13 Road, Cardiff CF24 4HQ, Wales, UK
- 14
- 15
- 16
- .0
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24 **Corresponding author:** Dr Carl J Hodgetts: School of Psychology, Cardiff
- ²⁵ University, Tower Building, Park Place, CF10 3AT, UK; Tel: 029 2087 0715;
- 26 Email: hodgettscj@cardiff.ac.uk

27 Abstract

28	Young adult APOE-E4 carriers show increased activity in posterior regions of
29	the default mode network (pDMN), but how this is related to structural
30	connectivity is unknown. Thirty young adults (half APOE-ɛ4 carriers, the other
31	half APOE- ϵ 3 ϵ 3/ ϵ 2 ϵ 3; mean age 20 years) were scanned using both diffusion
32	and functional magnetic resonance imaging. Diffusion tractography was used
33	to quantify the microstructure (mean diffusivity, MD; fractional anisotropy, FA)
34	of the parahippocampal cingulum bundle (PHCB), which links pDMN and the
35	medial temporal lobe. APOE-E4 carriers had lower MD and higher FA relative
36	to non-carriers in PHCB. Further, PHCB microstructure was selectively
37	associated with pDMN activity during a scene discrimination task known to be
38	sensitive to Alzheimer's disease (AD). These findings are consistent with a
39	lifespan view of AD risk, where early-life structural and functional brain
40	changes in specific, vulnerable networks leads to increased neural activity
41	that may ultimately trigger amyloid-ß deposition.
42	
43	Key Words
44	Alzheimer's disease; APOE; Default mode network; Diffusion MRI; Functional
45	MRI; Individual differences; Scene processing; Parahippocampal cingulum
46	bundle
47	

52 1. Background

53	The default mode network (DMN) is a large-scale brain system displaying
54	continuously high levels of coordinated activity in the resting-state (Raichle,
55	2015). DMN activity is maintained or enhanced during internally directed
56	cognition (e.g., autobiographical memory, mind-wandering), and is attenuated
57	during many cognitive tasks demanding external perceptual attention (e.g.
58	episodic memory encoding) (Raichle, 2015).
59	
60	Rather than constituting a single, unitary brain network, the DMN can be
61	divided into several functionally dissociable subsystems (Andrews-Hanna et
62	al., 2010; Raichle, 2015), which are affected differently by Alzheimer's
63	disease (AD) progression (Myers et al., 2014). Notably, the posterior DMN
64	(pDMN), comprising posterior cingulate, precuneus and retrosplenial cortex
65	(Cauda et al., 2010), is one of the earliest brain areas to undergo amyloid-ß
66	accumulation and reduced metabolism in AD (Gonneaud et al., 2016;
67	Palmqvist et al., 2017). The pDMN also constitutes the brain's structural
68	"core" and is characterized both by high levels of baseline activity/metabolism
69	and dense functional and structural inter-connectivity (Bero et al., 2012;
70	Buckner et al., 2009; Hagmann et al., 2008).
71	
72	The striking spatial overlap between the pDMN and regions that show early
73	amyloid-ß accumulation has led to a 'lifespan systems vulnerability' (LSV)
74	account of AD, where increased activity and connectivity - over the lifetime -
75	may predispose this region to later-life amyloid-ß (Buckner et al., 2009; de

Haan et al., 2012; Jagust and Mormino, 2012). Providing strong evidence for

77	a link between neural activity/connectivity and amyloid-ß, a study in
78	transgenic mice (Bero et al., 2011) reported that interstitial amyloid-ß levels
79	were associated with increased markers of neural activity, and this, in turn,
80	predicted amyloid-ß deposition, particularly in pDMN ((Bero et al., 2011); see
81	also (Yamamoto et al., 2015)). A further study showed that region-specific
82	levels of functional connectivity in young Aß- mice was proportional to the
83	degree of amyloid-ß burden in older animals (Bero et al., 2012). Similarly,
84	human neuroimaging studies have reported associations, within-subjects,
85	between the degree of baseline pDMN functional connectivity and subsequent
86	amyloid-ß load in both mild cognitive impairment (MCI) (Myers et al., 2014)
87	and cognitively-normal older adults (Jack and Holtzman, 2013). While these
88	studies suggest that functional properties may drive pathological markers, it
89	could reflect a later-life compensatory response induced by early amyloid-ß
90	burden in key networks (Jagust and Mormino, 2012; Jones et al., 2016).
91	
92	If later-life amyloid-ß deposition in pDMN is associated with increased
93	functional activity/connectivity across the lifespan, then alterations may be
94	evident in younger individuals at elevated risk of AD. Further, as amyloid-ß
95	deposition is highly unlikely in young adults (de Haan et al., 2012; Mormino,
96	2014), this approach addresses a key limitation of studies in elderly
97	individuals where compensatory functional activity may reflect early pathology
98	(Jagust and Mormino, 2012).
99	
100	The APOE-ε4 allelle is the strongest genetic risk factor for both sporadic early

and late-onset AD (Liu et al., 2013) and is strongly linked to amyloid-ß

102	accumulation in later life (Gonneaud et al., 2016). Functional magnetic
103	resonance imaging (fMRI) studies have typically found that young APOE-ε4
104	carriers show increased activity, relative to non-carriers, in pDMN and inter-
105	connected medial temporal lobe (MTL) regions (Dennis et al., 2010; Filippini
106	et al., 2009; Shine et al., 2015). APOE- ϵ 4 carriers have also been shown to
107	have greater intrinsic functional connectivity in the DMN during "rest" (Filippini
108	et al., 2009).

109

Given the view that pDMN vulnerability to amyloid-ß accumulation is linked to its role as a large-scale connectivity hub (Jagust and Mormino, 2012; Jones et al., 2016), the heightened pDMN activity in young *APOE*-ε4 carriers may itself be linked to variation in structural connectivity (Brown et al., 2011; de Haan et al., 2012) - particularly those connections linking pDMN with other regions affected early in AD.

116

The major white matter connection linking pDMN with MTL (particularly 117 parahippocampal cortex) (Greicius et al., 2009; Heilbronner and Haber, 2014) 118 is the parahippocampal cingulum bundle (PHCB). Studies applying diffusion 119 magnetic resonance imaging (dMRI) - a method allowing in vivo quantification 120 of white matter microstructure – have reported greater mean diffusivity (MD) 121 and lower fractional anisotropy (FA) in the PHCB of cognitively-normal older 122 APOE-ε4 carriers compared to non-carriers (Heise et al., 2014). One cross-123 sectional dMRI study found that young adult APOE-E4 carriers had higher 124 PHCB FA but showed a steeper decline across life, leading to relative FA 125 reduction relative to non-carriers from mid-life onwards ((Felsky, 2013); see 126

127	also (Brown et al., 2011)). Disruption of this pathway is also seen in both MCI
128	and AD (Mito et al., 2018; Rieckmann et al., 2016), and has been linked to
129	pDMN activity/metabolism in AD (Villain et al., 2008) and amyloid-ß burden in
130	preclinical AD (Racine et al., 2014). Overall, these studies point toward the
131	potential early-life vulnerability of a broader posterior network that is
132	structurally underpinned by the PHCB (Greicius et al., 2009). Further, they
133	support the view that increased brain activity over the lifespan – driven by
134	structural connectivity - leads to amyloid-ß deposition, and ultimately results in
135	decreased activity/connectivity in later life due to "wear and tear" (Jagust and
136	Mormino, 2012).
137	
138	It is unclear, however, whether these PHCB microstructural alterations are
139	evident earlier in life when amyloid-ß deposition is unlikely, concomitant with
140	the identified functional changes in college-aged adults (Dennis et al., 2010;
141	Filippini et al., 2009; Shine et al., 2015). Moreover, if increased activity in
142	pDMN stems from its role as a large-scale connectivity hub (Brown et al.,
143	2011; de Haan et al., 2012), then those individuals who show elevated pDMN
144	activity (Filippini et al., 2009; Shine et al., 2015) should also have "increased"
145	structural connectivity (de Haan et al., 2012). To address these questions we
146	applied high angular resolution dMRI (HARDI (Tuch et al., 2002)), alongside
147	constrained spherical deconvolution (CSD) tractography (Jeurissen et al.,

- 148 2011), to test whether the presence of an *APOE*- ϵ 4 allele in young adults,
- who are unlikely to harbor amyloid burden, influences PHCB tissue
- microstructure. Given evidence that young *APOE*-ε4 carriers show elevated
- pDMN activity at rest and during tasks (Shine et al., 2015), we predicted that

 $APOE-\varepsilon 4$ carriers would show greater FA and lower MD in the PHCB,

compared to non-carriers. Finally, to demonstrate a link between activity and
connectivity, as predicted by an LSV view of AD risk, we examined whether
inter-individual variation in PHCB tissue microstructure was associated with
pDMN activity during a scene discrimination task that is sensitive to early AD
(Lee, 2006).

158

159 **2. Material and Methods**

160 **2.1. Participants**

Full details regarding DNA extraction and genotypic distribution can be found 161 in a previous article (Shine et al., 2015). The available sample for this analysis 162 was 30 participants (15 per group; 14 females per group) - a sample size 163 similar to other structural/functional studies of APOE- $\varepsilon 4$ (Dennis et al., 2010; 164 Filippini et al., 2009; Oh and Jagust, 2013). The non-carrier APOE allele 165 166 distribution was 10 APOE-ɛ3ɛ3 and 5 APOE-ɛ2ɛ3 individuals. The carrier APOE allele distribution was 14 APOE-2324 and 1 APOE-2224. Both groups 167 were matched for age (carriers: 19.7 years, S.D. = 0.84; non-carriers: 19.7 168 years, S.D. = 0.89) and education level. Family history was matched across 169 the groups, with two reports of a positive family history in each. All participants 170 were right-handed, native English speakers with normal or corrected-to-171 normal vision, and had no self-reported history of neurological/psychiatric 172 173 disorders. Groups were well matched on standard neuropsychological tests (Shine et al., 2015). All experimental procedures were conducted in 174 accordance with, and were approved by, the Cardiff University School of 175

- 176 Psychology Research Ethics Committee. Informed consent was obtained from
- all participants, and research was conducted in a double-blind manner.
- 178

179 **2.2. MRI scan parameters**

- ¹⁸⁰ Imaging data were collected at the Cardiff University Brain Research Imaging
- 181 Centre (CUBRIC) using a GE 3-T HDx MRI system (General Electric
- Healthcare, Milwaukee, WI) with an 8-channel receive-only head coil. Whole
- brain HARDI (Tuch et al., 2002) data were acquired using a diffusion-
- weighted single-shot spin-echo echo-planar imaging (EPI) pulse sequence
- with the following parameters: TE = 87ms; voxel dimensions = 2.4 x 2.4 x 2.4
- mm^3 ; field of view = 23 x 23 cm²; 96 x 96 acquisition matrix; 60 slices
- (oblique-axial with 2.4 mm thickness). Acquisitions were cardiac gated using a
- peripheral pulse oximeter. Gradients were applied along 30 isotropic
- directions with $b = 1200 \text{ s/mm}^2$. Three non-diffusion weighted images were

acquired with $b = 0 \text{ s/mm}^2$.

191

192 2.3. Diffusion MRI preprocessing

Motion and eddy current correction was conducted using ExploreDTI 193 (Leemans and Jones, 2009). Partial volume corrected maps of tissue FA and 194 MD were generated by applying the bi-tensor 'Free Water Elimination' (FWE) 195 procedure (Pasternak et al., 2009). FA reflects the extent to which diffusion is 196 anisotropic, or constrained along a single axis, and can range from 0 (fully 197 isotropic) to 1 (fully anisotropic). MD (10⁻³mm²s⁻¹) reflects a combined average 198 of axial (diffusion along the principal axis) and radial diffusion (diffusion along 199 the orthogonal direction). 200

201 2.4. Tractography

202	Deterministic whole-brain tractography was conducted in ExploreDTI
203	(Leemans and Jones, 2009) using the CSD model (Jeurissen et al., 2011),
204	which extracts multiple peaks in the fiber orientation density function (fODF)
205	(Vettel et al., 2017). Streamlines were reconstructed using the following
206	parameters: fODF amplitude threshold = 0.1 ; step size = 0.5 mm; angle
207	threshold = 60°).
208	
209	Three-dimensional reconstructions of the PHCB (Figure 1A) were obtained
209 210	Three-dimensional reconstructions of the PHCB (Figure 1A) were obtained from individual subjects using a Boolean, way-point region of interest (ROI)
210	from individual subjects using a Boolean, way-point region of interest (ROI)
210 211	from individual subjects using a Boolean, way-point region of interest (ROI) approach, where "AND" and "NOT" ROIs were applied and combined to
210 211 212	from individual subjects using a Boolean, way-point region of interest (ROI) approach, where "AND" and "NOT" ROIs were applied and combined to isolate PHCB streamlines in each subject's whole-brain tractography data.

216

217 2.4.1. Parahippocampal cingulum reconstruction

218 Reconstruction of the PHCB followed a previously published and reliable

- ²¹⁹ protocol (termed "restricted parahippocampal cingulum"; see (Jones et al.,
- 2013)). Following tract reconstruction in both hemispheres, the partial volume
- 221 corrected maps for FA and MD were intersected with the PHCB tract masks to
- ²²² obtain mean bilateral measures of tract microstructure (MD, FA).

223

224 2.4.2. Analysis of tractography data

MD and FA values of the bilateral PHCB in APOE-ε4 carriers and non-carriers

226	were compared directly using directional Welch t-tests in R. We also report
227	Default JZS Bayes Factors for our key analyses, computed using JASP
228	(https://jasp-stats.org). The Bayes factor, expressed as BF10, reflects the
229	strength of evidence that the data provide for the alternative hypothesis (H1)
230	relative the null (H0). A BF_{10} much greater than 1 allows us to conclude that
231	there is substantial evidence for the alternative versus the null hypothesis
232	(Wagenmakers et al., 2017).

233

234 **2.5 Tract-Based Spatial Statistics (TBSS)**

Voxel-wise statistical analysis of the dMRI data was carried out using TBSS

(Smith et al., 2006). This method involves non-linearly projecting subjects'

free water corrected statistical maps (both MD & FA) onto a mean tract

skeleton and then applying voxel-wise cross-subject statistics. We applied a

239 general linear model (GLM) contrasting APOE-ε4 carriers and non-carriers for

each dMRI metric. To restrict our analysis to the PHCB, we extracted the

PHCB mask from the Johns Hopkins University ICBM-DTI-81 white-matter

atlas using FSLview (e.g., (Heise et al., 2014)). Significant clusters were

extracted using Threshold-Free Cluster Enhancement (Smith and Nichols,

- 244 2009) with a corrected alpha of p = 0.05. Additional exploratory whole brain
- analyses were conducted using the same TFCE-corrected statistical

threshold. All reported coordinates are in Montreal Neurological Institute (MNI-

²⁴⁷ 152) space.

248

249 **2.6. Functional MRI methods**

²⁵⁰ Further information regarding fMRI acquisition, preprocessing and analysis

251	can be found in Shine et al. (Shine et al., 2015). Five participants were
252	excluded from the fMRI analysis due to subject motion (4 subjects) and
253	scanner error (1 subject) resulting in a final sample of 25 participants (13
254	carriers & 12 non-carriers). The fMRI measure-of-interest was the BOLD
255	response (percent signal change) in the pDMN during a perceptual 'odd-one-
256	out' discrimination task for scenes and faces (Figure 1A). The pDMN ROI was
257	defined independently using a different cognitive task (short-term memory);
258	this analysis confirmed a significant group difference (carriers > non-carriers)
259	during scene short-term memory in pDMN (Shine et al., 2015). Individual
260	percent signal change values for scenes and faces (each against a "size"
261	oddity baseline condition) were calculated from this ROI using FSL and
262	correlated with diffusion metrics using directional Pearson's r correlations.
263	Directional Bayes factors and 95% Bayesian credibility intervals (BCI) are
264	reported for all correlations. BCIs inform us that, given our observed data,
265	there is a 95% probability that the true value of our effect (Pearson's r) lies
266	within this interval. Correlations between each fMRI task condition and PHCB
267	microstructure were compared using a one-tailed Steiger Z test of dependent
268	correlations in 'cocor' (http://comparingcorrelations.org/) (Diedenhofen and
269	Musch, 2015).

270

271 **3. Results**

3. 1. Comparing PHCB microstructure using tractography

273 APOE-ε4 allele carriers had significantly lower MD compared to non-carriers (t

 $(28) = 2.3 \text{ p} = 0.015, \text{ d} = 0.84, \text{BF}_{10} = 4.55; \text{Figure 1B}$. While there was a

strong trend for PHCB FA in the predicted direction, the between-group

difference just failed to reach significance (t (28) = 1.69, p = 0.051, d = 0.62, 276

- 278
- 279 Given suggested gender differences associated with APOE- ϵ 4 (Heise et al.,
- 2014; Ungar et al., 2014), we also conducted this analysis without male 280
- participants (removal of one individual from each group). A significant 281
- difference was found between carriers and non-carriers for PHCB MD, though 282
- with a slightly larger effect size (t (26) = 2.42, p = 0.012, d = 0.92, BF₁₀ = 5.5). 283
- A significant difference was also found for PHCB FA (t (26) = 2, p = 0.03, d =284
- 0.75, $BF_{10} = 2.82$). 285
- 286

3.2. Voxel-wise approach 287

TBSS analyses identified a significant cluster in right posterior PHCB for FA (p 288

= 0.02; 29, -49, -1), reflecting higher FA in APOE-ε4 carriers (Figure 2) -289

290 consistent with the tractography analysis. We found no TFCE-corrected

clusters for MD Using an uncorrected threshold of p = 0.005 (Postans et al., 291

2014), we identified a significant cluster in left posterior PHCB reflecting lower 292

- MD in carriers (p < 0.001; -28, -58, 0). An exploratory whole brain analysis 293
- (TFCE-corrected) revealed no significant clusters for either metric. 294
- 295

300

3.3. The relationship between pDMN activity and PHCB microstructure 296

- To examine the functional relevance of these structural connectivity metrics, 297 we tested whether inter-individual variation in PHCB microstructure (MD, FA) 298 was associated with fMRI response in the pDMN during an 'odd-one-out' 299
- discrimination task for scenes and faces (Shine et al., 2015). Across all

301	subjects, we found a significant negative association between PHCB MD and
302	scene activity (vs. "size" baseline) in the pDMN (r = -0.51, p = 0.01, BF_{10} =
303	12.1, 95% BCI [-0.73, -0.13]; Figure 1C). There was no significant association
304	between MD and face activity (r = -0.03, p = 0.01, BF_{10} = 0.29, 95% BCI [-
305	0.45, -0.01]). A one-tailed Steiger Z test revealed a significant difference
306	between these coefficients (z = 2.5, p < 0.01). For PHCB FA, we likewise
307	observed a significant association with scene, but not face, pDMN BOLD
308	response (scene: r = 0.49, p = 0.01, BF ₁₀ = 8.87, 95% BCI [0.12, 0.72]); face:
309	r = 0.12, p = 0.01, BF ₁₀ = 0.41, 95% BCI [-0.45, -0.01]; Figure 1C). The
310	correlation between PHCB FA and scene activity was significantly greater
311	than the correlation with face activity ($z = 2$, $p = 0.02$).
312	
313	4. General discussion

Based on the view that pDMN vulnerability to amyloid-ß arises from its role as 314 315 a large-scale connectivity hub (Bero et al., 2012; Brown et al., 2011; Buckner et al., 2009; de Haan et al., 2012; Jagust and Mormino, 2012), we asked 316 whether young adults at heightened genetic risk for AD (via presence of the 317 APOE-ε4 allele) would show increased pDMN structural connectivity (Greicius 318 et al., 2009). Supporting this hypothesis, we found that APOE-ε4 carriers, 319 relative to non-carriers, had microstructural differences in the PHCB – a white 320 matter tract linking the pDMN with the MTL, particularly parahippocampal 321 regions (Heilbronner and Haber, 2014). Moreover, inter-individual variation in 322 PHCB microstructure was selectively associated with pDMN activity during a 323 scene discrimination task that is sensitive to early AD (Lee, 2006). 324

325

326	The pDMN has been labelled the brain's epicenter (Hagmann et al., 2008),
327	given its disproportionately high structural/functional connectivity (Buckner et
328	al., 2009; Hagmann et al., 2008). This region is also one of the first brain
329	areas to undergo amyloid-ß deposition in AD (Gonneaud et al., 2016;
330	Palmqvist et al., 2017). The early deposition of amyloid-ß in pDMN suggests
331	that the high connectivity/activity demands on this region may, over the
332	lifespan, lead to amyloid-ß accumulation and ultimately atrophy and cognitive
333	decline (Bero et al., 2011). In human neuroimaging studies, strong within-
334	subject correspondence has been found between pDMN functional
335	connectivity strength and subsequent amyloid-ß load in individuals MCI
336	(Myers et al., 2014). Elevated pDMN connectivity in low-amyloid individuals
337	(Aß-) has also been associated with increased amyloid-ß deposition at follow-
338	up (Jack et al., 2013). These increases in functional connectivity in older
339	individuals, however, could reflect a compensatory response induced by early
340	pathology (Jagust and Mormino, 2012; Jones et al., 2016; Schultz et al.,
341	2017).
342	
343	In young adult APOE-ε4 carriers, who are highly unlikely to harbor amyloid-β,
344	increased functional activity in pDMN and MTL has been seen across AD-
345	relevant cognitive tasks (Dennis et al., 2010; Filippini et al., 2009; Shine et al.,
346	2015). Young APOE-E4 carriers also display greater intrinsic functional
247	connectivity in the DMN compared to pop-carriers (Filippini et al. 2009) -

347 connectivity in the DMN compared to non-carriers (Filippini et al., 2009) -

- 348 consistent with the view that functional activity differences may reflect
- increased connectivity. This contrasts with studies in older, cognitively-normal
- 350 APOE-ε4 carriers, which report decreased functional connectivity (and also

activity) in pDMN regions (Sheline et al., 2010).

352

353	Extending these studies, we found that college-aged APOE-E4 carriers had
354	increased structural connectivity (see below) in the PHCB – the main white
355	matter pathway of the pDMN (Greicius et al., 2009). Specifically, young adult
356	APOE-ɛ4 carriers had lower MD and higher FA compared to non-carriers. The
357	direction of this effect contrasts with studies in older, cognitively-normal
358	APOE- ϵ 4 carriers and MCI, where decreased FA (and increased MD) is
359	typically seen (Heise et al., 2014; Villain et al., 2008). Further, to demonstrate
360	that these differences in structural connectivity are linked to difficulties
361	modulating pDMN activity in APOE-ɛ4, we correlated inter-individual variation
362	in PHCB microstructure with pDMN BOLD response during a scene
363	discrimination task that is sensitive to early cognitive changes in AD [37]. This
364	multi-modal, individual differences approach demonstrated that individuals
365	with the highest pDMN activity during scene discrimination had the highest
366	structural connectivity in the PHCB (lower MD/higher FA), suggesting that
367	individual variation in structural connectivity in the PHCB may impact activity
368	in pDMN, and subsequent vulnerability to amyloid-ß in later life (Jagust and
369	Mormino, 2012). While group differences in MD and FA most likely reflect an
370	impact of APOE-e4 on some aspect(s) of structural connectivity, we cannot
371	readily determine what these are; variation in these diffusion metrics could
372	arise from multiple, functionally-relevant biological properties (e.g.,
373	myelination, membrane permeability and/or axon number, diameter and
374	voxel-wise configuration (D K Jones et al., 2013)).

375

376	One interpretation of these white matter differences is that they reflect early
377	neuropathology, such as axonal loss or demyelination. Studies in
378	asymptomatic adult carriers of a disease-causing PSEN1 mutation (Ryan et
379	al., 2013), and also in older adults with a parental history of AD (Melah et al.,
380	2016), have reported, like here, greater FA (and lower MD) in a wide range of
381	tracts, including the cingulum. Greater FA has also been observed in
382	individuals with A β + versus A β - MCI (Racine et al., 2014). Such differences
383	have been attributed to axonal loss within specific fiber sub-populations of
384	complex crossing-fiber areas (Douaud et al., 2011). This would lead to a
385	reduction in fiber complexity and a concomitant increase in local anisotropy.
386	Given that these APOE-ε4 carriers will not harbor amyloid-ß (Mormino, 2014),
387	however, this neuropathological interpretation seems highly unlikely. Further,
388	the pattern reported here is opposite to that seen typically in older individuals,
389	where studies have shown reported lower FA/higher MD in individuals with
390	AD and MCI ((Mito et al., 2018; Rieckmann et al., 2016) but see (Racine et
391	al., 2014)). Rather, these findings support a LSV view of AD risk, where early-
392	life, non-pathologically driven structural and functional alterations in specific
393	brain networks may confer risk for later-life AD neuropathology (Jagust and
394	Mormino, 2012).

395

Given this, one possible explanation for these white matter differences is that *APOE*-ε4 carriers and non-carriers undergo different patterns of white matter
maturation. Previous studies suggest that efficient communication between
distributed brain regions may emerge across development via overgrowth and
then pruning of redundant axons (Yeatman et al., 2012). *APOE*-ε4 carriers,

401	therefore, may show somewhat delayed axonal pruning of the late-maturing
402	cingulum (Yeatman et al., 2014) during a critical period, such as adolescence
403	(Yeatman et al., 2012), which leads to an overshoot in tissue microstructure
404	and relative increases in pDMN neural activity (Figure 4). This increased
405	pDMN activity in young adult APOE-ε4 carriers (as seen here during scene
406	discrimination) may thus reflect some form of lifelong reduced network
407	efficiency (Jagust and Mormino, 2012) or flexibility (Westlye et al., 2011),
408	which impacts the ability of the pDMN to modulate activity (or state-dependent
409	connectivity with MTL (Harrison et al., 2016; Westlye et al., 2011)) required to
410	accommodate the need of a particular task.
411	
412	Critically, these early life increases in pDMN structural connectivity (i.e.,
413	higher FA/lower MD), and concomitant changes in functional activity (Shine et
414	al., 2015), may portend a faster decline in connectivity over the lifespan
415	(Brown et al., 2011; Felsky, 2013), which ultimately leads to early amyloid-ß
416	deposition and neurodegeneration (de Haan et al., 2012) (depicted in Figure
417	4). For instance, a cross-sectional study, which applied graph theory to
418	measure the network characteristics of dMRI data, found that younger APOE-
419	ϵ 4 carriers had greater 'local interconnectivity' relative to non-carriers but
420	exhibited a steeper age-related reduction ((Brown et al., 2011); see also
421	(Felsky, 2013)). A potential compensatory increase in connectivity/activity, in
422	response to accumulating amyloid-ß pathology (Schultz et al., 2017), will
423	result in nodal stress and ultimately network failure (Jones et al., 2016), as
424	reflected by a second steep decline in network integrity (activity/connectivity;
425	Figure 3). A recent study, for instance, found that amyloid-ß contributes to the

426	spreading of tau pathology via the PHCB (Jacobs et al., 2018). Future multi-
427	modal imaging studies, conducted longitudinally across the lifespan, would
428	provide further insights into how APOE-E4 influences white matter
429	microstructure and task-related activity across the lifespan.
430	
431	While comparable to previous studies (Dennis et al., 2010; Filippini et al.,
432	2009; Oh and Jagust, 2013), the sample size in the current study is relatively
433	modest. This issue is partly mitigated by a clear hypothesis-driven approach
434	(Button et al., 2013) and Bayesian analyses showing that our findings have
435	high evidential value (Dienes, 2014).
436	
437	While we observed significant differences for both FA and MD, our reported
438	effects were somewhat stronger for MD, particularly for the tractography
439	analysis. This is consistent with reports that FA shows greater intra-tract
440	variability than MD – i.e. tracts do not have a signature FA value that is
441	consistent along the tract length (Yeatman et al., 2012). Future dMRI studies
442	using advanced tract profiling and biophysical modelling would shed further
443	insight into the relation between APOE-e4 and PHCB microstructure (Assaf et
444	al., 2017; Yeatman et al., 2012).
445	
446	Conclusion
447	To conclude, we have shown that $APOE$ - ϵ 4-related increases in pDMN
448	activity (Shine et al., 2015) are linked to structural connectivity in the PHCB -
449	the main white matter conduit linking pDMN with the MTL (Heilbronner and

Haber, 2014). Specifically, APOE-ɛ4 carriers had significantly lower MD, and

451	higher FA, in this pathway – the opposite effect to that seen in cognitively-
452	normal older APOE-E4 carriers (Felsky, 2013). By combining dMRI and BOLD
453	fMRI measures, we showed that inter-individual variation in PHCB
454	microstructure (increased FA/decreased MD) was linked to increased pDMN
455	activity during a scene discrimination task that is affected in AD (Lee, 2006).
456	These findings support a LSV model of AD risk, whereby connectivity-
457	associated increases in pDMN activity across the lifespan may confer risk for
458	amyloid-ß accumulation in later life – one of the earliest biomarkers of AD
459	pathology.
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	

476 Author contributions

- 477 CJH, ADL and KSG designed research; CJH collected the data; CJH, JPS,
- 478 HW and MP analyzed the neuroimaging data; RS and JW analyzed the
- genetic data; CJH wrote the paper with support from all other authors; CJH
- and JPS are joint first authors.
- 481

482 Acknowledgments

- ⁴⁸³ This work was supported by Alzheimer's Research UK (KSG), the Medical
- Research Council (MR/N01233X/1: KSG; G1002149: KSG, CJH), a Wellcome
- ⁴⁸⁵ Trust Strategic Award (104943/Z/14/Z; CJH), The Waterloo Foundation, the
- Biotechnology and Biological Sciences Research Council (BB/1007091/1;
- 487 KSG, MP), and the Welsh Government (via the Wales Institute of Cognitive
- ⁴⁸⁸ Neuroscience). We would like to thank John Evans, Martin Stuart and Peter

Hobden for scanning support.

- 490
- 491 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500

501 **References**

502	Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., Buckner, R.L.,
503	2010. Functional-anatomic fractionation of the brain's default network.
504	Neuron 65, 550–562. doi:10.1016/j.neuron.2010.02.005
505	Assaf, Y., Johansen-Berg, H., Thiebaut de Schotten, M., 2017. The role of
506	diffusion MRI in neuroscience. bioRxiv.
507	Bero, A.W., Bauer, A.Q., Stewart, F.R., White, B.R., Cirrito, J.R., Raichle,
508	M.E., Culver, J.P., Holtzman, D.M., 2012. Bidirectional relationship
509	between functional connectivity and amyloid-B deposition in mouse brain.
510	J. Neurosci. 32, 4334–4340. doi:10.1523/JNEUROSCI.5845-11.2012
511	Bero, A.W., Yan, P., Roh, J.H., Cirrito, J.R., Stewart, F.R., Raichle, M.E., Lee,
512	JM., Holtzman, D.M., 2011. Neuronal activity regulates the regional
513	vulnerability to amyloid- β deposition. Nat. Neurosci. 14, 750–756.
514	doi:10.1038/nn.2801
515	Brown, J.A., Terashima, K.H., Burggren, A.C., Ercoli, L.M., Miller, K.J., Small,
516	G.W., Bookheimer, S.Y., 2011. Brain network local interconnectivity loss
517	in aging APOE-4 allele carriers. Proc. Natl. Acad. Sci. 108, 20760–20765.
518	doi:10.1073/pnas.1109038108
519	Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T.,
520	Andrews-Hanna, J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical hubs
521	revealed by intrinsic functional connectivity: mapping, assessment of
522	stability, and relation to Alzheimer's disease. J. Neurosci. 29, 1860–1873.
523	doi:10.1523/JNEUROSCI.5062-08.2009
524	Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson,
525	E.S.J., Munafò, M.R., 2013. Power failure: why small sample size

526	undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365-
527	376. doi:10.1038/nrn3475
528	Cauda, F., Geminiani, G., D'Agata, F., Sacco, K., Duca, S., Bagshaw, A.P.,
529	Cavanna, A.E., 2010. Functional connectivity of the posteromedial cortex.
530	PLoS One 5, 1–11. doi:10.1371/journal.pone.0013107
531	de Haan, W., Mott, K., van Straaten, E.C.W., Scheltens, P., Stam, C.J., 2012.
532	Activity dependent degeneration explains hub vulnerability in Alzheimer's
533	disease. PLoS Comput. Biol. 8, e1002582.
534	doi:10.1371/journal.pcbi.1002582
535	Dennis, N.A., Browndyke, J.N., Stokes, J., Need, A., Burke, J.R., Welsh-
536	Bohmer, K.A., Cabeza, R., 2010. Temporal lobe functional activity and
537	connectivity in young adult APOE ϵ 4 carriers. Alzheimer's Dement. 6,
538	303–311. doi:10.1016/j.jalz.2009.07.003
539	Diedenhofen, B., Musch, J., 2015. Cocor: A comprehensive solution for the
540	statistical comparison of correlations. PLoS One 10, 1–12.
541	doi:10.1371/journal.pone.0121945
542	Dienes, Z., 2014. Using Bayes to get the most out of non-significant results.
543	Front. Psychol. 5, 1–17. doi:10.3389/fpsyg.2014.00781
544	Douaud, G., Jbabdi, S., Behrens, T.E.J., Menke, R.A., Gass, A., Monsch,
545	A.U., Rao, A., Whitcher, B., Kindlmann, G., Matthews, P.M., Smith, S.,
546	2011. DTI measures in crossing-fibre areas: Increased diffusion
547	anisotropy reveals early white matter alteration in MCI and mild
548	Alzheimer's disease. Neuroimage 55, 880–890.
549	doi:10.1016/j.neuroimage.2010.12.008
550	Felsky, D., 2013. APOE epsilon4, aging, and effects on white matter across

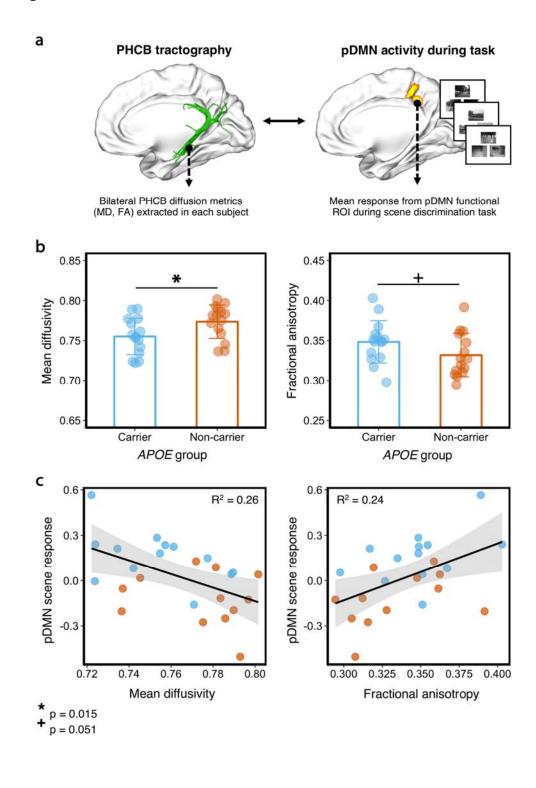
doi:10.1001/jamapsychiatry.2013	3.865
---------------------------------	-------

- ⁵⁵³ Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B.,
- 554 Smith, S.M., Matthews, P.M., Beckmann, C.F., Mackay, C.E., 2009.
- 555 Distinct patterns of brain activity in young carriers of the APOE- 4 allele.
- ⁵⁵⁶ Proc. Natl. Acad. Sci. 106, 7209–7214. doi:10.1073/pnas.0811879106
- 557 Gonneaud, J., Arenaza-Urquijo, E.M., Fouquet, M., Perrotin, A., Fradin, S., De
- La Sayette, V., Eustache, F., Chételat, G., 2016. Relative effect of APOE
- ⁵⁵⁹ 4 on neuroimaging biomarker changes across the lifespan. Neurology
- 560 87, 1696–1703. doi:10.1212/WNL.000000000003234
- Greicius, M.D., Supekar, K., Menon, V., Dougherty, R.F., 2009. Resting-state
- ⁵⁶² functional connectivity reflects structural connectivity in the default mode
- network. Cereb. Cortex 19, 72–78. doi:10.1093/cercor/bhn059
- Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Van
- 565 Wedeen, J., Sporns, O., 2008. Mapping the structural core of human
- cerebral cortex. PLoS Biol. 6, 1479–1493.
- ⁵⁶⁷ doi:10.1371/journal.pbio.0060159
- Harrison, T.M., Burggren, A.C., Small, G.W., Bookheimer, S.Y., 2016. Altered
- 569 memory-related functional connectivity of the anterior and posterior
- ⁵⁷⁰ hippocampus in older adults at increased genetic risk for Alzheimer's
- disease. Hum. Brain Mapp. 37, 366–380. doi:10.1002/hbm.23036
- Heilbronner, S.R., Haber, S.N., 2014. Frontal Cortical and Subcortical
- 573 Projections Provide a Basis for Segmenting the Cingulum Bundle:
- ⁵⁷⁴ Implications for Neuroimaging and Psychiatric Disorders. J. Neurosci. 34,
- ⁵⁷⁵ 10041–10054. doi:10.1523/JNEUROSCI.5459-13.2014

576	Heise, V., Filippini, N., Trachtenberg, A.J., Suri, S., Ebmeier, K.P., Mackay,
577	C.E., 2014. Apolipoprotein E genotype, gender and age modulate
578	connectivity of the hippocampus in healthy adults. Neuroimage 98, 23-
579	30. doi:10.1016/j.neuroimage.2014.04.081
580	Jack, C.R., Holtzman, D.M., 2013. Biomarker modeling of Alzheimer's
581	disease. Neuron 80, 1347–1358. doi:10.1016/j.neuron.2013.12.003
582	Jack, C.R., Wiste, H.J., Weigand, S.D., Knopman, D.S., Lowe, V., Prashanthi,
583	V., Mielke, M.M., Jones, D.T., Senjem, M.L., Gunter, J.L., Gregg, B.E.,
584	Pankratz, V.S., Petersen, R.C., 2013. Amyloid-first and
585	neurodegeneration-first profiles characterize incident amyloid PET
586	positivity. Neurology 81, 1732–1740.
587	Jacobs, H.I.L., Hedden, T., Schultz, A.P., Sepulcre, J., Perea, R.D., Amariglio,
588	R.E., Papp, K. V., Rentz, D.M., Sperling, R.A., Johnson, K.A., 2018.
589	Structural tract alterations predict down-stream tau accumulation in
590	amyloid positive older individuals. Nat. Neurosci. doi:10.1038/s41593-
591	018-0070-z
592	Jagust, W.J., Mormino, E.C., 2012. Lifespan brain activity, B-amyloid and
593	Alzheimer Disease. Trends cogn sci 15, 520–526.
594	doi:10.1016/j.tics.2011.09.004.Lifespan
595	Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J., 2011.
596	Probabilistic fiber tracking using the residual bootstrap with constrained
597	spherical deconvolution. Hum. Brain Mapp. 32, 461–479.
598	doi:10.1002/hbm.21032
599	Jones, D.K., Christiansen, K.F., Chapman, R.J., Aggleton, J.P., 2013. Distinct
600	subdivisions of the cingulum bundle revealed by diffusion MRI fibre

601	tracking: Implications for neuropsychological investigations.
602	Neuropsychologia 51, 67–78.
603	doi:10.1016/j.neuropsychologia.2012.11.018
604	Jones, D.K., Knösche, T.R., Turner, R., 2013. White matter integrity, fiber
605	count, and other fallacies: The do's and don'ts of diffusion MRI.
606	Neuroimage 73, 239–254. doi:10.1016/j.neuroimage.2012.06.081
607	Jones, D.T., Knopman, D.S., Gunter, J.L., Graff-Radford, J., Vemuri, P.,
608	Boeve, B.F., Petersen, R.C., Weiner, M.W., Jack, C.R., 2016. Cascading
609	network failure across the Alzheimer's disease spectrum. Brain 139, 547-
610	562. doi:10.1093/brain/awv338
611	Lee, A.C.H., 2006. Differentiating the Roles of the Hippocampus and
612	Perirhinal Cortex in Processes beyond Long-Term Declarative Memory: A
613	Double Dissociation in Dementia. J. Neurosci. 26, 5198–5203.
614	doi:10.1523/JNEUROSCI.3157-05.2006
615	Leemans, A., Jones, D.K., 2009. The B-matrix must be rotated when
616	correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336-
617	1349. doi:10.1002/mrm.21890
618	Liu, C.C., Kanekiyo, T., Xu, H., Bu, G., 2013. Apolipoprotein e and Alzheimer
619	disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118.
620	doi:10.1038/nrneurol.2012.263
621	Melah, K.E., Lu, S.YF., Hoscheidt, S.M., Alexander, A.L., Adluru, N.,
622	Destiche, D.J., Carlsson, C.M., Zetterberg, H., Blennow, K., Okonkwo,
623	O.C., Gleason, C.E., Dowling, N.M., Bratzke, L.C., Rowley, H.A., Sager,
624	M.A., Asthana, S., Johnson, S.C., Bendlin, B.B., 2016. Cerebrospinal
625	Fluid Markers of Alzheimer's Disease Pathology and Microglial Activation

626	are Associated with Altered White Matter Microstructure in Asymptomatic
627	Adults at Risk for Alzheimer's Disease. J. Alzheimer's Dis. 50, 873–886.
628	doi:10.3233/JAD-150897
629	Mito, R., Raffelt, D., Dhollander, T., Vaughan, D.N., Tournier, JD., Salvado,
630	O., Brodtmann, A., Rowe, C.C., Villemagne, V.L., Connelly, A., 2018.
631	Fibre-specific white matter reductions in Alzheimer's disease and mild
632	cognitive impairment. Brain 1–15. doi:10.1093/brain/awx355
633	Mormino, E.C., 2014. The Relevance of Beta-Amyloid on Markers of
634	Alzheimer's Disease in Clinically Normal Individuals and Factors That
635	Influence These Associations. Neuropsychol. Rev. 24, 300–312.
636	doi:10.1007/s11065-014-9267-4
637	Myers, N., Pasquini, L., Göttler, J., Grimmer, T., Koch, K., Ortner, M., Neitzel,
638	J., Mühlau, M., Förster, S., Kurz, A., Förstl, H., Zimmer, C.,
639	Wohlschläger, A.M., Riedl, V., Drzezga, A., Sorg, C., 2014. Within-patient
640	correspondence of amyloid- β and intrinsic network connectivity in
641	Alzheimer's disease. Brain 137, 2052–2064. doi:10.1093/brain/awu103
642	Oh, H., Jagust, W.J., 2013. Frontotemporal Network Connectivity during
643	Memory Encoding Is Increased with Aging and Disrupted by Beta-
644	Amyloid. J. Neurosci. 33, 18425–18437. doi:10.1523/JNEUROSCI.2775-
645	13.2013
646	Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E.,
647	Zetterberg, H., Blennow, K., Landau, S., Jagust, W., Hansson, O., 2017.
648	Earliest accumulation of β -amyloid occurs within the default-mode
649	network and concurrently affects brain connectivity. Nat. Commun. 8.
650	doi:10.1038/s41467-017-01150-x


651	Pasternak, O., Sochen, N., Gur, Y., Intrator, N., Assaf, Y., 2009. Free water
652	elimination and mapping from diffusion MRI. Magn. Reson. Med. 62,
653	717–730. doi:10.1002/mrm.22055
654	Postans, M., Hodgetts, C.J., Mundy, M.E., Jones, D.K., Lawrence, A.D.,
655	Graham, K.S., 2014. Interindividual variation in fornix microstructure and
656	macrostructure is related to visual discrimination accuracy for scenes but
657	not faces. J. Neurosci. 34, 12121–12126.
658	doi:10.1523/JNEUROSCI.0026-14.2014
659	Racine, A.M., Adluru, N., Alexander, A.L., Christian, B.T., Okonkwo, O.C., Oh,
660	J., Cleary, C.A., Birdsill, A., Hillmer, A.T., Murali, D., Barnhart, T.E.,
661	Gallagher, C.L., Carlsson, C.M., Rowley, H.A., Dowling, N.M., Asthana,
662	S., Sager, M.A., Bendlin, B.B., Johnson, S.C., 2014. Associations
663	between white matter microstructure and amyloid burden in preclinical
664	Alzheimer's disease: A multimodal imaging investigation. NeuroImage
665	Clin. 4, 604–614. doi:10.1016/j.nicl.2014.02.001
666	Raichle, M.E., 2015. The brain's default mode network. Annu. Rev. Neurosci.
667	38, 433–447. doi:10.1146/annurev-neuro-071013-014030
668	Rieckmann, A., Van Dijk, K.R.A., Sperling, R.A., Johnson, K.A., Buckner,
669	R.L., Hedden, T., 2016. Accelerated decline in white matter integrity in
670	clinically normal individuals at risk for Alzheimer's disease. Neurobiol.
671	Aging 42, 177–188. doi:10.1016/j.neurobiolaging.2016.03.016
672	Ryan, N.S., Keihaninejad, S., Shakespeare, T.J., Lehmann, M., Crutch, S.J.,
673	Malone, I.B., Thornton, J.S., Mancini, L., Hyare, H., Yousry, T., Ridgway,
674	G.R., Zhang, H., Modat, M., Alexander, D.C., Rossor, M.N., Ourselin, S.,
675	Fox, N.C., 2013. Magnetic resonance imaging evidence for

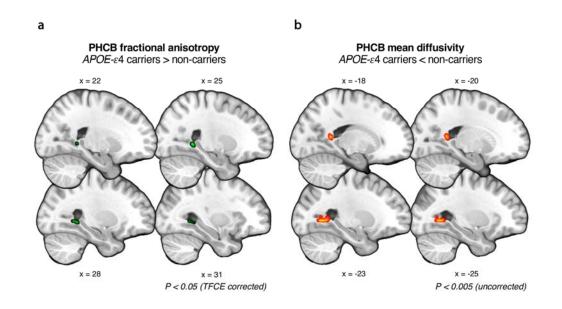
676	presymptomatic change in thalamus and caudate in familial Alzheimer's
677	disease. Brain 136, 1399–1414. doi:10.1093/brain/awt065
678	Schultz, A.P., Chhatwal, J.P., Hedden, T., Mormino, E.C., Hanseeuw, B.J.,
679	Sepulcre, J., Huijbers, W., LaPoint, M., Buckley, R.F., Johnson, K.A.,
680	Sperling, R.A., 2017. Phases of hyper and hypo connectivity in the
681	Default Mode and Salience networks track with amyloid and Tau in
682	clinically normal individuals. J. Neurosci. 37, 3263–16.
683	doi:10.1523/JNEUROSCI.3263-16.2017
684	Sheline, Y.I., Morris, J.C., Snyder, A.Z., Price, J.L., Yan, Z., D'Angelo, G., Liu,
685	C., Dixit, S., Benzinger, T., Fagan, A., Goate, A., Mintun, M.A., 2010.
686	APOE4 Allele Disrupts Resting State fMRI Connectivity in the Absence of
687	Amyloid Plaques or Decreased CSF A 42. J. Neurosci. 30, 17035–17040.
688	doi:10.1523/JNEUROSCI.3987-10.2010
689	Shine, J.P., Hodgetts, C.J., Postans, M., Lawrence, A.D., Graham, K.S.,
690	2015. APOE-ε4 selectively modulates posteromedial cortex activity
691	during scene perception and short-term memory in young healthy adults.
692	Sci. Rep. 5, 16322. doi:10.1038/srep16322
693	Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E.,
694	Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M.,
695	Behrens, T.E.J., 2006. Tract-based spatial statistics: Voxelwise analysis
696	of multi-subject diffusion data. Neuroimage 31, 1487–1505.
697	doi:10.1016/j.neuroimage.2006.02.024
698	Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement:
699	Addressing problems of smoothing, threshold dependence and
700	localisation in cluster inference. Neuroimage 44, 83–98.

701	doi:10.1016/j.neuroimage.2008.03.061
702	Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Van
703	Wedeen, J., 2002. High angular resolution diffusion imaging reveals
704	intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577-
705	582. doi:10.1002/mrm.10268
706	Ungar, L., Altmann, A., Greicius, M.D., 2014. Apolipoprotein E, gender, and
707	Alzheimer's disease: An overlooked, but potent and promising interaction.
708	Brain Imaging Behav. 8, 262–273. doi:10.1007/s11682-013-9272-x
709	Vettel, J.M., Cooper, N., Garcia, J.O., Yeh, FC., Verstynen, T.D., 2017.
710	White Matter Tractography and Diffusion-Weighted Imaging. eLS 1–9.
711	doi:10.1002/9780470015902.a0027162
712	Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mezenge, F.,
713	Landeau, B., Baron, JC., Eustache, F., Chetelat, G., 2008.
714	Relationships between Hippocampal Atrophy, White Matter Disruption,
715	and Gray Matter Hypometabolism in Alzheimer's Disease. J. Neurosci.
716	28, 6174–6181. doi:10.1523/JNEUROSCI.1392-08.2008
717	Wagenmakers, E.J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J.,
718	Selker, R., Gronau, Q.F., Šmíra, M., Epskamp, S., Matzke, D., Rouder,
719	J.N., Morey, R.D., 2017. Bayesian inference for psychology. Part I:
720	Theoretical advantages and practical ramifications. Psychon. Bull. Rev.
721	1–23. doi:10.3758/s13423-017-1343-3
722	Westlye, E.T., Lundervold, A., Rootwelt, H., Lundervold, A.J., Westlye, L.T.,
723	2011. Increased hippocampal default mode synchronization during rest in
724	middle-aged and elderly APOE ϵ 4 carriers: relationships with memory
725	performance. J. Neurosci. 31, 7775–7783.

726	doi:10.1523/JNEUROSCI.1230-11.2011
727	Yamamoto, K., Tanei, Z. ichi, Hashimoto, T., Wakabayashi, T., Okuno, H.,
728	Naka, Y., Yizhar, O., Fenno, L.E., Fukayama, M., Bito, H., Cirrito, J.R.,
729	Holtzman, D.M., Deisseroth, K., Iwatsubo, T., 2015. Chronic optogenetic
730	activation augments $A\beta$ pathology in a mouse model of Alzheimer
731	disease. Cell Rep. 11, 859–865. doi:10.1016/j.celrep.2015.04.017
732	Yeatman, J.D., Dougherty, R.F., Ben-Shachar, M., Wandell, B.A., 2012.
733	Development of white matter and reading skills. Proc. Natl. Acad. Sci.
734	109, E3045–E3053. doi:10.1073/pnas.1206792109
735	Yeatman, J.D., Wandell, B.A., Mezer, A.A., 2014. Lifespan maturation and
736	degeneration of human brain white matter. Nat. Commun. 5, 4932.
737	doi:10.1038/ncomms5932
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	

751 Figures

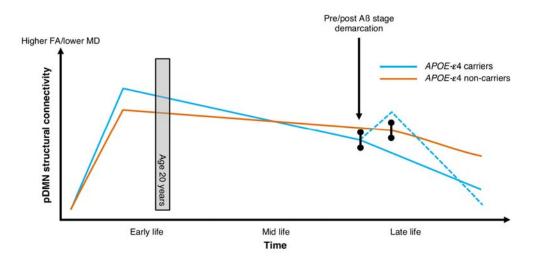
753


752

- 754

756 Figure 1. Comparing parahippocampal cingulum bundle (PCHB) tissue

757 **microstructure between** *APOE***-**ε**4 carriers and non-carriers.** (a) Left:


- 758 Deterministic tractography was conducted in each subject and free water
- corrected indices of bilateral PHCB microstructure (MD, FA) were extracted
- (left). Right: To examine associations with functional activity, these metrics
- were correlated with BOLD activity from an independently-defined posterior
- ⁷⁶² default mode network (pDMN) functional region-of-interest during a perceptual
- ⁷⁶³ discrimination task (Shine et al., 2015). Example scene trials for the
- ⁷⁶⁴ perceptual 'odd-one-out' discrimination task are shown. (b) Plots comparing
- mean bilateral PHCB MD and FA for *APOE*-ε4 carriers and non-carriers.
- ⁷⁶⁶ Individual data points are displayed jittered on each bar. (c) Scatter plots
- showing the association between scene (vs. "size" baseline) activity in pDMN
- and MD (left) and FA (right) in the PHCB. A total of 25 data points are shown
- on each scatter plot (13 carriers, blue markers; 12 non-carriers, orange
- markers; see Section 2.6).
- 771

773

Figure 2. Comparing parahippocampal cingulum bundle (PHCB)

- 775 microstructure in APOE-ε4 carriers and non-carriers using tract-based
- spatial statistics. (a) A significant cluster (shown in green) was found
- showing greater FA in *APOE*-ε4 carriers versus non-carriers in posterior
- PHCB (p < 0.05, TFCE-corrected). (b) A sub-threshold cluster (shown in red-
- yellow) reflecting lower MD in APOE-ε4 carriers versus non-carriers was
- identified in posterior PHCB (p < 0.005, uncorrected). For visualization
- ⁷⁸¹ purposes, clusters have been 'thickened' using 'TBSS fill' in FSL. There were
- no voxel-wise differences for MD that survived stringent correction.
- 783
- 784
- 785
- 786
- 787
- 788

789

Figure 3. Posterior DMN structural connectivity and amyloid deposition 790 across the lifetime. Figure *depicts* hypothetical trajectories of pDMN 791 structural connectivity in APOE-E4 carriers and non-carriers (as can be 792 guantified using microstructural metrics derived from dMRI – i.e., FA and MD). 793 Increased structural connectivity in young adult APOE- ϵ 4 carriers (the age of 794 our sample indicated by a grey box at 20 years) - which emerges over 795 development – is proposed to lead to steeper decline across the lifespan 796 (Brown et al., 2011; Felsky, 2013). Variation in structural connectivity across 797 the lifespan leads to different demarcation points for amyloid-ß aggregation, 798 with *APOE*-ε4 carriers showing earlier accumulation. The dashed blue 799 indicates a hypothesized increase in connectivity in response to initial 800 amyloid-ß burden – which may be mirrored in activity changes (Jagust and 801 Mormino, 2012). Amyloid-ß deposition leads to "wear and tear" in the pDMN 802 and a steep later-life decline in network structural connectivity, and eventual 803 804 network failure (Jones et al., 2016).