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Abstract1

An increasing body of literature suggests that both individual and collections of bacteria2

are associated with the progression of colorectal cancer. As the number of studies3

investigating these associations increases and the number of subjects in each study4

increases, a meta-analysis to identify the associations that are the most predictive of5

disease progression is warranted. We analyzed previously published 16S rRNA gene6

sequencing data collected from feces and colon tissue. We quantified the odds ratios7

(ORs) for individual bacterial taxa that were associated with an individual having tumors8

relative to a normal colon. Among the fecal samples, there were no taxa that had significant9

ORs associated with adenoma and there were 8 taxa with significant ORs associated with10

carcinoma. Similarly, among the tissue samples, there were no taxa that had a significant11

OR associated with adenoma and there were 3 taxa with significant ORs associated with12

carcinoma. Among the significant ORs, the association between individual taxa and tumor13

diagnosis was equal or below 7.11. Because individual taxa had limited association with14

tumor diagnosis, we trained Random Forest classification models using only the taxa that15

had significant ORs, using the entire collection of taxa found in each study, and using16

operational taxonomic units defined based on a 97% similarity threshold. All training17

approaches yielded similar classification success as measured using the Area Under the18

Curve. The ability to correctly classify individuals with adenomas was poor and the ability19

to classify individuals with carcinomas was considerably better using sequences from fecal20

or tissue.21
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Importance22

Colorectal cancer is a significant and growing health problem in which animal models and23

epidemiological data suggest that the colonic microbiota have a role in tumorigenesis.24

These observations indicate that the colonic microbiota is a reservoir of biomarkers that25

may improve our ability to detect colonic tumors using non-invasive approaches. This26

meta-analysis identifies and validates a set of 8 bacterial taxa that can be used within a27

Random Forest modeling framework to differentiate individuals as having normal colons or28

carcinomas. When models trained using one dataset were tested on other datasets, the29

models performed well. These results lend support to the use of fecal biomarkers for the30

detection of tumors. Furthermore, these biomarkers are plausible candidates for further31

mechanistic studies into the role of the gut microbiota in tumorigenesis.32

Keywords33

microbiota; colorectal cancer; polyps; adenoma; tumor; meta-analysis.34
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Background35

Colorectal cancer (CRC) is a growing world-wide health problem in which the microbiota36

has been hypothesized to have a role in disease progression (1, 2). Numerous studies37

using murine models of CRC have shown the importance of both individual microbes38

(3–7) and the overall community (8–10) in tumorigenesis. Numerous case-control39

studies have characterized the microbiota of individuals with colonic adenomas and40

carcinomas in an attempt to identify biomarkers of disease progression (6, 11–17).41

Because current CRC screening recommendations are poorly adhered to due to a42

person’s socioeconomic status, test invasiveness, and frequency of tests, development43

and validation of microbiota-associated biomarkers for CRC progression could further44

attempts to develop non-invasive diagnostics (18).45

Recently, there has been an intense focus on identifying microbiota-based biomarkers46

yielding a seemingly endless number of candidate taxa. Some studies point towards47

mouth-associated genera such as Fusobacterium, Peptostreptococcus, Parvimonas, and48

Porphyromonas that are enriched in people with carcinomas (6, 11–17). Other studies have49

identified members of Akkermansia, Bacteroides, Enterococcus, Escherichia, Klebsiella,50

Mogibacterium, Streptococcus, and Providencia (13–15). Additionally, Roseburia has been51

found in some studies to be more abundant in people with tumors but in other studies it has52

been found to be less abundant than what is found in subjects with normal colons (14, 17,53

19, 20). There is support from mechanistic studies using tissue culture and murine models54

that Fusobacterium nucleatum, pks-positive strains of Escherichia coli, Streptococcus55

gallolyticus, and an entertoxin-producing strain of Bacteroides fragilis are important in56

tumorigenesis (5, 14, 21–24). These results point to a causative role for the microbiota in57

tumorigenesis as well as their potential as diagnostic biomarkers.58

Most studies have focused on identifying biomarkers in patients with carcinomas but59
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there is a clinical need to identify biomarkers associated with adenomas to facilitate60

early detection of the tumors. Studies focusing on broad scale community metrics have61

found that measures such as the total number of taxa (i.e. richness) are lower in those62

with adenomas versus controls (25). Other studies have identified Acidovorax, Bilophila,63

Cloacibacterium, Desulfovibrio, Helicobacter, Lactobacillus, Lactococcus, Mogibacterium,64

and Pseudomonas to be enriched in those with adenomas (25–27). The ability to classify65

individuals as having normal colons or adenomas based solely on the taxa within fecal66

samples has been limited. However, when 16S rRNA gene sequence data was combined67

with the results of a fecal immunochemical test (FIT), the ability to diagnose individuals68

with adenomas was improved relative to using the FIT results alone (12).69

A recent meta-analysis found that 16S rRNA gene sequences from members of70

Akkermansia, Fusobacterium, and Parvimonas were fecal biomarkers for the presence of71

carcinomas (28). Contrary to previous studies, they found sequences similar to members72

of Lactobacillus and Ruminococcus to be enriched in patients with adenoma or carcinoma73

relative to those with normal colons (12, 15, 16). In addition, they found that 16S rRNA74

gene sequences from members of Haemophilus, Methanosphaera, Prevotella, and75

Succinovibrio were enriched in patients with adenomas and Pantoea were enriched76

in patients with carcinomas. Although this meta-analysis was helpful for distilling a77

large number of possible biomarkers, the aggregate number of samples included in the78

analysis (n=509) was smaller than several larger case-control studies that have since been79

published (12, 27)80

Here we provide an updated meta-analysis using 16S rRNA gene sequence data from81

both feces (n=1737) and colon tissue (492 samples from 350 individuals) from 14 studies82

(11–17, 19, 20, 23, 25–27, 29) [Table 1 & 2]. We expand both the breadth and scope83

of the previous meta-analysis to investigate whether biomarkers describing the bacterial84

community or specific members of the community can more accurately classify patients as85
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having adenoma or carcinoma. Our results suggest that the bacterial community changes86

as disease severity worsens and that a subset of the microbial community can be used to87

diagnose the presence of carcinoma.88
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Results89

Lower bacterial diversity is associated with higher odds ratio (OR) of tumors. We90

first assessed whether variation in broad community metrics like total number of operational91

taxonomic units (OTUs) (i.e. richness), the evenness of their abundance, and the overall92

diversity of the communities were associated with disease stage after controlling for93

study and variable region differences. In fecal samples, both evenness and diversity94

were significantly lower in successive disease severity categories (P-value=0.025 and95

P-value=0.043, respectively) [Figure 1]; there was no significant difference for richness96

(P-value=0.21). We next tested whether the lower value of these community metrics97

translated into significant ORs for having an adenoma or carcinoma. For fecal samples,98

the ORs for richness were not significantly greater than 1.0 for adenoma or carcinoma99

(P-value=0.40) [Figure 2A]. The ORs for evenness were significantly higher than 1.0 for100

adenoma (OR=1.3 (95% Confidence Interval: 1.02 - 1.65), P-value=0.035) and carcinoma101

(OR=1.66 (1.2 - 2.3), P-value=0.0021) [Figure 2B]. The ORs for diversity were only102

significantly greater than 1.0 for carcinoma (OR=1.61 (1.14 - 2.28), P-value=0.0069),103

but not for adenoma (P-value=0.11) [Figure 2C]. Although these ORs are significantly104

greater than 1.0, it is doubtful that they are clinically meaningful.105

Similar to our analysis of sequences obtained from fecal samples, we repeated the analysis106

using sequences obtained from colon tissue. There were no significant differences in107

richness, evenness, or diversity as disease severity progressed from control to adenoma108

to carcinoma (P-values > 0.05). We next analyzed the ORs, for matched (i.e. where109

unaffected tissue and tumors were obtained from the same individual) and unmatched110

(i.e. where unaffected tissue and tumor tissue were not obtained from the same individual)111

tissue samples. The ORs for adenoma and carcinoma were not significantly different from112

1.0 for any measure (P-values > 0.05) [Figure S1 & Table S1]. This is likely due to the113

combination of a small effect size and the relatively small number of studies and size of114
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studies used in the analysis.115

Disease progression is associated with changes in community structure. Based116

on the differences in evenness and diversity, we next asked whether there were117

community-wide differences in the structure of the communities associated with different118

disease stages. We identified significant bacterial community differences in the feces of119

patients with adenomas relative to those with normal colons in 1 of 4 studies and in patients120

with carcinomas relative to those with normal colons in 6 of 7 studies (PERMANOVA;121

P-value < 0.05) [Table S2]. Similar to the analyses using fecal samples, there were122

significant differences in the bacterial community structure of subjects with normal colons123

and those with adenomas (1 of 2 studies) and carcinomas (1 of 3 studies) [Table S2].124

For studies that used matched samples, we did not observe any differences in bacterial125

community structures [Table S2]. Combined, these results indicate that there were126

consistent and significant community-wide changes in the fecal community structure of127

subjects with carcinomas. However, the signal observed in subjects with adenomas or128

when using tissue samples was not as consistent. This is likely due to a smaller effect129

size or the relatively small sample sizes among the studies that characterized the tissue130

microbiota.131

Individual taxa are associated with significant ORs for carcinomas. We next132

identified those taxa that had ORs that were significantly associated with having a133

normal colon or the presence of adenomas or carcinomas. No taxa had a significant134

OR for the presence of adenomas when we used data collected from fecal or tissue135

samples (Table S3 & S4). In contrast, 8 taxa had significant ORs for the presence of136

carcinomas using data from fecal samples. Of these, 4 are commonly associated with137

the oral cavity: Fusobacterium (OR=2.74 (1.95 - 3.85)), Parvimonas (OR=3.07 (2.11138

- 4.46)), Porphyromonas (OR=3.2 (2.26 - 4.54)), and Peptostreptococcus (OR=7.11139

(3.84 - 13.17)) [Table S3]. The other 4 were Clostridium XI (OR=0.65 (0.49 - 0.86)),140
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Enterobacteriaceae (OR=1.79 (1.33 - 2.41)), Escherichia (OR=2.15 (1.57 - 2.95)), and141

Ruminococcus (OR=0.63 (0.48 - 0.83)). Among the data collected from tissue samples,142

only unmatched carcinoma samples had taxa with a significant OR. Those included Dorea143

(OR=0.35 (0.22 - 0.55)), Blautia (OR=0.47 (0.3 - 0.73)), and Weissella (OR=5.15 (2.02 -144

13.14)). Mouth-associated genera were not significantly associated with a higher OR for145

carcinoma in tissue samples [Table S4]. For example, Fusobacterium had an OR of 3.98146

(1.19 - 13.24); however, due to the small number of studies and considerable variation in147

the data, the Benjimani-Hochberg corrected P-value was 0.93 [Table S4]. It is interesting148

to note that Ruminococcus and members of Clostridium XI in fecal samples and Dorea149

and Blautia in tissue had ORs that were significantly less than 1.0, which suggests that150

these populations are protective against the development of carcinomas. Overall, there151

was no overlap in the taxa with significant OR between fecal and tissue samples.152

Individual taxa with a significant OR do a poor job of differentiating subjects with153

normal colons and those with carcinoma. We next asked whether those taxa that had154

a significant OR associated with having a normal colon or carcinomas could be used155

individually, to classify subjects as having a normal colon or carcinomas. OR values were156

caluclated based on whether the relative abundance for a taxon in a subject was above157

or below the median relative abundance for that taxon across all subjects in a study. To158

measure the ability of these taxa to classify individuals we instead generated receiver159

operator characteristic (ROC) curves for each taxon in each study and calculated the area160

under the curve (AUC). This allowed us to use a more fluid relative abundance threshold161

for classifying individuals by their disease status. Using data from fecal samples, the 8 taxa162

did no better at classifying the subjects than one would expect by chance (i.e. AUC=0.50)163

[Figure 3A]. The taxa that performed the best included Clostridium XI, Ruminococcus,164

and Escherichia. However, these had median AUC values less than 0.588 indicating165

their limited value as biomarkers when used individually. Likewise, in unmatched tissue166

samples the 3 taxa with significant OR taxa had AUC values that were marginally better167
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than one would expect by chance [Figure 3B]. The relative abundance of Dorea was the168

best predictor of carcinomas and its median AUC was only 0.62. These results suggest that169

although these taxa are associated with a significant OR for the presences of carcinomas,170

they do a poor job of classifying a subject’s disease status when used individually.171

Combined taxa model classifies subjects better than using individual taxa. Instead172

of attempting to classify subjects based on individual taxa, next we combined information173

from the individual taxa and evaluated the ability to classify a subject’s disease status174

using Random Forest models. For data from fecal samples, the combined model had an175

AUC of 0.75, which was significantly higher than any of the AUC values for the individual176

taxa (P-value < 0.033). When this approach was used to train models using data from177

each study, the most important taxa were Ruminococcus and Clostridium XI [Figure 4A].178

Similarly, using data from the unmatched tissue samples, the combined model had an AUC179

of 0.77, which was significantly higher than the AUC values for classifying based on the180

relative abundances of Blautia and Weissella individually (P-value < 0.037). Both Dorea181

and Blautia were the most important taxa in the tissue-based models [Figure 4B]. Pooling182

the information from the taxa with significant ORs resulted in models that outperformed183

classifications made using the same taxa individually.184

Performance of models based on taxa relative abundance in full community is185

better than that of models based on taxa with significant ORs. Next, we asked186

whether a Random Forest classification model built using all of the taxa found in the187

communities would outperform the models generated using those taxa with a significant188

OR. Similar to our inability to identify taxa associated with a significant OR for the presence189

of adenomas, the median AUCs to classify subjects as having normal colons or having190

adenomas using data from fecal or tissue samples were only marginally better than 0.5191

for any study (median AUC=0.549 (range: 0.367 - 0.971)) [Figure 5A & S2A]. In contrast,192

the models for classifying subjects as having normal colons or having carcinomas using193
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data from fecal or tissue samples yielded AUC values meaningfully higher than 0.5 [Figure194

5B & S2B-C]. When we compared the models based on all of the taxa in a community to195

models based on the taxa with significant ORs, the results were mixed. Using the data196

from fecal samples, we found that the AUC for 6 of 7 studies were an average of 14.8%197

higher and AUC for the Flemer study was 0.54% lower when using the relative abundance198

data from all taxa relative to using the relative abundance of only the taxa with significant199

ORs. The overall improvement in performance was statistically significant (mean=12.61%,200

one-tailed paired T-test; P-value=0.005). Among the models trained using data from fecal201

samples, Bacteroides and Lachnospiraceae were the most common taxa in the top 10%202

mean decrease in accuracy across studies [Figure S3]. Using data from unmatched203

tissue samples to train classification models, we found that the AUC of studies was an204

average 19.11% higher when we used all of the taxa rather than the 3 taxa with significant205

ORs (one-tailed paired T-test; P-value=0.03). For the models trained using data from206

unmatched tissue samples, Lachnospiraceae, Bacteroidaceae, and Ruminococcaceae207

were the most common taxa in the top 10% mean decrease in accuracy across studies208

[Figure S4]. Although the models trained using those taxa with a significant OR perform209

well for classifying individuals with and without carcinomas, models trained using data from210

the full community perform better.211

Performance of models based on OTU relative abundances are not significantly212

better than those based on taxa with significant ORs. The previous models were213

based on relative abundance data where sequences were classified to coarse taxonomic214

assignments (i.e. typically genus or family level). To determine whether model performance215

improved with finer scale classification, we assigned sequences to operational taxonomic216

units (OTUs) where the similarity among sequences within an OTU was more than 97%. We217

again found that classification models built using all of the sequence data for a community218

did a poor job of differentiating between subjects with normal colons and those with219

adenomas (median AUC: 0.53 (0.37- 0.56)). However, they did a good job of differentiating220
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between subjects with normal colons and those with carcinomas (median AUC: 0.71 (0.50-221

0.90)). The OTU-based models performed similarly to those constructed using the taxa222

with significant ORs (one-tailed paired T-test; P-value=0.979) and those using all taxa223

(one-tailed paired T-test; P-value=0.184) [Figure 4]. Among the OTUs that had the highest224

mean decrease in accuracy for the OTU-based models, we found that OTUs that affiliated225

with all of the 8 taxa that had a significant OR were within the top 10% for at least one study.226

This result was surprising as it indicated that a finer scale classification of the sequences227

and thus a larger number of features to select from, did not yield improved classification of228

the subjects.229

Generalizability of taxon-based models trained on one dataset to the other230

datasets. Considering the good performance of the Random Forest models trained using231

the relative abundance of taxa with significant ORs and models trained using the relative232

abundance of all taxa, we next asked how well the models would perform when given233

data from a different cohort. For instance, if a model was trained using data from the234

Ahn study, we wanted to know how well it would perform using the data from the Baxter235

study. The models trained using the taxa with significant ORs all had a higher median AUC236

than the models trained using all of the taxa when tested on the other datasets [Figure 6237

& S5]. As might be expected, the difference between the performance of the modeling238

approaches appeared to vary with the size of the training cohort (R2=0.66) [Figure 6].239

These data suggest that given a sufficient number of subjects with normal colons and240

carcinomas, Random Forest models trained using a small number of taxa can accurately241

classify individuals from a different cohort.242
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Discussion243

We performed a meta-analysis to identify and validate microbiota-based biomarkers that244

could be used to classify individuals as having normal colons or colonic tumors using fecal245

or tissue samples. To our surprise, Random Forest classification models constructed to246

differentiate individuals with normal colons from those with carcinomas using a subset of the247

community performed well relative to models constructed using the full communities. When248

we applied the models trained on each dataset to the other datasets in our study, we found249

that the models trained using the subset of the communities performed better than those250

using the full communities. These models were trained using data in which sequences were251

assigned to bacterial taxa using a classifier that typically assigned sequences to the family252

or genus level. When we attempted to improve the specificity of the classification by using253

an OTU-based approach the resulting models performed as well as those constructed using254

coarse taxonomic assignments. These results are significant because they strengthen the255

growing literature indicating a role for the colonic microbiota in tumorigenesis, as a potential256

tool as a non-invasive diagnostic, and for assessing risk of disease and recurrence (9, 12,257

30).258

Fine scale classification of sequences into OTUs did not improve our classification models.259

This was also tested in earlier efforts to use shotgun metagenomic data to classify260

individuals as having normal colons or tumors; however, it was shown that analyses261

performed using shotgun metagenomic data did not perform better than using 16S262

rRNA gene sequencing data (31). We hypothesize that fine scale classification may263

not result in better classification because distribution of microbiota between individuals264

is patchy. In contrast, models using coarser taxonomic assignments will pool the fine265

scale diversity, resulting in less patchiness and better classification. Furthermore, the266

ability of models trained using a subset of the community to outperform those using the267

full community when testing the models on the other datasets may also be a product of268

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/285486doi: bioRxiv preprint 

https://doi.org/10.1101/285486
http://creativecommons.org/licenses/by/4.0/


the patchiness of the human-associated microbiota. The models based on the 8 taxa that269

had significant ORs used taxa that were found in every study and tended to have higher270

relative abundances. Similar to the OTU-based models, those models based on the full271

community taxonomy assignments were still sensitive to the patchy distribution of taxa.272

Regardless, it is encouraging that a collection of 8 taxa could reliably classify individuals273

as having carcinomas considering the differences in cohorts, DNA extraction procedures,274

regions of the 16S rRNA gene, and sequencing methods.275

When used to classify individuals with carcinomas, the taxa with significant ORs could276

not reliably classify individuals on their own [Figure 3]. This result further supports the277

hypothesis that carcinoma-associated microbiota have a patchy distribution. Two individuals278

may have had the same classification, based on the relative abundance of different279

populations within this group of 8 taxa. Although these results only reflect associations280

with disease, it is tempting to hypothesize that the patchiness is indicative of distinct281

mechanisms of exacerbating tumorigenesis or that multiple taxa have the same mechanism282

of exacerbating tumorigenesis. For example, strains of Escherichia coli and Fusobacterium283

nucleatum have been shown to worsen inflammation in mouse models of tumorigenesis284

(5, 6, 21). In contrast to the patchiness of the taxa that were positively associated with285

carcinomas, potentially beneficial taxa had a more consistent association [Figure 6]. This286

result was particularly interesting because members of these taxa (i.e. Ruminococcus287

and Clostridium XI in fecal samples and Dorea and Blautia in tissue) are thought to be288

beneficial due to their involvement in production of anti-inflammatory short chain fatty acids289

(32–34).290

All of the adenoma classification models performed poorly, which is consistent with291

previous studies (27, 30). However, the classification results are at odds with results292

of the multitarget microbiota test (MMT) from Baxter, et al. (12) who observed an293

AUC of 0.755 when the test was applied to individuals with adenomas. There are two294
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major differences between the models generated in this meta-analysis and that analysis.295

The MMT attempted to classify individuals as having a normal colon or having colonic296

lesions (i.e. adenomas or carcinomas) and not adenomas alone. Further, the MMT297

incorporated fecal immunoglobulin test (FIT) data while our models only used 16S rRNA298

gene sequencing data. Because FIT data were not available for the other studies in299

our meta-analysis, it was not possible to validate the MMT approach. The ability to300

differentiate between individuals with and without adenomas is an important problem since301

early detection of tumors is critical to patient survivorship. However, it is possible that302

we might have been able to detect differences in the bacterial community if individuals303

with non-advanced and advanced adenomas were separated. This is a clinically relevant304

distinction since advanced adenomas are at highest risk of progressing to carcinomas.305

The initial changes of the microbiota during tumorigenesis could be focal to where the306

initial adenoma develops and would not be easily assessed using fecal samples from an307

individual with non-advanced adenomas. Unfortunately, distinguishing between individuals308

with advanced and non-advanced adenomas was not possible in our meta-analysis since309

the studies did not provide the clinical data needed to make that distinction.310

Fecal samples represent a non-invasive approach to assess the structure of the gut311

microbiota and are potentially useful for diagnosing individuals as having colonic tumors.312

However, they do not reflect the structure of the mucosal microbiota (35). Regardless, the313

taxa that were the most important in the feces-based models overlapped with those from314

the models trained using the data from unmatched and matched colon tissue samples315

[Figure S3]. Mucosal biopsies are preferred for focused mechanistic studies and have316

offered researchers the opportunity to sample healthy and diseased tissue from the same317

individuals (i.e. matched) using each individual as their own control or in a cross-sectional318

design (i.e. unmatched). Because obtaining these samples is invasive, carries risks319

to the individual, and is expensive, studies investigating the structure of the mucosal320

microbiota generally have a limited number of participants. Thus, it was not surprising that321
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tissue-based studies did not provide clearer associations between the mucosal microbiota322

and the presence of tumors. Interestingly, Fusobacterium, which has received increased323

attention for its potential role in tumorigenesis (6) was not consistently identified across324

the studies in our meta-analysis which is consistent with a recent replicability study (36).325

This could be due to the relatively small number of individuals in the limited number of326

studies. The classification models trained using the tissue-based data performed well when327

tested with the training data (Figure S4), but performed poorly when tested on the other328

tissue-associated datasets (Figure S5). Disturbingly, taxa that are commonly associated329

with reagent contamination (e.g. Novosphingobium, Acidobacteria Gp2, Sphingomonas,330

etc.) were detected within the tissue datasets. Such contamination is common in studies331

where there is relatively low bacterial biomass (37). The lack of replication among the332

tissue-based biomarkers may be a product of the relatively small number of studies and333

individuals per study and possible reagent contamination.334

Among the fecal sample data, we failed to identify several notable populations that are335

commonly associated with carcinomas including an enterotoxigenic strain of Bacteroides336

fragilis (ETBF) and Streptococcus gallolyticus subsp. gallolyticus (22, 24). ETBF have337

been found in tumors in the proximal colon where they tend to form biofilms (20, 38).338

Considering DNA from bacteria that are more prevalent in the proximal colon may be339

degraded by the time it leaves the body, it is not surprising that we failed to identify a340

significant OR for Bacteroides with carcinomas. In addition, since our approach could only341

classify sequences to the genus level and there are likely multiple Bacteroides populations342

in the colon, it is possible that sequences from ETBF and non-oncogenic Bacteroides343

were pooled. This would then reduce the OR between Bacterioides and whether an344

individual had carcinomas. It is also necessary to distinguish between populations that are345

biomarkers for a disease and those that are known to cause disease. Although the latter346

have been shown to have a causative role, they may appear at low relative abundance,347

be found in specific locations, or may have a highly patchy distribution among affected348
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individuals.349

Meta-analyses are a useful tool in microbiome research because they can demonstrate350

whether a result can be replicated and facilitate new discoveries by pooling multiple351

independent investigations. There have been several meta-analyses similar to this study352

that have sought biomarkers for obesity (39–41), inflammatory bowel disease (40), and353

colorectal cancer (28). Considering microbiome research is particularly prone to hype and354

overgeneralization of results (42), these analyses are critical. Meta-analyses are difficult to355

perform because the underlying 16S rRNA gene sequence data are not publicly available,356

metadata are missing, incomplete, or vague, sequence data are of poor quality or derived357

by non-standard approaches, and the original studies may be significantly underpowered.358

Reluctance to publish negative results (i.e. the “file drawer effect”) is also likely to skew359

our understanding of the relationship between microbiota and disease. Better attention to360

these specific issues will increase the reproducibility and replicability of microbiota studies361

and make it easier to perform these crucial meta-analyses. Moving forward, meta-analyses362

will be important tools to help aggregate and find commonalities across studies when363

investigating the microbiota in the context of a specific disease (28, 39–41).364

Our meta-analysis suggests a strong association between the gut microbiota and colon365

tumorigenesis. By aggregating the results from studies that sequenced the 16S rRNA366

gene from fecal and tissue samples, we are able to provide evidence supporting the use of367

microbial biomarkers to diagnose the presence of colonic tumors. Further development368

of microbial biomarkers should focus on including other biomarkers (e.g. FIT), better369

categorizing of people with adenomas, and expanding datasets to include larger numbers370

of individuals. Based on prior research into the physiology of the biomarkers we identified,371

it is likely that they have a causative role in tumorigenesis. Their patchy distribution across372

individuals suggests that there are either multiple mechanisms causing disease or a single373

mechanism (e.g. inflammation) that can be mediated by multiple, diverse bacteria.374
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Methods375

Datasets. The studies used for this meta-analysis were identified through the review376

articles written by Keku, et al. (43) and Vogtmann, et al. (44). Additional studies, not377

mentioned in those reviews were obtained based on the authors’ knowledge of the literature.378

Studies were included that used tissue or feces as their sample source for 454 or Illumina379

16S rRNA gene sequencing. A significant number of studies (N=12) were excluded from380

the meta-analysis because they did not have publicly available sequences, did not use 454381

or Illumina sequencing platforms, or did not have metadata that the authors were able to382

share. We were able to obtain sequence data and metadata from the following studies:383

Ahn, et al. (11), Baxter, et al. (12), Brim, et al. (29), Burns, et al. (15), Chen, et al. (13),384

Dejea, et al. (20), Flemer, et al. (17), Geng, et al. (19), Hale, et al. (27), Kostic, et al. (45),385

Lu, et al. (26), Sanapareddy, et al. (25), Wang, et al. (14), Weir, et al. (23), and Zeller,386

et al. (16). The Zackular (46) study was excluded because the individuals studied were387

included within the larger Baxter study (12). The Kostic study was excluded because after388

we processed the sequences, all of the case samples had 100 or fewer sequences. The389

final analysis included 14 studies (Tables 1 and 2). There were seven studies with only390

fecal samples (Ahn, Baxter, Brim, Hale, Wang, Weir, and Zeller), five studies with only391

tissue samples (Burns, Dejea, Geng, Lu, Sanapareddy), and two studies with both fecal392

and tissue samples (Chen and Flemer). After curating the sequences, 1737 fecal samples393

and 492 tissue samples remained in the analysis [Tables 1 and 2].394

Sequence Processing. Raw sequence data and metadata were primarily obtained from395

the Sequence Read Archive (SRA) and dbGaP. Other sequence and metadata were396

obtained directly from the authors (n=4, (17, 23, 25, 27)). Each dataset was processed397

separately using mothur (v1.39.3) using the default quality filtering methods for both 454398

and Illumina sequence data (47). If it was not possible to use the defaults because the399

trimmed sequences were too short, then the stated quality cut-offs from the original study400
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were used. Chimeric sequences were identified and removed using VSEARCH (48). The401

curated sequences were assigned to OTUs at 97% similarity using the OptiClust algorithm402

(49) and classified to the deepest taxonomic level that had 80% support using the naïve403

Bayesian classifier trained on the RDP taxonomy outline (version 14, (50)).404

Community analysis. We calculated alpha diversity metrics (i.e. OTU richness, evenness,405

and Shannon diversity) for each sample. Within each dataset, we ensured that the data406

followed a normal distribution using power transformations. Using the transformed data,407

we tested the hypothesis that individuals with normal colons, adenomas, and carcinomas408

had significantly different alpha diversity metrics using linear mixed-effect models. We409

also calculated the OR for each study and metric by considering any value above the410

median alpha diversity value to be positive. We measured the dissimilarity between411

individuals by calculating the pairwise Bray-Curtis index and used PERMANOVA (51) to412

test whether individuals with normal colons were significantly different from those with413

adenomas or carcinomas. Finally, after binning sequences into the deepest taxa that414

the naïve Bayesian classifier could calssify the sequences, we quantified the ORs for415

individuals having an adenoma or carcinoma and corrected for multiple comparisons using416

the Benjamini-Hochberg method (52). Again, for each taxon, if the relative abundance was417

greater than the median relative abundance for that taxon in the study, the individual was418

considered to be positive.419

Random Forest classification analysis. To classify individuals as having normal colons420

or tumors, we built Random Forest classification models for each dataset and comparison421

using taxa with significant ORs (after multiple comparison correction), all taxa, or OTUs.422

Because no taxa were identified as having a significant OR associated with adenomas423

using stool or tissue samples, classification models based on OR data were not constructed424

to classify individuals as having normal colons or adenomas. For all models, the value of425

trees included (i.e. ntree) was set to 500 and the number of variables that were randomly426
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tested (i.e. mtry) was set to the square root of the number of taxa or OTUs within the427

model. Using the square root of the total number of features as the number of features428

to test has been found to reliably approximate the optimum value after model tuning (53).429

All fecal models were built using a 10-fold cross validation (CV) while tissue models were430

built using 5-fold CV due to study sample size. One exception to this were the models431

constructed using data from the Weir study, which was built using a 2-fold CV due to432

the small number of samples. For models constructed based on the taxa that had a433

significant OR or using all of the taxa, we trained the models using a single study and then434

tested on the remaining studies with AUCs recorded during both train and testing phases.435

For the models constructed using OTU data, 100 10-fold CVs were run to generate a436

range of AUCs that could be reasonably expected to occur. The average AUC from these437

100 repeats was reported. The Mean Decrease in Accuracy (MDA), a measure of the438

importance of each taxon to the overall model, was used to rank the taxa used in each439

model.440

Statistical Analysis. All statistical analysis after sequence processing utilized the R441

(v3.4.3) software package (54). For OTU richness, evenness, and Shannon diversity442

analysis, values were power transformed using the rcompanion (v1.11.1) package (55)443

and Z-score normalized using the car (v2.1.6) package (56). Testing for OTU richness,444

evenness, and Shannon diversity differences utilized linear mixed-effect models to correct445

for study, repeat sampling of individuals (tissue only), and 16S rRNA gene sequence446

region used using the lme4 (v1.1.15) package (57). ORs were analyzed using both the447

epiR (v0.9.93) and metafor (v2.0.0) packages (58, 59) by assessing how many individuals448

with and without disease were above and below the overall median value within each449

specific study. OR significance testing utilized the chi-squared test. Community structure450

differences were calculated using the Bray-Curtis dissimilarity index and PERMANOVA was451

used to test for tumor-associated differences in structure with the vegan (v2.4.5) package452

(60). Random Forest models were built using both the caret (v6.0.78) and randomForest453
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(v4.6.12) packages (61, 62). All figures were created using both ggplot2 (v2.2.1) and454

gridExtra (v2.3) packages (63, 64).455

Reproducible Methods. The analysis code can be found at https://github.com/456

SchlossLab/Sze_CRCMetaAnalysis_mBio_2018. Unless otherwise mentioned, the457

accession number of raw sequences from the studies used in this analysis can be found458

directly in the respective batch file in the GitHub repository or in the original manuscript.459
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Table 1: Characteristics of the datasets included in the fecal-based analysis671

Study Data Stored Region Control (n) Adenoma (n) Carcinoma (n)

Ahn DBGap V3-4 148 0 62

Baxter SRA V4 172 198 120

Brim SRA V1-3 6 6 0

Flemer Author V3-4 37 0 43

Hale Author V3-5 473 214 17

Wang SRA V3 56 0 46

Weir Author V4 4 0 7

Zeller SRA V4 50 37 41
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Table 2: Characteristics of the datasets included in the tissue-based analyses672

Study Data Stored Region Control (n) Adenoma (n) Carcinoma (n)

Burns SRA V5-6 18 0 16

Chen SRA V1-3 9 0 9

Dejea SRA V3-5 31 0 32

Flemer Author V3-4 103 37 94

Geng SRA V1-2 16 0 16

Lu SRA V3-4 20 20 0

Sanapareddy Author V1-2 38 0 33
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Figure 1: Comparison of alpha diversity indices that were significant between673

individuals with normal colons, and those with adenomas or carcinomas using674

data collected from fecal samples A) Comparison of evenness between individuals with675

normal colons and adenomas. B) Comparison of evenness between individuals with676

normal colons and carcinomas. C) Comparison of Shannon diversity between individuals677

with normal colons and carcinomas. Blue points represent individuals with normal colons678

and red points represent individuals with either adenomas (panel A) or carcinomas (panel679

B and C). The black lines represent the median value for each group.680

Figure 2: Comparison of odds ratios calculated using alpha diversity community681

metrics associated with the presence of adenomas (A) or carcinoma (B) relative to682

those in individuals with normal colons using data collected from stool samples.683

Figure 3: AUC values when classifing individuals as having normal colons or684

carcinomas using taxa with significant ORs when using stool samples (A) and685

unmatched tissue samples (B). We did not identify any taxa as having a significant OR686

to differentiate individuals with normal colons and adenomas or using matched tissue687

samples. The large black circles represent the median AUC of all studies and the smaller688

circles represent the individual AUC for a particular study. The dotted line denotes an AUC689

of 0.5.690

Figure 4: Relative importance of taxa with significant ORs in Random Forest691

models for differentiating between individuals with normal colons and carcinomas692

using stool samples (A) or unmatched tissue samples (B). The colors indicate the693

z-transformed (i.e. mean of 0.0 and standard deviation of 1.0) mean decrease in accuracy694

values calculated from the model for each study. The taxa are ranked by their mean695

z-score-transformed mean decrease in accuracy.696

Figure 5: Comparison of Random Forest modeling approaches to classify697
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individuals as having normal colons or adenomas (A) or carcinomas (B) when698

training the models using the taxa with significant ORs, all taxa in a community, or699

all OTUs in a community when using stool samples. No taxa had a significant OR700

associated with the presence of adenomas using stool samples. The black line represents701

the median AUC for the respective group. The dashed gray line indicates an AUC of 0.5.702

Figure 6: Testing of Random Forest models to classify individuals as having normal703

colons or adenomas (A) or carcinomas (B) when using sequence data obtained704

from stool samples. Models were trained on data from each study (Figure 5) and tested705

on the other studies. The black lines represent the median AUC of all test AUCs for a706

specific study. The dashed gray line represents the AUC at 0.5.707
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Figure S1: Comparison of Odds Ratios associated with normal colons or adenomas708

(A) or carcinomas (B) calculated using alpha diversity indices with sequence data709

generated from tissue samples. The pooled results are from the aggregation of data710

across all studies. The horizontal lines indicate the 95% confidence interval for the OR.711

Figure S2: Comparison of Random Forest modeling approaches to classify712

individuals as having normal colons or adenomas (A) or carcinomas (B) when713

training the models using the taxa with significant ORs, all taxa in a community,714

or all OTUs in a community when using data from tissue samples. No taxa had a715

significant OR associated with the presence of adenomas using tissue samples. The black716

line represents the median AUC for the respective group. The dashed gray line indicates717

an AUC of 0.5.718

Figure S3: Relative importance of taxa (A) and OTUs (B) in Random Forest models719

for differentiating between individuals with normal colons and carcinomas using720

stool samples. These taxa and OTUs were among the top 10% most important features721

in each model. The colors indicate the z-transformed (i.e. mean of 0.0 and standard722

deviation of 1.0) mean decrease in accuracy values calculated from the model for each723

study. The taxa are ranked by their mean z-score-transformed mean decrease in accuracy.724

Figure S4: Relative importance of taxa (A, B) and OTUs (C, D) in Random Forest725

models for differentiating between individuals with normal colons and carcinomas726

using matched (A, C) and unmatched (B, D) tissue samples. hese taxa and OTUs727

were among the top 10% most important features in each model. The colors indicate the728

z-transformed (i.e. mean of 0.0 and standard deviation of 1.0) mean decrease in accuracy729

values calculated from the model for each study. The taxa are ranked by their mean730

z-score-transformed mean decrease in accuracy.731

Figure S5: Testing of Random Forest models to classify individuals as having732
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normal colons or adenomas (A) or carcinomas (B, C) when using sequence data733

obtained from tissue samples. Models were trained on data from each study (Figure734

S5) and tested on the other studies. The black lines represent the median AUC of all test735

AUCs for a specific study. The dashed gray line represents the AUC at 0.5.736
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