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Psychometric properties of perceptual assessments, like reliability, depend on the stochastic
properties of psychophysical sampling procedures resulting in method variability, as well as
inter- and intra-subject variability. Method variability is commonly minimized by optimizing
sampling procedures through computer simulations. Inter-subject variability is inherent in the
population of interest and cannot be acted upon. In contrast, intra-subject variability introduced
by confounds cannot be simply quantified from experimental data, as this data also includes
method variability. Therefore, this aspect is generally neglected when developing assessments.
Yet, comparing method variability and intra-subject variability could give insights on whether
effort should be invested in optimizing the sampling procedure, or in addressing potential
confounds instead. We propose a new approach to estimate and model intra-subject variability
of psychometric functions by combining computer simulations and behavioral data, and to
account for it when simulating experiments. The approach was illustrated in a real-world
scenario of proprioceptive difference threshold assessments. The behavioral study revealed a
test-retest reliability of 0.212. Computer simulations lacking intra-subject variability predicted
a reliability of 0.768, whereas the new approach including an intra-subject variability model
lead to a realistic estimate of reliability (0.207). Such a model also allows computing the
theoretically maximally attainable reliability (0.552) assuming an ideal sampling procedure.
Comparing the reliability estimates when exclusively accounting for method variability versus
intra-subject variability reveals that intra-subject variability should be reduced by addressing
confounds and that only optimizing the sampling procedure may be insufficient to achieve a
high reliability. The new approach also allows accelerating the development of assessments by
simulating the converging behavior of the reliability confidence interval with a large number of
subjects and retests without requiring additional experiments. Having such a tool of predictive
value is especially important for target populations where time is scarce, such as for assessments
in clinical settings.
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1 Introduction

The development of assessments of human perception
thresholds (e.g., visual, auditory, tactile, or proprioceptive
stimuli) is a challenging field, as these require good psycho-
metric and clinimetric properties such as high reliability, for
both research and clinical applications. The selection and
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optimization of psychophysical assessments is, in general, a
lengthy, iterative, and cumbersome process where different
psychophysical methods need to be tested and their parame-
ters tuned (Rinderknecht et al., in preparation). Evaluating
such procedures requires time and financial resources, as it
involves repeated assessment of a large number of subjects.
This may present a serious hurdle for the development of
reliable assessments, especially for sample populations where
available time is scarce and recruitment is difficult or expen-
sive (e.g., neurological patients).

When evaluating and optimizing psychophysical methods
(e.g., for a high test-retest reliability), different factors play an
essential role: method variability as well as inter- and intra-
subject variability. While inter-subject variability clearly has
an effect on reliability (Streiner and Norman, 2008), it is
given by the population of interest and cannot be acted upon.
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Previous works have suggested that a lack of correlation,
respectively agreement, between methods tested on the same
subjects may originate either from inherent method variability
(i.e., based on the stochastic process, the statistical properties
of the method, and number of trials) or from intra-subject
variability (Rinderknecht et al., 2014). As both method and
intra-subject variability are confounded in the outcome mea-
sure of a perception assessment, it is impossible to discern
one factor from the other and quantify them independently
through behavioral studies.

The detection or discrimination capability of physical stim-
uli is often assumed to resemble a sigmoidal psychometric
function (Gescheider, 1997; Macmillan and Douglas Creel-
man, 2005) based on which the subject generates responses in
a stochastic process. Therefore, perception and psychophysi-
cal procedures (i.e., complete perception experiments) can be
modeled. As a matter of fact, the method variability as well as
other performance metrics such as bias and efficiency can be
quantified using computer simulations and have been widely
investigated for various procedures (Taylor and Douglas Creel-
man, 1967; Taylor, 1971; Findlay, 1978; Pentland, 1980; Hall,
1981; Madigan and Williams, 1987; Simpson, 1989; Watson
and Fitzhugh, 1990; Kaernbach, 1991; Green, 1993; King-
Smith et al., 1994)(Rinderknecht et al., in preparation).

In contrast, intra-subject variability is difficult to estimate
and cannot be directly quantified based on experimental or
simulated data only. Therefore, intra-subject variability has
received little attention so far, and is generally neglected in
computer simulations. As a consequence, simulations of
psychophysical experiments are hardly realistic, and results
are not representative. Better knowledge about human per-
ception and the ability to model the intra-subject variability
would offer many possibilities, such as comparing, selecting,
and tuning different psychophysical methods in simulated
scenarios corresponding closely to the real application and
population of interest. Furthermore, model-based extrapola-
tion to a larger number of trials or increased sample size, for
example to explore their impact on reliability, could then be
performed purely in simulation. This could significantly speed
up the development and testing of psychophysical assessment
procedures.

The aim of this work is twofold: firstly, to present an
approach to quantify intra-subject variability, and secondly,
to apply and illustrate the approach by creating a general
model of intra-subject variability—in this case of proprio-
ceptive perception at the wrist assessed in a two-alternative
forced-choice (2AFC) setting. To estimate the intra-subject
variability for different parameters of the psychometric func-
tion, a dataset with repeated measures from a behavioral study
is required. Based on this experimental data, models of the
subject’s psychometric function are created to simulate the
same population. We propose to add individual, statistical
noise models on the different parameters (threshold and slope)

of the psychometric functions to simulate intra-subject vari-
ability. The level of intra-subject variability (i.e., noise) on
the different parameters can be quantified by matching the
test-retest reliability of the simulated experiment with the test-
retest reliability of the behavioral data and by maximizing the
similarity between the distributions of outcome measures.

2 Materials and methods

2.1 Behavioral data

2.1.1 Subjects

Thirty-three healthy young subjects (Nsubjects = 33) were
recruited and participated in this experiment (age mean ± SD:
24.1 ± 3.4 years, 20 male and 13 female, 27 right handed,
5 left handed, and 1 ambidextrous). Handedness was assessed
with the Edinburgh Handedness Inventory (Oldfield, 1971).
Exclusion criteria comprised sensory and motor deficits af-
fecting normal wrist and hand function, as well as any history
of neurological or wrist injury. Prior to participating in the
experiment, all subjects gave written informed consent. The
study was approved by the institutional ethics committee of
the ETH Zurich (EK 2015-N-03).

2.1.2 Protocol of the proprioceptive assessment

Each trial of the assessment aiming at estimating the differ-
ence threshold of the angular position at the right wrist joint
consisted of the consecutive presentation of two different
angles and the subsequent judgment by the subject which
of the two presented movements was larger (two-interval
2AFC paradigm (Macmillan and Douglas Creelman, 2005)).
The movements were applied to the passive wrist with a
one degree-of-freedom robotic wrist interface (Chapuis et al.,
2010). The movements always started from the resting po-
sition (hand aligned with forearm, 0◦) and went into flexion
direction (maximum 40◦). The two presented angles were
always centered around a reference of 20◦. The difference
between the two angles (referred to as level) was defined by
an adaptive sampling procedure named Parameter Estimation
by Sequential Testing (PEST) (Taylor and Douglas Creelman,
1967). PEST was used with a logarithmic adaptation for
positive-only stimuli to avoid an undesired behavior of the
algorithm due to zero crossings (Rinderknecht et al., 2014).
This adaptive algorithm takes the judgments (also referred to
as responses) of past trials into account and changes the dif-
ference between the angles accordingly, using heuristic rules
to approach the difference threshold as rapidly as possible.
The same proprioceptive assessment has been previously used
and described in more detail in other studies with a different
robotic device for the assessment of the metacarpophalangeal
joint (Rinderknecht et al., 2014, 2017, 2018)(Rinderknecht
et al., submitted). The same movement timing characteris-
tics and parameters for the PEST algorithm were used in
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the present experiment, except for the maximum number of
trials (start level x0 = 5.5◦, start step ∆x0 = ±2◦, target
performance Pt = 75%, Wald sequential likelihood ratio test
parameter W = 1, minimum step ∆xmin = ±0.1◦, maximum
trials at same level trialsmax@x = 20, maximum trials in to-
tal trialsmax = 120). To avoid any visual or auditory cues (e.g.,
noise emitted by the motor), the tested arm was occluded from
vision and white noise was played over headphones during the
whole experiment. Each subject performed the assessment
in five session on different days (from 1 to 4 days between
sessions, with a maximum of 7 days from the first to the last
session).

2.1.3 Estimation of the psychometric function

Based on the data from the assessment sequence (i.e., dif-
ference between the two presented angles and corresponding
response of the subject), the proportion of correct responses
can be calculated for the different levels x to fit a sigmoidal
psychometric function ψ(x) (Figure 1) using a Maximum
Likelihood criterion implemented in the Palamedes MATLAB
routines (Prins and Kingdom, 2009):

ψ (x;α, β, γ, λ) = γ + (1 − γ − λ) FGauss

(
x; µ, σ2

)
, (1)

with FGauss(x; µ, σ2) a sigmoidal cumulative Gaussian func-
tion. In the present work, the threshold parameter α corre-
sponds to the mean µ of the underlying Gaussian function, and
the slope parameter β is inversely proportional to the standard
deviation σ:

β =
1
√

2π

1
σ

. (2)

The guess rate parameter γ was fixed to 0.5 (according to the
2AFC paradigm), and the lapse rate parameter λ was allowed
to vary ∈ [0, 0.1]. This has been shown to reduce estimation
bias introduced by isolated scattered lapses (Wichmann and
Hill, 2001). The actual slope (first order derivative) of ψ(x) at
the inflexion point α is

βinflection =
(1 − γ − λ)
√

2π

1
σ

. (3)

This definition of the slope carries as units one over the units
of the stimulus, in the present work [1/◦], and can be used
to compare the slope values across studies using different
types of sigmoidal functions F(x) (Strasburger, 2001). To do
arithmetic calculations on the slope (e.g., arithmetic mean),
it is reasonable to normalize the slope with the following
nonlinear function to a range [0, 1] with arbitrary units [a.u.]:

βinflection [a.u.] =
arctan(βinflection)

π/2
. (4)

If this nonlinear transformation is not performed, errors in
slope estimation can diverge towards infinite for two almost
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Figure 1. Definition of psychometric function and its parame-
ters. Psychometric function ψ(x;α, β, γ, λ) (bold black sigmoid) and
cumulative Gaussian function FGauss(x; µ, σ) (bold gray sigmoid) in
the case of a two-alternative forced choice (2AFC) task. The thin
gray curve is the underlying Gaussian probability density function.
The inflection points are indicated as circles in the respective colors.

identically steep psychometric functions, which would lead to
a distortion when comparing to errors in shallow psychometric
functions.

Based on computer simulations, the estimation quality of
psychophysical sampling procedures can be calculated for the
parameters of the estimated psychometric function depending
on the real parameters (Rinderknecht et al., in preparation).
Following this work, the estimation performance of PEST was
evaluated with computer simulations using the same parame-
ter values as used in the present behavioral study. The variable
estimation error cannot be corrected for. However, the average
bias (i.e., constant estimation error) can be removed after fit-
ting the psychometric function with the Maximum Likelihood
criterion. While PEST can be considered a bias-free sampling
procedure for the threshold estimates, the slope estimation
bias showed a strong dependence on the real slope and was
approximatively corrected by using the following equation:

βinflection, b.c. [a.u.] = βinflection [a.u.]
2.381 . (5)

A further estimation bias in psychophysical experiments
with human subjects can arise from longer inattention peri-
ods, as loss of attention may alter perception (Leek et al.,
1991; Fründ et al., 2011; Cohen and Maunsell, 2011). A
method to detect and remove such inattention periods in PEST
sequences has recently been proposed (Rinderknecht et al.,
2018). This method has shown to reduce estimation errors
by up to around 75% and was applied post-hoc on the PEST
sequences recorded in the behavioral study before fitting the
psychometric function.

2.2 Computer simulations

2.2.1 Population model and templates

A model of the population distribution was created for each
parameter of the psychometric function based on the averaged
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parameters (across measurements) of the psychometric func-
tions obtained in the behavioral study. For the threshold α
and lapse rate λ, the arithmetic mean was calculated for each
subject (across the five measurements) to obtain an improved
estimate of the subject’s real psychometric function. The same
was done for the slope β, however, β was first converted to the
slope at inflection βinflection (with the five corresponding lapse
rates of the individual subject), normalized (βinflection [a.u.]),
and the bias was removed (βinflection, b.c. [a.u.]) before averaging
across the five measurements. Subsequently, the slope was
converted back with the inverse transformations (with the
averaged lapse of the individual subject). Averaging was not
necessary for the guess rate γ, as it was always fixed to 0.5.
From these empirical parameter distributions a set of simu-
lated perception models (also referred to as templates ψ(x)T )
was randomly sampled. To differentiate between psycho-
metric functions and their parameters originating from the
behavioral study and the simulated psychometric functions,
the symbol T was added for variables referring to simulated
templates (e.g., αT ). The number of templates ψT (x) was
set to be identical to the number of assessed subjects in the
behavioral study (Ntemplates = 33).

2.2.2 Noise model

The threshold including intra-subject variability was mod-
eled with a log–normal distribution with a support [0,+∞):

αT
noise ∼ Lognormal(µN , σ2

N ) . (6)

To avoid bias when introducing noise, the mean µnoise was
defined to be the threshold of the template:

µnoise := αT . (7)

The standard deviation σnoise of the variability was controlled
with the parameter να ∈ [0,+∞):

σnoise := να , (8)

The two parameters of the log–normal distribution were cal-
culated using µnoise and the desired σnoise:

µN = log


µnoise√
1 +

σ2
noise

µ2
noise

 and (9)

σN =

√
log

1 +
σ2

noise

µ2
noise

 . (10)

The slope including intra-subject variability was modeled
with a beta distribution with a support [0, 1]:

βT
inflection [a.u.], noise ∼ Be(αBe, βBe) . (11)

The mean µnoise of Be(αBe, βBe) was defined to correspond to
the normalized slope at the inflection of the template:

µnoise := βT
inflection [a.u.] . (12)

The standard deviation σnoise of the variability was controlled
with the parameter νβ ∈ (0, 1] serving as a scaling parameter:

σnoise := νβσ̂noise , (13)

where σ̂noise is the maximum possible value for σnoise to avoid
a U-shaped distribution. This can be guaranteed with at least
one of the parameters αBe or βBe ≥ 1, leading to:

σ̂noise = max

µnoise

√
1 − µnoise

1 + µnoise
,

√√
µnoise

(
µ2

noise − 2µnoise + 1
)

2 − µnoise

 .

(14)

With µnoise and σnoise, the two parameters of the beta distribu-
tion Be(αBe, βBe) could be calculated:

αBe =
µnoise

(
−µ2

noise + µnoise − σ
2
noise

)
σ2

noise

and (15)

βBe = αBe

(
1 − µnoise

µnoise

)
. (16)

No noise was modeled on the lapse rate λT and on the
guess rate γT = 0.5. The psychometric functions to be
used for the simulated PEST sequences were of the form
ψT

noise(x;αT
noise, β

T
noise, γ

T , λT ). For the threshold, 16 equally
distributed noise levels να ∈ [0, 1.5], and for the slope,
14 noise levels νβ ∈ [0, 1] with a twice as high grid den-
sity ∈ [0.7, 1], were simulated.

2.2.3 Procedure

For each combination of να and νβ, the PEST sequence of
the 2AFC task was simulated five times for the whole set of
templates ΨT

να,νβ
. For each single simulated sequence, new ran-

dom variables αT
noise and βT

inflection [a.u.], noise were drawn from
the log–normal and beta distributions, respectively, simulating
intra-subject variability across the five measurements. The
identical PEST parameters as in the behavioral study were
used for the computer simulations. Responses to a specific
level x were simulated by comparing a randomly generated
number ∈ U(0, 1) to ψT

noise(x) of the respective template. A
smaller random number generated a correct response, and a
larger random number a false response.

The simulation of the whole set ΨT
να,νβ

was repeated for
each combination of να and νβ Nsimulations = 1000 times with
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new randomly sampled parameters (i.e., αT , βT , γT , λT ) from
the population distribution models.

The psychometric functions from the simulated PEST se-
quences were estimated identically to the behavioral study,
including the bias correction. The only difference lay in the
inattention correction algorithm (Rinderknecht et al., 2018),
which was not applied on the simulated data. It was assumed
that significant biases from potential inattention periods in the
behavioral study were already corrected for before creating
the population model for the templates. Thus, as no inat-
tention periods were modeled in the simulations, there was
no need to apply the algorithm. The computer simulations
and estimations of the psychometric function were performed
entirely in MATLAB R2014a.

2.3 Data analysis

Test-retest reliability of the estimated thresholds from the
five measurements of the behavioral study was quantified
by computing the ICC(2,1) intraclass correlation coefficient
r (two-way layout with random effects for absolute agree-
ment) (Shrout and Fleiss, 1979) and its 95% confidence inter-
val (CI) (Lexell and Downham, 2005; de Vet et al., 2006).

Identically, for each set ΨT
να,νβ

, distributions of Nsimulations
values for the reliability of the estimated thresholds as well
as its lower and upper CI bounds for each combination of να
and νβ were generated. From these Nsimulations reliability val-
ues, the arithmetic mean r̄T

να,νβ
was calculated. In this two-

dimensional noise space an iso-reliability contour where the
reliability of the simulated experiment matched the reliability
of the behavioral study (r̄T

να,νβ
= r) was calculated (set of

να and νβ pairs). To obtain a smoother contour, the reliability
surface was interpolated with a spline on a finer grid (by
halving the grid intervals three times in each dimension).

To find which να and νβ pair of the iso-reliability contour
corresponds the best to the intra-subject variability of the be-
havioral study, for each of the Nsimulations per pair, histograms
of the parameters of the estimated psychometric functions
from the computer simulation were compared to histograms
of the parameters of the psychometric functions originating
from the behavioral data. This was done by calculating the
cosine similarity between the two vectors of histogram bin
counts (h and hT , for the behavioral and simulated data, re-
spectively) for the parameters α, βinflection, b.c. [a.u.], and λ:

similarityT
i = cos(θi) =

hi · hT
i

‖hi‖2‖hT
i ‖2

∀i ∈ {α, β, λ} , (17)

where a similarity of 1 represents identical histograms. Note
that by using this similarity metric the histograms do not need
to be additionally normalized. The following bin sizes were
used for α, βinflection, b.c. [a.u.], and λ: 0.25, 0.05, and 0.005. To
obtain an overall similarity, the three calculated similarities

were multiplied with each other.

sT
να,νβ

=
∏

i∈{α,β,λ}

similarityT
i , (18)

From these Nsimulations overall similarity values, the arithmetic
mean s̄T

να,νβ
was calculated. The iso-reliability contour was

projected onto the similarity surface in the two-dimensional
noise space after a spline interpolation, identical to what was
done for the reliability. The interpolated να and νβ pair on the
iso-reliability contour with the highest average overall simi-
larity was chosen as the best model to estimate intra-subject
variability (ν̂α and ν̂β).

For a new set of psychometric functions ΨT
ν̂α,ν̂β

with the opti-
mal noise model, the simulation was repeated Nsimulations times,
and the parameter distributions as well as r̄T

ν̂α,ν̂β
and s̄T

ν̂α,ν̂β

were calculated. In addition, the maximum attainable reli-
ability r̂T

ν̂α,ν̂β
(corresponding to no method variability) was

computed based directly on the templates with intra-subject
noise, but without simulating the psychophysical experiment.

To illustrate the intra-subject variability on a psychometric
function, a population average model was computed by aver-
aging the individual subject models. Using the intra-subject
variability models with parameters ν̂α and ν̂β, 1000 templates
were created. The estimate distributions originating from pure
method variability as well as from intra-subject variability
were compared with each other by plotting the percentage
of estimates within a tolerance interval depending on the
interval size (percentage within bounds, PCTw/iB), and the
normalized area under these curves (nAUC) according to the
methods proposed by Rinderknecht et al. (in preparation).

3 Results

The test-retest reliability coefficient of the behavioral study
and its confidence interval was r = 0.212 [0.077, 0.394].
The simulated reliability r̄T

να,νβ
for different να and νβ pairs as

well as the matched iso-reliability contour at r are shown in
Figure 2. In case of no intra-subject variability, the reliability
would correspond to r̄T

να=0,νβ=0 = 0.768 [0.662, 0.859] for the
psychophysical paradigm and sampling procedure used in
this work (i.e., maximum attainable reliability using these
methods for the present population of interest). The overall
similarity s̄T

να,νβ
(combined for threshold, slope, and lapse rate)

is visualized in Figure 3, together with the same projected
iso-reliability contour. The maximum overall similarity on
the contour was found for the noise level pair ν̂α = 0.363
and ν̂β = 0.849 (s̄T

ν̂α,ν̂β
= 0.764), corresponding to the best

intra-subject variability model estimate. The similarities of
the distributions of the parameters of the psychometric func-
tions are shown individually in Figure 4. The simulated
reliability at this noise level pair was r̄T

ν̂α,ν̂β
= 0.207 [0.076,

0.384]. The maximum attainable reliability without method
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Figure 2. Simulated reliability and iso-reliability contour of be-
havioral study. For each pair of intra-subject threshold noise να and
slope noise νβ, the simulated reliability averaged across Nsimulations =

1000 simulations (r̄T
να ,νβ

) is represented as a heat map. The dashed
white line indicates the iso-reliability contour corresponding to the
reliability obtained from the behavioral study (r = 0.212).
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Figure 3. Best intra-subject variability estimate based on over-
all similarity. For each pair of intra-subject threshold noise να and
slope noise νβ, the overall similarity (combined for threshold, slope,
and lapse rate) averaged across Nsimulations = 1000 simulations (s̄T

να ,νβ
)

is represented as a heat map. The dashed white iso-reliability contour
is identical to Figure 2. The noise level pair on the contour with the
highest overall similarity (s̄T

ν̂α ,ν̂β
= 0.764) is indicated with a black

dot.

variability (i.e., assuming a perfect assessment) for the iden-
tified intra-subject variability model would be r̂T

ν̂α,ν̂β
= 0.552

[0.403, 0.704]. For illustration purposes, the effect of intra-
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Figure 4. Histogram similarity for the optimal intra-subject
variability. Histograms of the parameters of the psychometric func-
tions of the behavioral data (gray fill, 33 × 5 data points) versus the
simulated data (black outline, 33 × 5 simulated data points averaged
over 1000 simulations) with optimal noise level at the pair ν̂α, ν̂β.

subject variability on the shape of the psychometric function
is shown in Figure 5 for the population average model ψ(x;
α = 1.696, β = 1.708, γ = 0.500, λ = 0.036) and the noise
level pair ν̂α, ν̂β, together with the distributions of threshold
and slope resulting from method and intra-subject variability.
For the threshold estimation, the nAUC was higher for the
method variability compared to the intra-subject variability,
whereas for the slope estimation, the opposite was the case.
The maximum difference in estimation performance in terms
of PCTw/iB was 42.5% at a threshold tolerance of ±0.210◦,
and 38.1% at a slope tolerance of ±0.299.

4 Discussion

In this work we presented an approach to quantify intra-
subject variability in psychophysical testing. This was
achieved by introducing and adjusting a statistical noise model
in computer simulations to match the test-retest reliability and
histograms of the parameters of the estimated psychometric
functions of a behavioral dataset. Using this approach we
estimated the intra-subject variability of healthy subjects in a
psychophysical assessment of proprioceptive perception at the
wrist using a 2AFC paradigm, and compared the intra-subject
variability with the inherent method variability of PEST.

The results showed that for a matched reliability, the sim-
ilarity between the behavioral and simulated datasets was
excellent for the optimal pair of intra-subject threshold and
slope variability. Furthermore, the identified intra-subject
variability of the threshold was larger compared to the method
variability, whereas the opposite was the case for the slope.

4.1 Intra-subject and method variability

When trying to estimate the test-retest reliability based
on the population model without intra-subject variability, the
reliability coefficient would be largely overestimated. In the
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Figure 5. Illustration of intra-subject variability. (Top) For each
stimulus level x the distribution of proportion correct is plotted as a
heat map based on 1000 templates created with the population aver-
age model (bold black sigmoid) and the intra-subject variability mod-
els using ν̂α and ν̂β. (Middle) The dashed black distribution curves
correspond to the parametric log–normal and beta intra-subject vari-
ability models. The histograms (black outline) as well as the dashed
black lines for the means show the parameter distributions of the
1000 templates including intra-subject variability. The white trian-
gles indicate the threshold and slope of the population average model
(without noise). As a comparison, the inherent method variability
(histogram with gray fill) for the same population average model
without intra-subject variability is plotted. (Bottom) The percentage
of estimates within a tolerance interval (percentage within bounds,
PCTw/iB) around the parameters of the population average model
is plotted against the size of the interval (gray: method variability,
black: intra-subject variability), together with the absolute difference
of percentage (|∆|, dashed black line). For both method and intra-
subject variability, the normalized area under the curve (nAUC) is
calculated.

present sample population this would result in a considerable
error of 262.3%. In contrast, when including intra-subject
variability in the simulation, the reliability of the simulated
experiment matched the reliability of the behavioral study
with an absolute error of 0.005 (r̄T

ν̂α,ν̂β
= 0.207 and r = 0.212,

respectively), corresponding to a relative error of 2.4%. In
theory, this error should be zero, however, since the estimates
were based on a stochastic generation of responses, the simu-
lated test-retest reliability varied across simulation runs. To
improve the estimate of intra-subject variability, and therefore
the match of reliability values, a high number of repetitions
(Nsimulations) were performed to obtain higher statistical power,
and the grid of the simulated intra-subject variability levels in
the two-dimensional reliability space was interpolated. This
error could be further minimized by increasing the number
of repetitions and the density of the simulation grid. Further
indication for a good model estimation quality is provided by
the fact that not only the simulated and behavioral reliability
coefficient matched, but also matching errors for the CI were
low (absolute [0.001, 0.010] and relative [1.3%, 2.5%] errors
for the lower and upper bound). Moreover, cosine similarity
between behavioral and simulated outcome measures was
very high for all three parameters α, β, and λ (> 0.8), and
thus demonstrates that the population’s inter- and intra-subject
variability models accurately represent the actual population.

The presented method allows to discern between and com-
pare intra-subject variability and method variability. When
assuming invariant subjects (i.e., no intra-subject variabil-
ity), the test-retest reliability for the threshold would be
39.2% higher compared to when the estimated intra-subject
variability is included in the simulation, but a perfect method
(i.e., no method variability) would be assumed. This is also
reflected by the nAUC for the threshold (a non-parametric
metric to evaluate the variability of estimation errors), which
is higher by 16.4% for the simulated case with method vari-
ability only. Based on these findings, if the assessment was
to be improved, one could suggest to address factors influ-
encing the intra-subject variability, before optimizing the
psychophysical sampling procedure, as even with a perfect
method, the reliability would ceil at r̂T

ν̂α,ν̂β
= 0.552 due to

intra-subject variability. On the contrary, the slope estimates
suffer from poor method performance and, according to the
U-shaped estimate distribution (histogram with gray fill in
Figure 5 (Middle, right)), outcome measures are predomi-
nantly severely under- or overestimated. As a consequence,
the nAUC for the simulated case with intra-subject variability
only is 11% higher. Thus, if the slope estimation should
be improved, it would be important to optimize the current
sampling procedure or choose another sampling procedure
(e.g., the Ψ method, designed to estimate both the threshold
and the slope (Kontsevich and Tyler, 1999)).
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4.2 Advantages and limitations of this method

The advantage of this method is that the test-retest relia-
bility is affected by all terms of variability (inter- and intra-
subject, and method variability). As a consequence, since
the inter-subject variability can be approximated by taking
the averaged psychometric functions for each subject and the
method variability is given by the simulation, the intra-subject
variability can be estimated. Furthermore, the reliability can
be calculated even if only two measurements were done per
subject, whereas, for example, calculating the standard devi-
ation of two measurements for each subject is very likely a
poor estimate of the real variability (besides being still con-
found with method variability). However, it should be noted
that, depending on the intra-subject and method variability,
the quality of the model of the population (and inter-subject
variability) can be compromised if only two measurements
are available per subject. Thus, in case of a poor popula-
tion model, an overestimated inter-subject variability may be
compensated by an underestimated intra-subject variability
and vice versa when matching the reliability. Ideally, the
available behavioral data would encompass a large sample
size (for a good representation of the population) and a large
number of measurements (for a good estimate of each sub-
ject’s psychophysical function). An advantage of sampling
templates from the computed distributions representing the
population compared to using the averaged psychometric
functions as templates, is that repeated randomly sampled
templates should lead to more generalizable results than boot-
strapping from a limited set of subjects. More importantly,
it offers the possibility to sample more templates from the
distribution, for example to predict how the reliability and its
confidence interval changes with increasing sample size.

A limitation of the present simulations is that no intra-
subject variability was modeled for the lapse rate. It would be
possible model the lapse rate including intra-subject variabil-
ity with a beta distribution as for the slope, but with an adapted
support. However, for the sake of simplicity, this was omitted
here. As a matter of fact, as the histogram similarity of the
lapse rate parameter is almost 1, it shows that adding a lapse
rate variability model may not be necessary. When identifying
the best model of intra-subject variability, the noise level pair
να, νβ, where overall similarity is the highest, may not lie on
the iso-reliability contour corresponding to the reliability r
of the behavioral data. One reason is that in the histogram,
similarity inter- and intra-subject variability are confounded,
and the similarity may vary depending on the selection of
bin sizes. In contrast, using the reliability as a metric should
provide a more robust and accurate estimate of the variability
model, as it distinguishes between inter- and intra-subject
variability despite taking both into account. Therefore, the
overall similarity is used only as a second criterion to find
the optimal model. One major limitation of this approach
to estimate intra-subject variability, is that it only provides

one variability model for the whole sample and not individual
models for each subject. However, this is already a significant
improvement over no variability model, and may be accurate
enough for many applications.

5 Conclusions
Computer simulations offer a valuable and powerful tool

to simulate and optimize psychophysical experiments. While
they can be used to evaluate different procedures and their
method variability, existing computer simulations are often
not representative of real-world scenarios, as critical aspects
such as the intra-subject variability are neglected. As a matter
of fact, intra-subject variability cannot be directly quantified
from behavioral data. This work introduces a new approach
based on the combination of computer simulations and behav-
ioral data to separate method variability from intra-subject
variability and to estimate and model intra-subject variability
in psychophysical experiments.

Given a realistic model of the population, different psy-
chophysical procedures can be simulated and compared, and
the procedures can be tuned to the specific application and
target population. Quantifying the method and intra-subject
variability allows putting them into perspective when devel-
oping assessments. Given the intra-subject variability, it al-
lows simulating an experiment with an ideal psychophysical
method (i.e., finding the theoretically maximally attainable
performance of an assessment). These two aspects can inform
the decision whether effort should be spent on improving the
psychophysical procedure (i.e., reducing method variability)
or if potential confounds affecting intra-subject variability
should be addressed. The efficiency of attempts to reduce
confounds (e.g., inattention (Rinderknecht et al., 2018)) could
be quantified (using the presented method) based on a re-
duction of the intra-subject variability. Furthermore, based
on the more complete model also containing intra-subject
variability, it is also possible to examine the impact of a larger
number of trials on reliability, or the converging behavior of
the reliability’s confidence interval bounds with a larger num-
ber of subjects, as well as retests, without having to conduct
additional experiments. This presents a particular benefit for
studies with populations where time for assessments is limited
or expensive, as in the case of a clinical setting.
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