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Abstract

Microbial diversity in the environment is mainly concealed within the rare biosphere (all species

with <0.1% relative abundance). While dormancy explains a low-abundance state very well,

the  mechanisms  leading  to  rare  but  active  microorganisms  remain  elusive.  We  used

environmental  systems biology to genomically and transcriptionally characterise  Candidatus

Desulfosporosinus  infrequens,  a  low-abundance  sulfate  reducer  cosmopolitan  to  freshwater

wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome

by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under

in  situ-like  conditions  for  50  days  by  Desulfosporosinus-targeted  qPCR  and

metatranscriptomics.  The  Desulfosporosinus population stayed at a constant low abundance

under all  incubation conditions,  averaging 1.2 × 10⁶ 16S rRNA gene copies per cm³ soil.  In

contrast, transcriptional activity of  Ca. D. infrequens increased at day 36 by 56- to 188-fold

when  minor  amendments  of  acetate,  propionate,  lactate,  or  butyrate  were  provided  with

sulfate, as compared to the no-substrate-control. Overall transcriptional activity was driven by

expression of genes encoding ribosomal proteins, energy metabolism and stress response but

not by expression of genes encoding cell growth-associated processes. Since our results ruled

out growth of these highly active microorganisms,  they had to invest their sole energy for

maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a

rare biosphere member can contribute to a biogeochemically relevant process while remaining

in a zero growth state.
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Importance

The  microbial  rare  biosphere  represents  the  largest  pool  of  biodiversity  on  Earth  and

constitutes, in sum of all its members, a considerable part of a habitat’s biomass. Dormancy or

starvation are typically used to explain the persistence of low-abundance microorganisms in

the environment. We show that a low-abundance microorganism can be highly transcriptionally

active while remaining in a zero growth-state over prolonged time periods. Our results provide

evidence that this zero-growth at high-activity state is driven by maintenance requirements.

We show that this is true for a microbial keystone species, in particular a cosmopolitan but

permanently low-abundance sulfate reducer in wetlands that is involved in counterbalancing

greenhouse  gas  emission.  In  summary,  our  results  provide  an  important  step  forward  in

understanding rare biosphere members relevant for ecosystem functions.
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Introduction

The vast majority of microbial diversity worldwide is represented by the rare biosphere (1–4).

This entity of microorganisms consists of all microbial species that have an arbitrarily defined

relative population size of <0.1% in a given habitat at a given time (1–4). The rare biosphere is

opposed  by  a  much  smaller  number  of  moderately  abundant  or  very  abundant  microbial

species (≥0.1% and ≥1.0% relative abundance,  respectively)  (5),  which are thought  to be

responsible  for  the  major  carbon  and  energy  flow  through  a  habitat  as  based  on  their

cumulative  biomass.  However,  there  is  accumulating  experimental  evidence  that  the  rare

biosphere is not just a “seed bank” of microorganisms that are waiting to become active and

numerically dominant upon environmental change (3, 6), but also harbors metabolically active

microorganisms with important ecosystem functions (4).

First  hints  for  metabolically  active  rare  biosphere  members  were  evident  from  seasonal

patterns of marine bacterioplankton species. Here, many taxa that displayed recurring annual

abundance  changes  were  of  low  abundance  and  even  during  their  bloom  periods  never

reached numerically abundant population sizes (7–9). In soil  environments,  removal of low-

abundance  species  by  dilution-to-extinction  had  a  positive  effect  on  intruding  species,

suggesting  that  active  low-abundance  species  pre-occupy  ecological  niches  and  thus  slow

down invasion (10–12). Soil microorganisms of low relative abundance were also shown to play

a role  in  community-wide species interactions,  e.g,  by being  involved in  the  production  of

antifungal compounds that protect plants from pathogens (13) or by constituting the core of

microorganisms  that  respond  to  the  presence  of  a  particular  plant  species  (14).  Other

examples  include  microorganisms  with  a  specialized  metabolism  that  sustain  stable  low-

abundance  populations  in  an  ecosystem (3).  For  example,  N₂-fixing  microorganisms in  the

ocean (15) or sulfate-reducing microorganisms (SRM) in peatlands (5, 16, 17) were shown to

fulfill such gatekeeper functions.

A peatland Desulfosporosinus species was one of the first examples identified as an active rare

biosphere member contributing to an important ecosystem function (16). This SRM is involved

in the cryptic  sulfur  cycle of  peatlands  (5,  16),  which in turn controls  the emission of  the

greenhouse  gas  CH₄  from  these  globally  relevant  environments  (17).  Although  porewater

sulfate concentrations are typically quite low in peatlands (<300 µM) (17), these environments
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are characterized by temporally fluctuating high sulfate reduction rates (up to 1800 nmol cm⁻³

day⁻¹) (17). These rates can be in the same range as in sulfate-rich marine surface sediments,

where sulfate reduction is one of the major anaerobic carbon degradation pathways (18, 19). In

low-sulfate  peatlands,  such  high  sulfate  reduction  rates  can  only  be  maintained  by  rapid

aerobic or anaerobic re-oxidation of reduced sulfur species back to sulfate (17). Since SRM

generally outcompete methanogens and syntrophically associated fermenters (20), they exert

an important intrinsic control function on peatland CH₄ production (21–23). This is important,

since natural  wetlands,  such as peatlands,  are estimated to be responsible for 30% of the

annual emission of this potent greenhouse gas (24–26).

Little  is  known  about  the  ecophysiology  of  metabolically  active  but  low-abundance

microorganisms. This lack of knowledge is clearly founded in their low numerical abundance

making  it  inherently  difficult  to  study  their  metabolic  responses  or  even  to  retrieve  their

genomes directly from the environment. In a preceding study, we could show that the low-

abundance peatland Desulfosporosinus species mentioned above follows an ecological strategy

to increase its cellular ribosome content while maintaining a stable low-abundance population

size when exposed to favorable, sulfate-reducing conditions (5). This was unexpected since

metabolic  activity in bacteria and archaea is typically  followed by growth (in terms of  cell

division or biomass increase) if they are not severely energy or nutrient limited (27) or engaged

in  major  maintenance  processes  coping  with  (environmental)  stress  (28).  The  studied

Desulfosporosinus species is found worldwide in a wide range of low-sulfate wetlands including

peatlands,  permafrost  soils,  and rice paddy fields (5).  This emphasizes its importance as a

model organism for active rare biosphere members. In this study, we used an environmental

systems  biology  approach  to  deepen  our  understanding  of  the  ecophysiology  of  this  rare

biosphere member. In particular, we retrieved its genome by metagenomics from native and

incubated peat soil and followed its transcriptional responses in peat soil microcosms, which

were exposed to different environmental triggers that mimicked diverse in situ conditions.
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Materials and Methods

Genome assembly, binning, and phylogenetic inference

Sampling of peat soil from the acidic peatland Schlöppnerbrunnen II (Germany), DNA-stable

isotope  probing  (DNA-SIP),  total  nucleic  acids  extraction,  metagenome  sequencing  and

assembly, and coverage-based binning was described previously (5, 16, 29). In brief, DNA from

native peat soil  (10–20 cm depth)  and DNA pooled from 16 ¹³C-enriched fractions (density

1.715–1.726 g mL⁻¹) of a previous DNA-SIP experiment with soil from the same site (16) was

sequenced  using  the  Illumina  HiSeq 2000  system.  DNA-SIP  was  performed after  a  73-day

incubation  (again  10–20  cm depth)  that  was  periodically  amended  with  small  dosages  of

sulfate and first a mixture of unlabeled formate, acetate, propionate, and lactate for two weeks

and thereafter a mixture of ¹³C-labeled formate, acetate, propionate, and lactate (all in the

lower µM-range) (16). Raw reads were quality filtered, trimmed, and co-assembled (native soil:

385 million reads; DNA-SIP: 576 million reads) using the CLC Genomics Workbench 5.5.1 (CLC

Bio). Differential coverage binning was applied to extract the Desulfosporosinus metagenome-

assembled genome (MAG)  (30).  As  expected  (16),  the  Desulfosporosinus MAG was  of  low

abundance in the native soil  with an average coverage of  0.026 while enriched in the SIP

sample with an average coverage of 34 (detailed per scaffold in Table S2). A side effect of

sequencing  a  DNA-SIP  sample  is  an  apparent  G+C  content  skew,  which  was  normalized

arbitrarily to improve binning using the following formula (29, 31):

Scaffolds encoding the 16S and 23S rRNA genes were successfully identified using paired-end

linkage data (30). Completeness, contamination, and strain heterogeneity was estimated using

CheckM 1.0.6 (32).

Phylogenomic analysis of the Desulfosporosinus MAG was based on a concatenated set of 34

phylogenetically  informative marker genes as defined by (32) and the Bayesian phylogeny

inference method PhyloBayes using the CAT-GTR model (33). 16S rRNA gene-based phylogeny

was inferred using the ARB SILVA database r126 as a reference (34), the SINA aligner (35), and

the substitution model testing and maximum likelihood treeing method IQ-TREE (36). Pairwise

16S rRNA gene sequence identities were calculated with T-Coffee 11 (37). Pairwise average
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nucleic  and  amino  acid  identities  (ANI,  AAI)  (38)  between  protein-coding  genes  of  the

Desulfosporosinus MAG and reference genomes were calculated as described previously (29)

Genome annotation

The  genome  was  annotated  using  the  MicroScope  annotation  platform  (39).  Annotation

refinement for selected genes was done as follows: proteins with an amino acid identity ≥40%

(over ≥80% of the sequence) to a Swiss-Prot entry (40), curated MaGe annotation (39), or

protein described in the literature were annotated as true homologos of known proteins. The

same was true, if classification according to InterPro families (41, 42), TIGRFAMs (43), and/or

FIGfams (44) led to an unambiguous annotation. Proteins with an amino acid identity ≥25%

(over ≥80% of the sequence) to a Swiss-Prot or TrEMBL (40) entry were annotated as putative

homologs of the respective database entries. In addition, classification according to COG (45)

or InterPro superfamilies, domains,  or binding sites were used to call  putative homologs in

cases  of  an  unambiguous  annotation.  Membership  to  syntenic  regions  (operons)  was

considered as additional support to call true or putative homologs.

Metatranscriptomics and quantitative PCR from single-substrate incubations

For this study, we re-analysed qPCR and metatranscriptomic data sets of of anoxic peat soil

slurry  microcosms that  were  described previously  under  different  aspects  (5,  29).  In  brief,

anoxic microcosms were incubated at 14 °C in the dark for 50 days and regularly amended

with either low amounts of sulfate (76–387 µM final concentrations) or incubated without an

external electron acceptor. Formate, acetate, propionate, lactate, butyrate (<200 µM), or no

external  electron  donor  was  added  to  biological  triplicates  each.  DNA  and/or  RNA  were

extracted  from  the  native  soil  and  after  5,  8,  15,  26,  36,  and  50  days  of  incubations.

Quantitative PCR data describing 16S rRNA gene copies of  the complete  Desulfosporosinus

population in comparison to the overall bacterial and archaeal community (5) was re-analyzed

to put the metatranscriptome data into the perspective of population dynamics. PCR conditions

are given in (5). Metatranscriptome sequencing was done from each of the biological replicates

using the Illumina HiSeq 2000/2500 platform (27–188 million reads per sample). Raw reads

were quality-filtered as described previously (29) and mapped to the Desulfosporosinus MAG in

a background of all other metagenome-assembled scaffolds using Bowtie 2 at default settings

(46).  Counting  of  mapped  reads  to  protein-coding  genes  (CDS)  was  performed  with
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featureCounts 1.5.0 (47).

Statistical analysis of Desulfosporosinus-specific transcripts

Counts of mapped transcript reads were normalized to the length of the respective gene and

the sequencing depth of the respective metatranscriptome, resulting in FPKM (fragments per

kilobase per million total fragments) values. Thereafter, we used an unsupervised approach to

identify CDS expression stimulated by sulfate and the different substrates regimes. First, we

applied the DESeq2 R package (48, 49) to identify differentially expressed CDS. Treatments

without external sulfate added and samples after 8 days of incubations had too little transcript

counts to be used for a statistical  approach.  Therefore, we limited our analysis  to pairwise

comparison of sulfate-stimulated microcosms after 36 days of incubations. We compared each

substrate  regime  to  the  no-substrate  controls  and  each  other.  The  set  of  all  significantly

differentially  expressed  CDS  (FDR-adjusted  p-value  <  0.05)  were  further  clustered  into

response groups. For clustering, we calculated pairwise Pearson’s correlation coefficients (r) of

variance stabilized counts (cor function in R), transformed this into distances (1–r), followed by

hierarchical  clustering (hclust function in R). Variance stabilisation was performed using the

rlog function of the DESeq2 package. Spearman’s rank correlation of FPKM values for each

gene to the total relative mRNA counts was performed with cor.test in R using the data from all

treatments and replicates.

Sequence data availability

The MAG SbF1 is available at MicroScope (https://www.genoscope.cns.fr/agc/microscope/) and

is also deposited under the GenBank accession number OMOF01000000. Metagenome and -

transcriptomic data is available at the Joint Genome Institute (https://genome.jgi.doe.gov/) and

are also deposited under the GenBank accession numbers PRJNA412436 and PRJNA412438,

respectively.
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Results

A near complete genome of a rare biosphere member from peat soil

We obtained the population genome of the low-abundance  Desulfosporosinus species by co-

assembly and differential coverage binning of metagenomes obtained from native peat soil and

13C-labelled fractions of a DNA-stable isotope probing experiment of the same peatland (Fig.

S1) (29). The high quality metagenome-assembled genome (MAG) SbF1 had a size of 5.3 Mbp

(on 971 scaffolds), a G+C content of 42.6%, a checkM-estimated completeness of 98.0%, a

potential residual contamination of 3.9%, and 10% strain heterogeneity. Besides 16S and 23S

rRNA genes,  SbF1 carried 6440 protein-coding genes (CDS),  five 5S rRNA gene copies,  59

tRNAs, and 37 other ncRNAs, making a total of 6543 predicted genomic features. The genome

size  and  G+C  content  was  in  the  same  range  as  observed  for  genomes  of  cultured

Desulfosporosinus species (3.0–5.9 Mbp and 42–44%, respectively) (50–54). Scaffolds encoding

rRNA genes had a higher coverage compared to the average coverage of all scaffolds (Fig. S1),

indicating multiple  rrn operon copies, as is known from genomes of other  Desulfosporosinus

species (on average 9.3 rrn operons, range: 8–11) (55).

16S rRNA-based phylogenetic  tree  reconstruction  placed SbF1  into  a  well  supported  clade

together with Desulfosporosinus sp. 44a-T3a (98.3% sequence identity), Desulfosporosinus sp.

OT  (98.8%),  and  Desulfosporosinus sp.  5apy  (98.1%).  The  most  similar  validly  described

species  was  Desulfosporosinus  lacus with  a  sequence  identity  of  97.5%  (Fig.  S2a).

Phylogenomics  confirmed  Desulfosporosinus sp.  OT  as  the  closest  relative  (Fig.  S2b)  with

average amino and nucleic acid identities (AAI and ANI) of 77% and 79%, respectively (Fig. S3).

The intra-genus AAI variability of  Desulfosporosinus species was 69–93% (Fig. S3). Therefore,

MAG SbF1 represents a novel species in this genus based on species-level thresholds of 99%

for the 16S rRNA gene (56) and 96.5% for ANI (38).

The versatile energy metabolism of the low-abundance Desulfosporosinus

Desulfosporosinus sp.  MAG SbF1 encoded the complete canonical  pathway for dissimilatory

sulfate reduction (Fig. 1, Table S1). This encompassed the sulfate adenylyltransferase (Sat),

adenylyl-sulfate  reductase  (AprBA),  dissimilatory  sulfite  reductase  (DsrAB),  and the  sulfide-
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releasing  DsrC,  which  are  sequentially  involved  in  the  reduction  of  sulfate  to  sulfide.  In

addition,  genes  encoding  the  electron-transferring  QmoAB  and  DsrMKJOP  complexes  were

detected, with their subunit composition being typical for  Desulfosporosinus species (50, 51,

53, 54). Other dsr genes included dsrD, dsrN, and dsrT (57) with hitherto unvalidated function,

fdxD, which encodes a [4Fe4S]-ferredoxin, and a second set of DsrMK-family encoding genes

(dsrM2 and  dsrK2).  SbF1  also  encoded  the  trimeric  dissimilatory  sulfite  reductase  AsrABC

(anaerobic sulfite reductase) (58).

SbF1 carried genes for both complete and incomplete oxidation of propionate and lactate. In

addition, the ability to utilize acetate, formate, or H₂ as electron donors was encoded (Fig. 1).

All enzymes necessary for propionate oxidation to the central metabolite pyruvate (including

those belonging to a partial citric acid cycle) were encoded on two scaffolds (Table S1). For

lactate utilization, SbF1 carried three paralogs of glycolate/D-lactate/L-lactate dehydrogenase

family genes. However, the substrate specificity of the encoded enzymes could not be inferred

from sequence information alone. The transcription of lutDF and lutD_2 was stimulated by the

addition  of  L-lactate  (Fig.  1),  which  indicates  that  these  genes  encode  functional  lactate

dehydrogenases  (LDH).  The third paralog  (glcDF,  Table S1)  was not  stimulated by lactate.

LutDF was organised in an operon with a lactate permease (LutP) and a lactate regulatory gene

(lutR). LutD_2 was organised in a operon with an electron-transferring flavoprotein (EtfBA_2),

which resembled the  electron-confurcating LDH/Etf  complex in  Acetobacterium woodii (59).

LDHs have been shown to utilize both L- and D-lactate (59, 60). However, SbF1 also encoded a

lactate racemase (LarA) and a lactate racemase-activating system (LarEBC) for interconversion

of both stereoisomers (61).

Pyruvate,  the  intermediate  product  in  propionate  and  lactate  degradation,  can  be  further

oxidized to acetyl-CoA with either one of several pyruvate-ferredoxin oxidoreductases (PfoA) or

formate C-acetyltransferase (PflD). Acetyl-CoA can then be completely oxidized to CO₂ via the

Wood–Ljungdahl pathway (62), which is complete in SbF1 (Fig. 1, Table S1) and present in the

genomes of  all  other  sequenced  Desulfosporosinus species  (50,  51,  53,  54).  Alternatively,

acetyl-CoA  may  be  incompletely  oxidized  to  acetate  via  acetyl-phosphate  by  phosphate

acetyltransferase (Pta)  and acetate kinase (AckA).  Pta and AckA are bidirectional  enzymes,

opening  the  possibility  that  acetate  could  be  degraded  via  these  two  enzymes  and  the

downstream Wood–Ljungdahl pathway to CO₂.
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Formate and H2 represented additional potential electron donors for SbF1. Its genome encoded

three formate dehydrogenases (FDH). FDH-1 consists of three subunits (fdhCBA) while FDH-2

(FdhA_2) and FDH-3 (FdhA_3) are monomeric enzymes.  In addition,  [NiFe] hydrogenases of

group 1 and 4f, as well as [FeFe] hydrogenases of group A (63) were encoded. Homologs of

genes  for  butyrate  oxidation  were  missing  in  SbF1  (64),  which  is  in  contrast  to  other

Desulfosporosinus species  (e.g.,  Desulfosporosinus orientis).  Both  glycolysis  and

gluconeogenesis  were  complete.  However,  neither  a  glucokinase  or  a  phosphotransferase

system  was  found  (PTS).  Coupling  of  electron  transfer  to  energy  conservation  could  be

mediated  in  SbF1  by  a  H⁺/Na⁺-pumping  Rnf  complex  (RnfCDGEAB)  (65)  and  a  NADH

dehydrogenase (respiratory complex I, NuoABCDEFGHIJKLMN). In addition, the complete gene

set for ATP synthase (AtpABCDEFGH) was identified (Fig. 1, Table S1).

Long-term transcriptional activity of Desulfosporosinus sp. MAG SbF1 at zero 

growth

Naturally occuring hot spots of sulfate reducing activity in peat soil (66–69) were mimicked by

periodically amending sulfate in the lower µM-range to anoxic peat microcosms (every 3–7

days) and comparing this to unamended (i.e., methanogenic) control microcosms. In addition,

sulfate reducing and methanogenic microcosms received, in triplicates, periodic amendments

of either formate, acetate, propionate, lactate, or butyrate as compared to controls without

amendment. Substrate supply did generally not exceed 100–200 µM thus again mimicking in

situ concentrations of these naturally occurring organic carbon degradation intermediates in

peatlands  (5).  The  overall  Desulfosporosinus population  remained  stable  throughout  the

incubation period in the various microcosms (on average 1.2 × 10⁶ 16S rRNA gene copies per

cm3 of soil, Fig. 2a). Compared to the total bacterial and archaeal community, this resembled a

relative abundance of 0.018% when corrected for the average 9.3 rrn operons per genome in

the genus Desulfosporosinus (55). The 16S rRNA gene of Desulfosporosinus sp. MAG SbF1 was

100% identical  to  OTU0051,  which dominated the  Desulfosporosinus population  as  evident

from a previously published 16S rRNA (gene) amplicon survey of the same microcosms (5). In

contrast  to its  stable low-abundance,  the overall  Desulfosporosinus population substantially

increased  its  16S  rRNA  copy  numbers  by  2.2,  4.9,  5.9,  or  13.6-fold  in  sulfate  reducing

incubations  stimulated  by  either  acetate,  propionate,  lactate,  or  butyrate,  respectively.  In
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contrast,  Desulfosporosinus 16S  rRNA  copy  numbers  remained  stable  or  even  slightly

decreased in the sulfate-amended no-substrate-control and the methanogenic incubations (Fig.

S4). Again, these increases were mainly reflected in changes of OTU0051 (Desulfosporosinus

sp. MAG SbF1) as shown in the amplicon study mentioned above (5).

We used metatranscriptomics of the same microcosms to analyse whether this strong increase

in  16S  rRNA  copies  at  zero  growth  was  accompanied  by  gene  expression  of  metabolic

pathways and cell-growth associated processes in Desulfosporosinus sp. MAG SbF1. Compared

to the initial soil, the overall transcriptional activity of SbF1 steadily increased at day 8 and 36

in sulfate reducing incubations stimulated by either acetate, propionate, lactate, or butyrate. In

contrast,  all  methanogenic  incubations  as  well  as  the  sulfate  reducing  formate  and  no-

substrate incubations showed after an initial stimulation until day 8, a steady or even mildly

decreasing overall transcriptional activity (Fig. 2b). At day 36, normalized mRNA counts of SbF1

were  56-,  80-,  62-,  or  188-fold  higher  in  sulfate  reducing  incubations  stimulated by  either

acetate, propionate, lactate, or butyrate, respectively, as compared to the no-substrate-control

and constituted between 0.11 ± 0.13% (acetate) and 0.36 ± 0.02% (butyrate) of all transcripts

in the corresponding metatranscriptomes (Fig. 2b). This substrate-specific activity was driven

by  the  increased  transcription  of  genes  encoding  ribosomal  proteins  as  general  activity

markers (Fig. 3, Table S1) and energy metabolism genes including all canonical dissimilatory

sulfate  reduction  genes  (Fig.  4,  Table  S1).  For  example,  Spearman’s  rank  correlation

coefficients  of  normalised  dsrA and  dsrB transcript  counts  as  compared  to  the  sum  of

normalised  SFb1  mRNA  counts  were  0.91  and  0.90,  respectively  (FDR-adjusted  p-value  <

0.001).  Normalised  transcript  counts  of  other  enzyme  complexes  involved  in  the  central

metabolism of SbF1 such as the ATP synthase,  the NADH dehydrogenase (complex I),  and

ribosomal proteins followed the same transcriptional pattern (Fig. 4, Table S1) with an average

Spearman’s rank correlation coefficients of 0.79 ± 0.07 (n = 72, FDR-adjusted p-value < 0.05)

to the sum of normalised SFb1 mRNA counts.  Interestingly, transcription of genes encoding

proteins  involved  in  general  stress  response  were  stimulated  as  well.  In  particular,  genes

encoding the universal stress promotor UspA, the GroES/GroEL and DnaK chaperons, and the

proteolytic subunit of ATP-dependent Clp protease (ClpP) showed an increased transcription

(Fig. 4) with an average Spearman’s rank correlation coefficients of 0.76 ± 0.04 (n = 5, FDR-

adjusted p-value < 0.05) to the sum of normalised SFb1 mRNA counts.
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To evaluate whether a hidden turnover of biomass (cryptic growth) was underlying the stable

Desulfosporosinus population,  we  screened  COG categories  D,  L,  and  M  for  expression  of

indicator genes that encode functions in cell division (e.g., ftsZ or minE), DNA replication (e.g.,

gyrBA,  dnaC,  and  dnaG),  and  cell  envelope  biogenesis  (e.g.,  murABCDEFGI),  respectively.

Genes that unambiguously encoded such functions (Table S1) showed only very minor or no

increases in transcripts over time (Fig. 3, detailed in Fig. S5). Extension of this analysis to all

genes belonging to COG D (n = 73), L (n = 280), and M (n = 215) showed that the average

Spearman’s rank correlation coefficients to the sum of normalised mRNA counts was only 0.45

± 0.13 (FDR-adjusted p-value < 0.05, Table S1).

We also analysed genes reported to be upregulated immediately after phage infection, which is

an  important  ecological  control  of  bacterial  population  size.  Respective  genes  in  Bacillus

subtilis encode, e.g., functions in DNA and protein metabolism and include the ribonucleoside-

diphosphate  reductase  (nrdEF)  and aspartyl/glutamyl-tRNA amidotransferase  (gatCAB)  (70).

However,  homologs  in  SbF1  did  not  show  increased  expression  in  the  incubations  with

increased total transcriptional activity (Table S1). This was reflected in an average Spearman’s

rank correlation coefficient of only 0.60 ± 0.06 (n = 4, FDR-adjusted p-value < 0.05) to the sum

of normalised SFb1 mRNA counts. The same was true when screening for active sporulation of

a  Desulfosporosinus subpopulation as an alternative explanation for a stable low-abundance

population.  The  identified  sporulation  genes  (spo0A–spoVT)  did  not  show  any  prominent

increase  in  transcript  numbers  as  well,  with  the  only  exception  of  spoIIIAD,  which  was

stimulated in propionate- and sulfate-amended microcosms (Table S1). Again, expression of

genes involved in sporulation had a low average Spearman’s rank correlation coefficient of

0.44 ± 0.13 (n = 22, FDR-adjusted  p-value < 0.05) to the sum of normalised SFb1 mRNA

counts.

The  individual  incubation  regimes  triggered  in  addition  transcriptional  activation  of  the

respective substrate degradation pathways of  Desulfosporosinus sp. MAG SbF1. For example,

all  genes necessary for  the conversion of  propionate  to pyruvate  were overexpressed only

upon addition of propionate and sulfate but not in any other incubation type. The same was

true for lactate degradation, where genes encoding the lactate permease, lactate racemase

and two of the detected lactate dehydrogenases were overexpressed upon addition of both

lactate and sulfate, but not in incubations with lactate only (Fig. 4). Although genes encoding
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phosphotransacetylase and acetate kinase were overexpressed under lactate and propionate,

the complete Wood–Ljungdahl  pathway was overexpressed as well,  which indicates that  at

least part of these substrates were completely degraded to CO₂ rather than to acetate and CO₂.

This  conclusion  was  supported  by  the  overexpression  of  the  Wood–Ljungdahl  pathway  in

incubations amended with acetate and sulfate. Interestingly, the Wood–Ljungdahl pathway was

also  overexpressed  upon  addition  of  butyrate  and  sulfate.  Under  such  conditions,

Desulfosporosinus sp. MAG SbF1 apparently relies on a synthrophic lifestyle based on acetate

uptake as it lacked the capability for butyrate oxidation; albeit failed recovery of the butyrate

degradation pathway during binning cannot be excluded.
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Discussion

Current  knowledge  on  the  interconnection  of  energy  metabolism,  gene  expression,  cell

division, and population growth in microorganisms is mainly based on pure cultures that are

maintained in the laboratory. Under ideal conditions, a single Escherichia coli cell would grow

to a population with the mass of the Earth within 2 days. Clearly, this does not occur but the

discrepancy between potential and actual growth underscores that microorganisms spend the

vast majority of their time not dividing (27, 71). A large fraction of these microorganisms is part

of the rare biosphere. For example, in the studied peatland, the sum of all  low-abundance

species made up approximately 12% of the total bacterial and archaeal 16S rRNA genes (5). In

other soils,  low-abundance  Alphaproteobacteria and  Bacteroidetes alone constituted in sum

10% and 9% of the total bacterial population, respectively, while all low-abundance populations

summed up to 37% of all bacteria (14). Upon strong environmental  change, low-abundance

microorganisms often grow to numerically abundant populations and replace dominant species

as observed for microbial community changes after an oil spill (72, 73) or in the response of

soil  microorganisms  towards  the  presence  of  plants  (14).  However,  subtle  environmental

changes (5) or recurring seasonal  shifts  (7,  9,  74) often lead to rather small  shifts  in low-

abundance populations without rare biosphere members becoming numerically dominant.

The low-abundance  Desulfosporosinus sp.  MAG SbF1 represents  an interesting  case  of  the

latter  response  type.  When  exposed  to  favorable,  sulfate-reducing  conditions  in  peat  soil

microcosms, the overall  Desulfosporosinus population did not increase its population size of

about 1.2 × 10⁶ 16S rRNA gene copies  cm⁻³ soil (Fig. 2a) but strongly increased its cellular

ribosome content by up to one order of magnitude (Fig. S4) (5). In a preceding 16S rRNA (gene)

amplicon study which analysed the same microcosms, we could show that  Desulfosporosinus

OTU0051 is the major constituent of this  Desulfosporosinus population and correlated best in

its 16S rRNA response to sulfate turnover among all identified SRM (5). Here, we re-analyzed

these microcosms to expand upon this  observation by genome-centric  metatranscriptomics

and  to  test  whether  the  increase  in  cellular  ribosome  content  is  indeed  translated  into

transcriptional  and,  as  a  consequence,  metabolic  activity.  Desulfosporosinus OTU0051 was

100% identical to the 16S rRNA gene of Desulfosporosinus sp. MAG SbF1, which was retrieved

in this study and as such represented the major  Desulfosporosinus population. In support of

this conclusion, increases in 16S rRNA copies of the overall Desulfosporosinus population (Fig.
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S4) clearly corresponded to increased transcription of genes coding for ribosomal proteins in

Desulfosporosinus sp. MAG SbF1 (Fig. 3, Table S1) (5). This cellular ribosome increase under

sulfate-reducing conditions correlated well to an increase in all normalised mRNA counts (Fig.

2b). This is the first time that changes in population-wide 16S rRNA levels are proven to be

directly linked to transcriptional activity for a rare biosphere member.

Analyzing the transcriptional response of a rare biosphere member under in situ-like conditions

opens the unique opportunity to gain insights into its  ecophysiology.  Desulfosporosinus sp.

MAG SbF1 clearly overexpressed its sulfate reduction pathway under sulfate amendment when

supplied with either acetate, lactate, propionate, or butyrate as compared to the no-substrate

and the methanogenic controls (Fig. 4). Detailed analysis of the transcribed carbon degradation

pathways showed that Desulfosporosinus sp. MAG SbF1 is able to oxidise propionate, lactate,

and acetate completely to CO₂. Under butyrate-amended conditions, it presumably relied on

syntrophic  oxidation  of  acetate  supplied  by  a  primary  butyrate  oxidiser.  This  shows  that

Desulfosporosinus sp. MAG SbF1 is capable of utilising diverse substrates that represent the

most  important  carbon  degradation  intermediates  measured in  peatlands  (75,  76).  Such  a

generalist lifestyle is of clear advantage in peat soil  given the highly variable nutrient and

redox conditions (75, 76). These fluctuations are caused by the periodically changing water

table that steadily shifts the oxic–anoxic interface (67, 77). In addition, the complex flow paths

of water create distinct spatial and temporal patterns (hot spots and hot moments) of various

biogeochemical  parameters  including  sulfate  and  substrate  availability,  to  which  peat

microorganisms have to adapt (66–69).

The question remains, which mechanisms are at work that keep the transcriptionally active

Desulfosporosinus sp. MAG SbF1 population in a stable low-abundance state? Ongoing growth

could  be  hidden  by  continuous  predation,  viral  lysis,  or  active  sporulation  of  a  major

subpopulation. To answer this question, we analysed expression patterns of genes involved in

cell  growth-associated  processes.  Compared  to  the  strong  overexpression  of  metabolic  or

ribosomal protein genes, transcription of genes essential for DNA replication, cell division, and

cell  envelope  biogenesis  did  not  increase  or  only  marginally  (Fig.  3,  Fig.  S5).  In  contrast,

retentostat  studies on cultured  Firmicutes held in a (near)-zero growth state revealed that

expression of genes involved in cell growth, central energy metabolism, and the translational

apparatus were always co-regulated, either showing a joint increased expression in  Bacillus
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subtilis (78) or an invariable expression in Lactobacillus plantarum (79) when comparing active

growth to (near)-zero growth. In addition, there is experimental evidence that in the lag phase

of batch cultures,  i.e.,  in the transition from no growth to growth,  transcription of  growth-

related genes is not stable but increases due to the overall activation of cellular processes (80).

In this context, the lack of an increasing transcription of growth-related genes would clearly

indicate a state of (near-)zero growth rather than an actively dividing population that is kept

stable by an equally high growth and mortality or sporulation rate. This conclusion is further

supported by the lack of overexpressed sporulation genes or genes upregulated directly after

phage attack (Table S1; Table S3).

Nevertheless, the ATP generated by the induced energy metabolism has to be consumed. If not

used for growth, it has to be invested completely for maintenance according to the Herbert-Pirt

relation qs = ms + µ/Ysx
max, where qs is the biomass-specific consumption rate, ms is the

maintenance coefficient, µ is the specific growth rate, and Ysx
max is the the maximum growth

yield  (81,  82).  Based  on  the  the  concept  of  a  species-independent  maintenance  energy

requirement  as  laid  out  by (83),  and further  developed by (28),  it  can  be calculated that

Desulfosporosinus sp. MAG SbF1 would need to consume 2.1 fmol sulfate per day to maintain a

single cell in our incubations when, e.g., incompletely oxidizing lactate to acetate (detailed in

Supplementary  Information).  This  is  in  agreement  with  experimentally  determined

maintenance  requirements  of  Desulfotomaculum  putei (84),  but  two  orders  of  magnitude

smaller  than  the  cell-specific  sulfate  reduction  rates  of  Desulfosporosinus sp.  MAG  SbF1

estimated previously in a similar experimental setup of the same peat soil by (16) (here the

responsive but low-abundance  Desulfosporosinus OTU was 99.8% identical to the 16S rRNA

gene of Desulfosporosinus sp. MAG SbF1). However, maintenance requirements are known to

increase upon production of  storage compounds or to counterbalance environmental  stress

(28).  We  found  no  indication  for  the  former  scenario  but  observed  overexpression  of  the

universal stress promotor UspA, which is one of the most abundant proteins in growth-arrested

cells (85). In addition, we observed overexpression of the chaperons GroES/GroEL and DnaK

and of the protease ClpP, which were all previously linked to low pH stress response at the

expense of ATP consumption (86–90). Since the pH in the analyzed peat soil incubations varied

between 4.1–5.0 (5), coping with a low pH would be the most parsimonious explanation for

increased  maintenance  requirements.  In  this  context,  one  may  speculate  whether  the
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overexpressed ATP synthase might have operated as an ATPase to pump protons out of the cell

at the expense of ATP hydrolysis, which is a known response mechanisms towards mildly acidic

pH (90).  Similar,  the overexpressed sulfate reduction pathway including complex I  and the

membrane quinone shuttle might have been co-utilized as proton pump without harvesting the

membrane potential  for ATP generation. Since active sulfate reduction would also consume

protons  in  the  vicinity  of  Desulfosporosinus sp.  MAG  SbF1  and  thus  slowly  increase  its

surrounding  pH,  a  high  metabolic  activity  at  concomitant  zero  growth  controlled  by

maintenance requirements would make sense.

Our results are important in the context of the increasing awareness that the microbial rare

biosphere is not only the largest pool of biodiversity on Earth (1–4) but in sum of all its low-

abundance members constitutes also a large part of the biomass in a given habitat (5, 14).

Understanding the mechanisms governing this low-abundance prevalence and its direct impact

on  ecosystem  functions  and  biogeochemical  cycling  is  thus  of  utmost  importance.

Desulfosporosinus sp. MAG SbF1 has been repeatedly shown to be involved in cryptic sulfur

cycling in peatlands (5, 16) — a process that counterbalances the emission of the greenhouse

gas  methane  due  to  the  competitive  advantage  of  SRM  as  compared  to  microorganisms

involved in the methanogenic degradation pathways (20). This species can be found worldwide

in low-sulfate environments impacted by cryptic sulfur cycling including not only peatlands but

also permafrost soils, rice paddies, and other wetland types (5). Here, we provided proof that

Desulfosporosinus sp. MAG SbF1 is indeed involved in the degradation of important anaerobic

carbon degradation intermediates in peatlands while sustaining a low-abundance population. It

has  a  generalist  lifestyle  in  respect  to  the  usable  carbon  sources,  re-emphasizing  its

importance in the carbon and sulfur cycle of peatlands. Our results provide an important step

forward in understanding the microbial ecology of biogeochemically relevant microorganisms

and show that low-abundance keystone species can be studied “in the wild” using modern

environmental systems biology approaches.
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Proposal of Candidatus Desulfosporosinus infrequens

Based on its phylogenetic placement and novel ecophysiological behaviour, we propose that

Desulfosporosinus sp.  MAG  SbF1  represents  a  novel  species  with  the  provisional  name

Candidatus Desulfosporosinus  infrequens  sp.  nov.  (in.fre’quens.  L.  adj.  infrequens,  rare,

referring to its low relative abundance). Based on its genome-derived metabolic potential and

support  from  metatranscriptomics,  Ca. D.  infrequens  is  capable  of  complete  oxidation  of

acetate, propionate and lactate with sulfate as the electron acceptor, with further potential for

oxidation of molecular hydrogen (Fig. 1).
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Figures

Fig. 1

Metabolic model of  Desulfosporosinus sp. MAG SbF1. Gene expression stimulated by specific

substrates in combination with sulfate is indicated by coloured points. Paralogous genes are

indicated  by  an  underscore  followed  by  a  number.  Plus  signs  indicates  proposed  protein

complexes. Details for all genes are given in Table S1 and transcription patterns are shown in

Fig. 4. For the citric acid cycle and anaplerotic reactions, carriers of reducing equivalents and

further  by-products  are  not  shown.  The  following  abbreviations  were  used.  X:  unknown

reducing equivalent carrier, e.g., NAD⁺ or ferredoxin. WL: Wood–Ljungdahl pathway consisting

of enzymes encoded by the acs operon, MetF, FolD, FchA, and Fhs. TCA: citric acid cycle. FDH:

formate  dehydrogenase.  Hase:  hydrogenase.  NDH-1:  NADH dehydrogenase  1.  LDH:  lactate

dehydrogenase.

Fig. 2

(a)  Time‐resolved  absolute  abundance  of  the  Desulfosporosinus population  (in  black)  as

compared to all Bacteria and Archaea (in grey) in anoxic peat soil microcosms under various in-

situ like conditions as determined by quantitative PCR (modified from (5)). Error bars represent

one standard deviation of the mean (n=3; n=2 for propionate with sulfate stimulation, all days,

and  butyrate  with  sulfate  stimulation,  day  50).  (b)  Corresponding  overall  transcriptional

changes (mRNA of all CDS) of Desulfosporosinus sp. MAG SbF1 in the same anoxic microcosms.

Error bars represent one standard deviation of the mean (n=3; n=2 for propionate with sulfate

stimulation).

Fig. 3

Time-resolved  transcriptional  changes  of  selected  genes  representing  the  sulfate-reduction

pathway (sat, dsrA), ribosomal proteins of the large (rplA) and small subunit (rpsC), cell division

(ftsZ),  DNA  replication  (gyrB),  and  peptidoglycan  synthesis  (murA).  Panels  represent  the

various  substrate  incubations:  initial,  initial  peat  soil  to  set  up  peat  microcosms;  +/–S,

incubations with or without external sulfate. The size and color of the dots represent average

FPKM values of the respective normalised gene expression.
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Fig. 4

Transcription  patterns  of  whole  pathways  and  central  enzyme  complexes  involved  in  the

carbon and energy metabolism of Desulfosporosinus sp. MAG SbF1 under in situ-like conditions.

In  addition,  transcription  patterns  of  general  stress  response  proteins  are  shown.  Mean

abundance for the native soil  (—) and each incubation treatment and time point  is shown.

Supplemented substrates are indicated by initials and addition of external sulfate is depicted

by –S/+S (columns). Abundance values are normalised variance-stabilised counts x, which were

scaled from 0 to 1 for each CDS using the formula [x – min(x)] / max[x – min(x)]. Incompletely

assembled genes are indicated by _a, _b, and _c.
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Fig. 2.
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Fig. 3.
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Supplementary Information

Supplementary Methods

Calculation of minimum sulfate turnover for maintenance

The minimum sulfate turnover required for maintenance was calculated according to the 

species-independent Arrhenius equation outlined in (1). Here, me = Ae-Ea/RT with me as the 

free energy consumption rate for zero growth, A as a constant factor for anaerobic 

microorganisms (4.99 × 10¹² kJ g d.wt.⁻¹ d⁻¹), Ea as constant activation energy (69.4 kJ mol⁻¹), 

R as the universal gas constant (8.314 J mol⁻¹ K⁻¹), and T as temperature in K. We used a 

temperature of 14 °C (288.15 K) for our calculations because this was the temperature at 

which the incubations were performed. The resulting me was converted to cell-specific sulfate 

reduction rates required for maintenance based on the energy yield of a sulfate reducer when 

converting lactate to acetate (–160.4 kJ mol sulfate⁻¹) (2) and a conversion factor of dry weight 

biomass to cell numbers of 2.9 × 10¹³ g d.wt. cell⁻¹ (3).
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Supplementary Tables

Table S1

Summary of all genomic features in Desulfosporosinus sp. MAG SbF1. Genes encoding the 

energy metabolism or central cellular functions are given first. COG class IDs were assigned by 

MaGe (Cognitor, www.ncbi.nlm.nih.gov/COG/). bactNOG and NOG IDs were assigned by best-

match principle (4, 5). Spearman’s rank correlation is given for each gene’s normalized 

transcript counts as compared to the sum of normalized mRNA counts (FDR-adjusted p-values 

are indicated by asterisks: ✱, < 0.05; ✱✱, < 0.01; ✱✱✱, < 0.001). Expression clusters 

represent the clusters assigned by correlation and hierarchical clustering analysis. The next 

five columns are log₂ fold-changes of expression levels after 36 days of incubation in the 

sulfate-stimulated microcosms (i.e., substrate vs no-substrate-control). Missing fold-changes 

are due to all counts being zero in both compared treatments. Ranks are based on mean 

fragments per kilobase per million total fragments (FPKM). Also here, only data of sulfate-

stimulated microcosms after 36 days of incubation are shown in addition to the native soil. 

Missing ranks indicate that expression was never detected in any replicate. Fragmented, i.e., 

mainly incompletely assembled genes are indicated by _a, _b, and _c. A ¹ or ² in the strand 

column indicates that this CDS is either the first or last on a scaffold, respectively (depending 

on the reading frame).

Table S2

Characteristics and coverage of all scaffolds belonging to Desulfosporosinus sp. MAG SbF1. The

two scaffolds with the highest coverage encode the 23S and 16S rRNA genes, respectively.

Table S3

Expression levels of selected CDS in the analysed anoxic peat soil microcosms given in FPKM 

(mean ± one standard deviation). Loci are sorted as in Table S1. Headers display the individual

treatments used in the peat soil microcosms: without and with external sulfate added; 

amended substrate; and days of incubation.
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Supplementary Figures

Fig. S1

Differential coverage plots of assembled scaffolds with Desulfosporosinus sp. MAG SbF1 

scaffolds highlighted by black circles. The average coverage per scaffold in the SIP 

metagenome is visualized without (a) and with (b) G+C content transformation (see Materials 

and Methods). Taxonomic affiliation is indicated by color and based on BLAST as described 

previously (6). White circles represent unclassified scaffolds. Only scaffolds >10 000 nt length 

are shown, except when belonging to SbF1. Scaffolds encoding selected genes in SbF1 are 

labelled accordingly.

Fig. S2

(a) Maximum likelihood 16S rRNA gene tree of species belonging to the genera 

Desulfosporosinus and Desulfitobacterium. Branch supports of ≥0.9 and ≥0.7 are indicated by 

filled and open circles, respectively. GenBank accession numbers are given in parentheses. (b) 

Bayesian inference phylogenomic tree showing the phylogenetic placement of 

Desulfosporosinus sp. MAG SbF1. All branches were supported >0.9 (filled circles). The tree 

was rooted against genomes from the Acidobacteria, Proteobacteria, and Verrucomicrobia (not 

shown). Genome accession numbers are given in parentheses.

Fig. S3

Two-way average amino and nucleic acid identities between Desulfosporosinus and 

Desulfitobacterium species genomes (in%, written into cells). The dendrogram is based on Fig. 

S2b.
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Fig. S4

Time-resolved 16S rRNA copies of the low‐abundance Desulfosporosinus population as 

determined by quantitative PCR, modified from (7). Error bars are ± one standard deviation 

(n=3; n=2 for propionate with sulfate stimulation, all days, and butyrate with sulfate 

stimulation, day 50).(7). Solid lines and symbols represent sulfate-stimulated microcosms 

whereas dashed lines and open symbols represent control microcosms without external sulfate.

Panels represent the various substrate incubations, initial stands for initial peat soil.

Fig. S5

Time-resolved changes of all unambiguously identified genes related to cell division (ftsZ, ftsA, 

ftsK, ftsW, minE), DNA replication (gyrB, gyrA, dnaG, dnaE, holA, dnaC, priA), and cell envelope 

biogenesis (murABCDEFGI, ddl, alr, mraY, Table S1); dsrA is included as reference, analogous 

to Fig. 3. Panels represent the various substrate incubations: initial, initial peat soil to set up 

peat microcosms; +/–S, incubations with or without external sulfate. The size and color of the 

dots represent average FPKM values of the respective normalized gene expression.
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Fig. S4.
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Fig. S5.
Initial None Formate Acetate Propionate Lactate Butyrate
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