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Significance
The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in

sum of all  its members,  a considerable part  of a habitat’s  biomass.  Dormancy or starvation are

typically used to explain a low-abundance state. We show that low-abundance microorganisms can

be highly metabolically active while being growth-arrested over prolonged time periods. We show

that this is true for microbial keystone species, such as a cosmopolitan but low-abundance sulfate

reducer  in  wetlands  that  is  involved  in  counterbalancing  greenhouse  gas  emission.  Our  results

challenge the central  dogmas “metabolic activity translates directly into growth” as well  as “low

abundance equals little ecosystem impact” and provide an important step forward in understanding

rare biosphere members relevant for ecosystem functions.

Abstract
Microbial  diversity  in  the  environment  is  mainly  concealed  within  the  rare  biosphere,  which  is

arbitrarily defned as all species with <0.1% relative abundance. While dormancy explains a low-

abundance state very well, the cellular mechanisms leading to rare but active microorganisms are

not clear. We used environmental systems biology to genomically and metabolically characterize a

cosmopolitan  sulfate  reducer  that  is  of  low  abundance  but  highly  active  in  peat  soil,  where  it

contributes to counterbalance methane emissions. We obtained a 98%-complete genome of this low-

abundance  species,  Candidatus Desulfosporosinus  infrequens,  by  metagenomics.  To  test  for

environmentally relevant metabolic activity of Ca. D. infrequens, anoxic peat soil microcosms were

incubated under diverse  in situ-like conditions for 36 days and analyzed by metatranscriptomics.

Compared to the no-substrate control, transcriptional activity of Ca. D. infrequens increased 56- to

188-fold  in  incubations  with  sulfate  and  acetate,  propionate,  lactate,  or  butyrate,  revealing  a

versatile substrate use. Cellular activation was due to a signifcant overexpression of genes encoding

ribosomal  proteins,  dissimilatory  sulfate  reduction,  and carbon-degradation pathways,  but  not  of

genes encoding DNA or cell replication. We show for the frst time that a rare biosphere member

transcribes metabolic pathways relevant for carbon and sulfur cycling over prolonged time periods

while being growth-arrested in its lag phase.
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Introduction
The vast majority of microbial diversity worldwide is represented by the rare biosphere (Sogin et al.,

2006;  Pedrós-Alió,  2012;  Lynch  and  Neufeld,  2015;  Jousset  et  al.,  2017).  This  entity  of

microorganisms consists of all microbial species that have an arbitrarily defned relative population

size of <0.1% in a given habitat at a given time (Sogin  et al., 2006; Pedrós-Alió, 2012; Lynch and

Neufeld, 2015; Jousset  et al., 2017). The rare biosphere is opposed by a much smaller number of

moderately abundant or very abundant microbial species (≥0.1% and ≥1.0% relative abundance,

respectively, Hausmann et al., 2016), which are thought to be responsible for the major carbon and

energy fow through a habitat as based on their cumulative biomass. However, there is accumulating

experimental evidence that the rare biosphere is not just a so-called “seed bank” of microorganisms

that are waiting to become active and numerically dominant upon environmental change (Müller et

al.,  2014;  Lynch and Neufeld,  2015),  but  also  harbors  metabolically  active microorganisms with

important ecosystem functions (Jousset et al., 2017).

First hints for metabolically active rare biosphere members were evident from seasonal patterns of

marine  bacterioplankton  species.  Here,  many  taxa  that  displayed  recurring  annual  abundance

changes were of low abundance and even during their bloom periods never reached numerically

abundant population sizes (Campbell et al., 2011; Hugoni et al., 2013; Alonso-Sáez et al., 2015). In

soil environments, removal of low-abundance species by dilution-to-extinction had a positive efect

on intruding species, suggesting that active low-abundance species pre-occupy ecological niches and

thus  slow down invasion  (van Elsas  et  al.,  2012;  Vivant  et  al.,  2013;  Mallon  et  al.,  2015).  Soil

microorganisms of low relative abundance were also shown to play a role in community-wide species

interactions, e.g, by being involved in the production of antifungal compounds that protect plants

from pathogens (Hol et al., 2015) or by constituting the core of microorganisms that respond to the

presence of a particular plant species (Dawson et al., 2017). Other examples include microorganisms

with  a  specialized  metabolism  that  sustain  stable  low-abundance  populations  in  an  ecosystem

(Lynch and Neufeld, 2015). For example, N₂-fxing microorganisms in the ocean (Großkopf  et al.,

2012) or sulfate-reducing microorganisms (SRM) in peatlands (Pester et al., 2010, 2012b; Hausmann

et al., 2016) were shown to fulfll such gatekeeper functions.

A peatland  Desulfosporosinus species was one of  the frst  examples identifed as an active rare

biosphere member contributing to an important ecosystem function (Pester et al., 2010). This SRM is

involved in the cryptic sulfur cycle of peatlands (Pester et al., 2010; Hausmann et al., 2016), which in

turn controls the emission of the greenhouse gas CH₄ from these globally relevant environments

(Pester et al., 2012b). Although porewater sulfate concentrations are typically quite low in peatlands

(<300 µM, Pester et al., 2012b), these environments are characterized by temporally fuctuating high

sulfate reduction rates (up to 1800 nmol cm⁻³ day⁻¹, Pester et al., 2012b). These rates can be in the

same range as in sulfate-rich marine surface sediments, where sulfate reduction is one of the major

anaerobic carbon degradation pathways (e.g., Jørgensen, 1982; Leloup et al., 2009; Holmkvist et al.,

2011a, 2011b). In low-sulfate peatlands, such high sulfate reduction rates can only be maintained by
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rapid  aerobic  or  anaerobic  re-oxidation  of  reduced sulfur  species  back  to  sulfate  (Pester  et  al.,

2012b).  Since SRM generally outcompete methanogens and syntrophically  associated fermenters

(Muyzer  and  Stams,  2008),  they  exert  an  important  intrinsic  control  function  on  peatland  CH₄

production (Gauci  et al., 2004, 2005; Gauci and Chapman, 2006). This is important, since natural

wetlands, such as peatlands, are estimated to be responsible for 30% of the annual emission of this

potent greenhouse gas (Ciais et al., 2013; Kirschke et al., 2013; Saunois et al., 2016).

Little is known about the ecophysiology of metabolically active but low-abundance microorganisms.

This lack of knowledge is clearly founded in their low numerical abundance making it inherently

difficult  to  study  their  metabolic  responses  or  even to  retrieve their  genomes directly  from the

environment.  In  a  preceding  study,  we  could  show  that  the  low-abundance  peatland

Desulfosporosinus species mentioned above follows an ecological  strategy to increase its cellular

ribosome content while maintaining a stable population size when exposed to favorable,  sulfate-

reducing  conditions  (Hausmann  et  al.,  2016).  This  was  unexpected  since  metabolic  activity  in

bacteria  and  archaea  is  typically  immediately  followed  by  growth.  Furthermore,  this

Desulfosporosinus species can be found worldwide in a wide range of low-sulfate wetlands including

not only peatlands but also permafrost soils and rice paddy felds (Hausmann  et al., 2016), which

emphasizes its importance as a model organism for active rare biosphere members. In this study, we

used an environmental systems biology approach to deepen our understanding of the ecophysiology

of this rare biosphere member. In particular, we retrieved its genome directly from a combination of

native and incubated peat soil and followed its transcriptional responses in peat soil microcosms,

which were exposed to diferent environmental triggers that mimicked diverse in situ conditions.

Results

Recovery of a near complete genome of a rare biosphere member: Desulfosporosinus 
MAG SbF1 represents a novel species
We  obtained  the  population  genome  of  the  low-abundance  Desulfosporosinus species  by  co-

assembly and diferential coverage binning of metagenomes obtained from native peat soil and 13C-

fractions of a DNA-stable isotope probing experiment (Fig. S1) (Hausmann  et al., 2018). The high

quality metagenome-assembled genome (MAG) SbF1 had a size of 5.3 Mbp (on 971 scafolds), a G+C

content of 42.6%, a checkM-estimated completeness of 98.0%, a potential residual contamination of

3.9%, and 10% strain heterogeneity. Besides 16S and 23S rRNA genes, SbF1 carried 6440 protein-

coding genes (CDS), fve 5S rRNA gene copies, 59 tRNAs, and 37 other ncRNAs, making a total of

6543 predicted genomic features. Scafolds encoding rRNA genes had a higher coverage compared

to the average coverage of all scafolds (Fig. S1), indicating multiple rrn operon copies, as is known

from  other  Desulfosporosinus genomes.  The  16S  rRNA  gene  was  100%  identical  to

Desulfosporosinus OTU0051,  which  was  previously  shown  to  correlate  strongest  among  all

recognized SRM to sulfate turnover in microcosms of the analyzed peat soil (Hausmann et al., 2016).

The genome size and G+C content was in the same range as observed for genomes of cultured

Desulfosporosinus species (3.0–5.9 Mbp and 42–44%, respectively; Abicht et al., 2011; Pester et al.,
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2012a; Abu Laban et al., 2015; Petzsch et al., 2015; Mardanov et al., 2016).

In the 16S rRNA tree, SbF1 formed a well supported clade with Desulfosporosinus sp. 44a-T3a (98.3%

sequence identity), Desulfosporosinus sp. OT (98.8%), and Desulfosporosinus sp. 5apy (98.1%). The

most similar validly described species was  D. lacus with a sequence identity of 97.5% (Fig. S2a).

Phylogenomics confrmed  Desulfosporosinus sp. OT as the closest relative (Fig. S2b) with average

amino and nucleic acid identities (AAI and ANI) of 77% and 79%, respectively (Fig. S3). The intra-

genus AAI variability of  Desulfosporosinus species was 69–93% (Fig. S3). MAG SbF1 represents a

novel  species  in  this  genus  based  on  species-level  thresholds  of  99%  for  the  16S  rRNA  gene

(Stackebrandt and Ebers, 2006) and 96.5% for ANI (Varghese et al., 2015).

The versatile energy metabolism of the low-abundance Desulfosporosinus
Desulfosporosinus MAG  SbF1  encoded  the  complete  canonical  pathway  for  dissimilatory  sulfate

reduction (Fig. 1, Table S1). This encompassed the sulfate adenylyltransferase (Sat), adenylyl-sulfate

reductase (AprBA), dissimilatory sulfte reductase (DsrAB), and the sulfde-releasing DsrC, which are

sequentially involved in the reduction of sulfate to sulfde. In addition, genes encoding the electron-

transferring QmoAB and DsrMKJOP complexes were detected, with their subunit composition being

typical for Desulfosporosinus species (Abicht et al., 2011; Pester et al., 2012a; Petzsch et al., 2015;

Mardanov  et al., 2016). Other  dsr genes included  dsrD,  dsrN, and  dsrT (Rabus  et al., 2015), with

hitherto unvalidated function, as well as fdxD, which encodes a [4Fe4S]-ferredoxin, and a second set

of DsrMK-family encoding genes (dsrM2 and  dsrK2). SbF1 also encoded the trimeric dissimilatory

sulfte reductase AsrABC (anaerobic sulfte reductase) (Huang and Barrett, 1991).

SbF1  carries  genes  for  both  complete  and  incomplete  oxidation  of  propionate  and  lactate.  In

addition, the ability to utilize acetate, formate, or H₂ as electron donors was encoded (Fig. 1). All

enzymes necessary for  propionate  oxidation  to  the central  metabolite  pyruvate  (including  those

belonging  to  a  partial  citric  acid  cycle)  were  encoded  on  two  scafolds  (Table  S1).  For  lactate

utilization, SbF1 carried three paralogs of glycolate/D-lactate/L-lactate dehydrogenase family genes.

However, the substrate specifcity of the encoded enzymes could not be inferred from sequence

information alone. The transcription of lutDF and lutD_2 was stimulated by the addition of L-lactate

(Fig. 1), which indicates that these genes encode functional lactate dehydrogenases (LDH). The third

paralog (glcDF, Table S1) was not stimulated by lactate. LutDF was organized in an operon with a

lactate permease (LutP) and a lactate regulatory gene (lutR). LutD_2 was organized in a operon with

an electron-transferring favoprotein (EtfBA_2), which resembled the electron-confurcating LDH/Etf

complex in Acetobacterium woodii (Weghof et al., 2015). LDHs have been shown to utilize both L-

and D-lactate (e.g., Weghof et al., 2015; Zhang et al., 2016). However, SbF1 also encoded a lactate

racemase (LarA)  and  a  lactate  racemase-activating  system (LarEBC)  for  interconversion  of  both

stereoisomers (Desguin et al., 2014).

Pyruvate, the intermediate product in propionate and lactate degradation, can be further oxidized to

acetyl-CoA  with  either  one  of  several  pyruvate-ferredoxin  oxidoreductases  (PfoA)  or  formate  C-
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acetyltransferase (PfD). Acetyl-CoA can then be completely oxidized to CO₂ via the Wood–Ljungdahl

pathway (Pierce  et  al.,  2008),  which is  complete  in  SbF1 (Fig.  1,  Table  S1)  and present  in  the

genomes of all other sequenced Desulfosporosinus species (Abicht et al., 2011; Pester et al., 2012a;

Petzsch et al., 2015; Mardanov et al., 2016). Alternatively, acetyl-CoA may be incompletely oxidized

to acetate via acetyl-phosphate by phosphate acetyltransferase (Pta) and acetate kinase (AckA). Pta

and AckA are bidirectional enzymes, opening the possibility that acetate could be degraded via these

two enzymes and the downstream Wood–Ljungdahl pathway to CO₂.

Formate and H2 represented additional potential electron donors for SbF1. Its genome encoded three

formate dehydrogenases (FDH). FDH-1 consists of three subunits (fdhCBA) while FDH-2 (FdhA_2) and

FDH-3 (FdhA-3) are monomeric enzymes. In addition, [NiFe] hydrogenases of group 1 and 4f, as well

as [FeFe] hydrogenases of group A (Greening  et al., 2016) were encoded. Homologs of genes for

butyrate  oxidation  were  missing  in  SbF1  (Schmidt  et  al.,  2013),  which  is  in  contrast  to  other

Desulfosporosinus species (e.g.,  D. orientis).  Both glycolysis and gluconeogenesis were complete.

However,  neither  a  glucokinase  or  a  phosphotransferase  system  was  found  (PTS).  Coupling  of

electron  transfer  to  energy  conservation  could  be  mediated  in  SbF1  by  a  H⁺/Na⁺-pumping  Rnf

complex (RnfCDGEAB) (Buckel and Thauer, 2013) and a NADH dehydrogenase (respiratory complex

I, NuoABCDEFGHIJKLMN). In addition, the complete gene set for ATP synthase (AtpABCDEFGH) was

identifed (Fig. 1, Table S1).

Activation of energy metabolism is uncoupled from cell division initiation
We used metatranscriptomics to analyse gene expression changes of Desulfosporosinus MAG SbF1 in

anoxic peat microcosms, which mimicked diverse in situ-like conditions. Total transcriptional activity

of Desulfosporosinus MAG SbF1 was clearly stimulated by individual additions of acetate, propionate,

lactate, and butyrate in combination with sulfate. In these incubations, total mRNA counts of SbF1

increased by 56-, 80-, 62-, and 188-fold as compared to the no-substrate-control, respectively, and

constituted between 0.11 ± 0.13% (acetate) and 0.36 ± 0.02% (butyrate) of all transcripts in the

respective metatranscriptomes after 36 days (Fig. 2a). This substrate-specifc activity was mirrored

in the increased transcription of genes encoding ribosomal proteins as general activity markers (Fig.

2b) and of all dissimilatory sulfate reduction genes, except the alternative pathway via asrABC (Fig.

3). For example, Spearman’s rank correlation coefficients of dsrA and dsrB transcripts as compared

to  total  mRNA  counts  were  0.91  and  0.90,  respectively  (FDR-adjusted  p-value  < 0.001).  Other

enzyme complexes involved in the central metabolism of SbF1 such as the ATP synthase, the NADH

dehydrogenase (complex I), and ribosomal proteins followed the same transcriptional pattern (Fig. 3)

with an average Spearman’s rank correlation coefficients of 0.79 ± 0.07 (n = 72, FDR-adjusted  p-

value < 0.05) to total mRNA counts. Interestingly, transcription of genes encoding proteins involved

in general stress response were stimulated as well. In particular, genes encoding the universal stress

promotor UspA and the GroSL chaperonin showed an increased transcription (Fig. 3) with an average

Spearman’s rank correlation coefficients of 0.76 ± 0.06 (n = 3, FDR-adjusted p-value < 0.05) to total

mRNA counts.
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In addition, we screened the COG categories D, L, and M for indicator genes that encode functions in

cell division (e.g.,  ftsZ or  minE), DNA replication (e.g.,  gyrBA,  dnaC, and  dnaG) and cell envelope

biogenesis (e.g.,  murABCDEFGI),  respectively, and followed their expression patterns.  Genes that

unambiguously encoded such functions (Table S1) showed either no or only barely detectable but

insignifcant (FDR-adjusted p-value > 0.05) increases in transcripts under these conditions (Fig. 2b,

detailed in Fig. S4). Extension of this analysis to all genes belonging to COG D (n = 73), L (n = 280),

and M (n = 215), which included also genes with ambiguous classifcation or unknown function,

revealed that  also here 96%, 99%,  and 99%, respectively,  were not  signifcantly  overexpressed

under acetate, propionate, lactate, and butyrate in combination with sulfate (Table S1, Table S3).

Here, the average Spearman’s rank correlation coefficients to total mRNA counts was only 0.45 ±

0.13 (FDR-adjusted p-value < 0.05, Table S1).

We also analysed genes reported to be upregulated immediately after phage infection, as a potential

ecological driver that controls bacterial population size. Respective genes in Bacillus subtilis encode,

e.g., functions in DNA and protein metabolism and include the ribonucleoside-diphosphate reductase

(nrdEF),  aspartyl/glutamyl-tRNA  amidotransferase  (gatCAB),  and  the  proteolytic  subunit  of  ATP-

dependent Clp protease (clpP) (Mojardín and Salas,  2016). However, homologs in SbF1 were not

signifcantly  overexpressed  (FDR-adjusted  p-value  >  0.05),  which  was  refected  in  an  average

Spearman’s rank correlation coefficient of 0.63 ± 0.08 (n = 5, FDR-adjusted p-value < 0.05) to total

mRNA counts.  The same was true when screening for  active sporulation  of  a  Desulfosporosinus

subpopulation  as  an alternative  explanation  for  a  low population size.  The identifed sporulation

genes (spo0A–spoVT) did not show any signifcant increase in transcript numbers as well, with the

only exception of  spoIIIAD. This stage III  sporulation gene was signifcantly more abundant when

stimulated with propionate and sulfate, however did not correlate to total mRNA levels (Table S1).

Again, genes involved in sporulation had a low average Spearman’s rank correlation coefficient of

0.44 ± 0.13 (n = 22, FDR-adjusted p-value < 0.05) to total mRNA counts.

The individual incubation regimes additionally triggered transcriptional activation of the respective

substrate degradation pathways of Desulfosporosinus MAG SbF1. For example, all genes necessary

for the conversion of propionate to pyruvate were overexpressed only upon addition of propionate

and sulfate but not in any other incubation type. The same was true for lactate degradation, where

genes  encoding  the  lactate  permease,  lactate  racemase  and  two  of  the  detected  lactate

dehydrogenases  were  overexpressed  upon  addition  of  both  lactate  and  sulfate,  but  not  in

incubations with lactate only (Fig. 3). Although genes encoding phosphotransacetylase and acetate

kinase were overexpressed under lactate and propionate, the complete Wood–Ljungdahl pathway

was overexpressed as well, which indicates that at least part of these substrates were completely

degraded  to  CO₂  rather  than  to  acetate  and  CO₂.  This  conclusion  was  supported  by  the

overexpression of the Wood–Ljungdahl pathway in incubations amended with acetate and sulfate.

Interestingly, the Wood–Ljungdahl pathway was also overexpressed upon addition of butyrate and

sulfate.  Under  such  conditions,  Desulfosporosinus MAG SbF1  apparently  relies  on  a  synthrophic

lifestyle based on acetate uptake as it  lacked the capability for  butyrate  oxidation;  albeit  failed
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recovery of the butyrate degradation pathway during binning cannot be excluded.

Discussion
Current knowledge on the mechanisms that interconnect energy metabolism, gene expression, cell

division, and population growth of microorganisms are mainly based on pure cultures that can be

easily  maintained  in  the  laboratory.  Here,  the  typical  lifecycle  of  a  metabolically  active

microorganisms would go through an activating lag phase,  an exponential  growth phase,  and a

stationary phase upon limitation of substrate, nutrient,  or space. Under ideal conditions,  a single

Escherichia coli cell would grow to a population with the mass of the Earth within 2 days. Clearly, this

does  not  occur,  but  the  discrepancy  between  potential  and  actual  growth  underscores  that

microorganisms spend the vast majority of their time not dividing (Bergkessel et al., 2016). A large

fraction of these microorganisms is part of the rare biosphere. For example, in the studied peatland,

the  sum  of  all  low-abundance  species  made  up  approximately  12%  of  the  total  bacterial  and

archaeal  16S  rRNA  genes  (Hausmann  et  al.,  2016).  In  other  soils,  low-abundance

Alphaproteobacteria and Bacteroidetes alone constituted in sum 10% and 9% of the total bacterial

population,  respectively,  while  all  low-abundance populations  summed up to 37% of all  bacteria

(Dawson  et al.,  2017).  Upon strong environmental  change,  low-abundance microorganisms often

grow to numerically abundant populations and replace dominant species as observed for microbial

community changes after an oil spill (Teira et al., 2007; Newton et al., 2013) or in the response of

soil  microorganisms  towards  the  presence  of  plants  (Dawson  et  al.,  2017).  However,  subtle

environmental changes (Hausmann et al., 2016) or recurring seasonal shifts (Campbell et al., 2011;

Vergin  et al.,  2013; Alonso-Sáez  et al.,  2015) often lead to rather small  shifts  in low-abundance

populations without rare biosphere members becoming numerically dominant.

The  low-abundance  Desulfosporosinus MAG  SbF1  represents  an  interesting  case  of  the  latter

response type. When exposed to favorable, sulfate-reducing conditions in peat soil microcosms, it

did not increase its population size but drastically increased its cellular ribosome content by one

order  of  magnitude  to  57,000–84,000 16S  rRNA  molecules  per  cell  (Hausmann  et  al.,  2016).

Throughout the incubation period of 50 days, it correlated best in its 16S rRNA response to sulfate

turnover among all identifed SRM (Hausmann  et al., 2016). In this study, we expanded upon this

observation by genome-centric metatranscriptomics to test whether the increase in cellular ribosome

content is indeed translated into increased transcriptional and, as a consequence, metabolic activity

of  Desulfosporosinus MAG  SbF1.  As  expected,  increases  in  cellular  16S  rRNA  content  clearly

corresponded to increased transcription of genes coding for ribosomal proteins (Fig. 2b; Hausmann

et al., 2016). This cellular ribosome increase under sulfate-reducing conditions was correlated to an

increase in total mRNA counts (Fig. 2). This is the frst time that changes in population-wide 16S

rRNA levels are proven to be directly linked to transcriptional activity for a rare biosphere member.

Analyzing  the  transcriptional  response  of  a  rare  biosphere  member  under  in  situ-like  conditions

opens the unique opportunity to gain insights into its ecophysiology.  Desulfosporosinus MAG SbF1
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clearly overexpressed its sulfate reduction pathway under sulfate amendment when supplied with

either  acetate,  lactate,  propionate,  or  butyrate  as  compared  to  the  no-substrate  and  the

methanogenic controls (Fig. 3). Detailed analysis of the transcribed carbon degradation pathways

showed  that  Desulfosporosinus MAG  SbF1  is  able  to  oxidize  propionate,  lactate,  and  acetate

completely to CO₂. Under butyrate-amended conditions it presumably relied on syntrophic oxidation

of acetate supplied by a primary butyrate oxidizer. This shows that Desulfosporosinus MAG SbF1 is

capable  of  utilizing  diverse  substrates  that  represent  the  most  important  carbon  degradation

intermediates  measured in  peatlands  (Schmalenberger  et  al.,  2007;  Küsel  et  al.,  2008).  Such a

generalist lifestyle is of clear advantage in peat soil given the highly variable nutrient and redox

conditions (Schmalenberger  et al., 2007; Küsel  et al., 2008). These fuctuations are caused by the

periodically changing water table that steadily shifts the oxic–anoxic interface (Knorr  et al., 2009;

Reiche et al., 2009). In addition, the complex fow paths of water create distinct spatial and temporal

patterns  (hot  spots  and  hot  moments)  of  various  biogeochemical  parameters,  to  which  peat

microorganisms have to adapt (Jacks and Norrström, 2004; Knorr  et al., 2009; Knorr and Blodau,

2009; Frei et al., 2012).

The question remains, which mechanisms are at work that keep the  Desulfosporosinus MAG SbF1

population in a stable low-abundance state? Population sizes can be kept low by actively restricting

growth. Alternatively, ongoing growth could be hidden by continuous predation, viral lysis, or active

sporulation of a major subpopulation. To answer this question, we analysed expression patterns of

growth-specifc genes. Compared to the strong overexpression of metabolic  or ribosomal protein

genes, transcription of genes essential for DNA replication, cell division, and cell envelope biogenesis

did not increase or only marginally (Fig. 2b, Fig. S4). Genes encoding DNA replication or cell division

typically show a largely invariable transcription in the exponential and stationary phase (e.g., Sumby

et al., 2012; Brudal et al., 2013; Sihto et al., 2014). However, there is experimental evidence that in

the lag phase transcription of growth-specifc genes is not stable but increases due to the overall

activation  of  cellular  processes  (Rolfe  et  al.,  2012).  In  this  context,  the  lack  of  an  increasing

transcription of growth-specifc genes would clearly indicate a state of no growth rather than an

actively dividing population that is kept stable by an equally high growth and mortality or sporulation

rate. This conclusion is further corroborated by the lack of overexpressed sporulation genes or genes

upregulated directly after phage attack. Nevertheless, the ATP generated by the induced energy

metabolism has  to  be  utilized  somehow.  This  could  be  mediated  by  the  production  of  storage

compounds or by counterbalancing environmental  stress.  We found no indication for  the former

scenario but observed overexpression of the universal stress promotor UspA, which is one of the

most abundant  proteins in growth-arrested cells  (Kvint  et al.,  2003),  and the chaperonin GroSL,

which was linked previously to stress response such as low pH (Silva et al., 2005). Since the pH in

the analyzed peat soil incubations varied between 4.1–5.0 (Hausmann  et al., 2016), coping with a

low  pH  would  be  the  most  likely  reason  that  deviates  ATP  away  from  growth  towards  stress

response. Based on the integrated fndings of our previous study (stable population over 50 days as

based on 16S rRNA gene counts; Hausmann et al., 2016), and this study (no activation of the DNA

replication and cell division machinery within 36 days), we propose that Desulfosporosinus MAG SbF1
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was growth-arrested in the lag phase over a period of at least 50 days while being a metabolically

active rare biosphere member. This fnding shows that growth arrest is not restricted to starving or

otherwise limited microorganisms that persist in the environment (Bergkessel et al., 2016) but can

also occur in metabolically highly active microorganisms.

Our  results  are  important  in  the  context  of  the  increasing  awareness  that  the  microbial  rare

biosphere is not only the largest pool of biodiversity on Earth (Sogin et al., 2006; Pedrós-Alió, 2012;

Lynch  and  Neufeld,  2015;  Jousset  et  al.,  2017)  but  in  sum  of  all  its  low-abundance  members

constitutes also a large part of the biomass in a given habitat (e.g., Hausmann et al., 2016; Dawson

et al., 2017). Understanding the mechanisms governing this low-abundance prevalence and its direct

impact  on  ecosystem  functions  and  biogeochemical  cycling  is  thus  of  utmost  importance.

Desulfosporosinus MAG SbF1 has been repeatedly shown to be involved in cryptic sulfur cycling in

peatlands  (Pester  et  al.,  2010;  Hausmann  et  al.,  2016)  — a  process  that  counterbalances  the

emission of the greenhouse gas methane due to the competitive advantage of SRM as compared to

microorganisms involved in the methanogenic  degradation pathways (Muyzer and Stams,  2008).

This species can be found worldwide in low-sulfate environments impacted by cryptic sulfur cycling

including  not  only  peatlands  but  also  permafrost  soils,  rice  paddies,  and  other  wetland  types

(Hausmann  et  al.,  2016).  Here,  we  provided  proof  that  Desulfosporosinus MAG  SbF1  is  indeed

involved in the degradation of important anaerobic carbon degradation intermediates in peatlands

while sustaining a low-abundance population. It has a generalist lifestyle in respect to the usable

carbon sources,  re-emphasizing  its  importance  in  the  carbon and sulfur  cycle  of  peatlands.  Our

results  provide  an  important  step  forward  in  understanding  the  microbial  ecology  of

biogeochemically relevant microorganisms and show that low-abundance keystone species can be

studied “in the wild” using modern environmental systems biology approaches.

Proposal of Candidatus Desulfosporosinus infrequens
Based  on  its  phylogenetic  placement  and  novel  ecophysiological  behaviour,  we  propose  that

Desulfosporosinus MAG  SbF1  represents  a  novel  species  with  the  provisional  name  Candidatus

Desulfosporosinus  infrequens sp.  nov.  (in.fre’quens.  L.  adj.  infrequens,  rare,  referring  to  its  low

relative  abundance).  Based  on  its  genome-derived  metabolic  potential  and  support  from

metatranscriptomics, Ca. D. infrequens is capable of complete oxidation of acetate, propionate and

lactate  with  sulfate  as  the  electron  acceptor,  with  further  potential  for  oxidation  of  molecular

hydrogen (Fig. 1).

Materials and Methods

Genome assembly, binning, and phylogenetic inference
Sampling of peat soil from the acidic peatland Schlöppnerbrunnen II (Germany), DNA-stable isotope

probing  (DNA-SIP),  total  nucleic  acids  extraction,  metagenome  sequencing  and  assembly,  and

coverage-based binning  was  described previously  (Pester  et  al.,  2010,  Hausmann  et  al. (2016);
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Hausmann et al., 2018). In brief, DNA from native peat soil (10–20 cm depth) and DNA pooled from

16 ¹³C-enriched fractions (density 1.715–1.726 g mL⁻¹) of a previous DNA-SIP experiment with soil

from the same site (Pester et al., 2010) was sequenced using the Illumina HiSeq 2000 system. DNA-

SIP was performed after a 73-day incubation (again 10–20 cm depth) that was periodically amended

with small  dosages of sulfate and frst a mixture of unlabeled formate, acetate, propionate, and

lactate for  two weeks and thereafter  a mixture  of  ¹³C-labeled formate,  acetate,  propionate,  and

lactate (all in the lower µM-range) (Pester  et al., 2010). Raw reads were quality fltered, trimmed,

and co-assembled into one metagenomic assembly using the CLC Genomics Workbench 5.5.1 (CLC

Bio).  Diferential  coverage  binning  was  applied  to  extract  the  Desulfosporosinus metagenome-

assembled genome (MAG) (Albertsen et al., 2013). A side efect of sequencing a DNA-SIP sample is

an  apparent  G+C content  skew,  which  was  normalized  arbitrarily  to  improve  binning  using  the

following formula (Herbold et al., 2017; Hausmann et al., 2018):

Scafolds  encoding  the  16S  and  23S  rRNA  genes  were  successfully  identifed  using  paired-end

linkage data (Albertsen  et al., 2013). Completeness, contamination, and strain heterogeneity was

estimated using CheckM 1.0.6 (Parks et al., 2015).

Phylogenomic  analysis  of  the  Desulfosporosinus MAG  was  based  on  a  concatenated  set  of  34

phylogenetically  informative  marker  genes  as  defned  by  Parks  et  al. (2015)  and  the  Bayesian

phylogeny inference method PhyloBayes using the CAT-GTR model (Lartillot et al., 2009). 16S rRNA

gene-based phylogeny was inferred using the ARB SILVA database r126 as a reference (Quast et al.,

2013), the SINA aligner (Pruesse  et al.,  2012), and the substitution model testing and maximum

likelihood treeing method IQ-TREE (Trifnopoulos  et al.,  2016). Pairwise 16S rRNA gene sequence

identities were calculated with T-Cofee 11 (Notredame et al., 2000). Pairwise average nucleic and

amino  acid  identities  (ANI,  AAI,  Varghese  et  al.,  2015)  between  protein-coding  genes  of  the

Desulfosporosinus MAG and reference genomes were calculated as described previously (Hausmann

et al., 2018)

Genome annotation
The  genome  was  annotated  using  the  MicroScope  annotation  platform  (Vallenet  et  al.,  2017).

Annotation refnement for selected genes was done as follows: proteins with an amino acid identity

≥40% (over ≥80% of the sequence) to a Swiss-Prot entry (The UniProt Consortium, 2017), curated

MaGe annotation (Vallenet et al., 2017), or protein described in the literature were annotated as true

homologos of known proteins.  The same was true, if  classifcation according to InterPro families

(Mitchell et al., 2015; Jones et al., 2014), TIGRFAMs (Haft et al., 2003), and/or FIGfams (Overbeek et

al., 2014) led to an unambiguous annotation. Proteins with an amino acid identity ≥25% (over ≥80%

of the sequence) to a Swiss-Prot or TrEMBL (The UniProt Consortium, 2017) entry were annotated as
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putative homologs of the respective database entries. In addition, classifcation according to COG

(Galperin et al., 2015) or InterPro superfamilies, domains, or binding sites were used to call putative

homologs in cases of an unambiguous annotation. Membership to syntenic regions (operons) was

considered as additional support to call true or putative homologs.

Metatranscriptomics from single-substrate incubations
We analysed total  RNA from anoxic  peat  soil  slurry  microcosms that  were  described previously

(Hausmann et al., 2016, 2018). In brief, anoxic microcosms were incubated at 14 °C in the dark for

50 days and regularly amended with either low amounts of sulfate (76–387 µM fnal concentrations)

or incubated without an external electron acceptor. Formate, acetate, propionate, lactate, butyrate

(<200 µM), or no external electron donor was added to biological triplicates each. RNA was extracted

from the native soil, and after 8 and 36 days of incubations, followed by sequencing with the Illumina

HiSeq 2000/2500 system. Raw reads were quality-fltered as described previously (Hausmann et al.,

2018)  and  mapped  to  the  combined  metagenomic  assembly  using  Bowtie  2  (Langmead  and

Salzberg,  2012).  Counting  of  mapped  reads  to  protein-coding  genes  (CDS)  was  performed with

featureCounts  1.5.0  (Liao  et  al.,  2014).  We  used  an  unsupervised  approach  to  identify  CDS

stimulated by sulfate and the diferent substrates regimes. First, we applied the DESeq2 R package

(Love et al., 2014; R Core Team, 2017) to identify diferentially expressed CDS. Treatments without

external sulfate added and samples after 8 days of incubations had too little transcript counts to be

used for a statistical approach. Therefore, we limited our analysis to pairwise comparison of sulfate-

stimulated microcosms after 36 days of incubations. We compared each substrate regime to the no-

substrate controls  and each other.  The set of  all  signifcantly diferentially expressed CDS (FDR-

adjusted p-value < 0.05) were further clustered into response groups. For clustering, we calculated

pairwise  Pearson’s  correlation  coefficients  (r)  of  variance  stabilized  counts  (cor  function  in  R),

transformed  this  into  distances  (1−r),  followed  by  hierarchical  clustering  (hclust  function  in  R).

Variance stabilisation was performed using the rlog function of the DESeq2 package.

Sequence data availability
The MAG SbF1 is available at MicroScope (https://www.genoscope.cns.fr/agc/microscope/) and is also

deposited under the ENA accession number OMOF01000000. Metagenome and -transcriptomic data

is available at the Joint Genome Institute (https://genome.jgi.doe.gov/) and is also deposited under

the NCBI accession numbers PRJNA412436 and PRJNA412438, respectively.
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Figures

Fig. 1
Metabolic model of Desulfosporosinus MAG SbF1. Gene expression stimulated by specifc substrates

in combination with sulfate is indicated by coloured points. Paralogous genes are indicated by an

underscore followed by a number. Plus signs indicates proposed protein complexes. Details for all

genes are in given in Table S1 and transcription patterns are shown in Fig. 3. For the citric acid cycle

and anaplerotic reactions, carriers of reducing equivalents and further by-products are not shown.

The following abbreviations were used. X: unknown reducing equivalents, e.g., NAD⁺ or ferredoxin.

WL: Wood–Ljungdahl pathway consisting of enzymes encoded by the acs operon, MetF, FolD, FchA,

and Fhs.  TCA:  citric acid cycle.  FDH: formate dehydrogenase.  Hase:  hydrogenase.  NDH-1: NADH

dehydrogenase 1. LDH: lactate dehydrogenase.

Fig. 2
Time-resolved  transcriptional  changes  of  Desulfosporosinus MAG  SbF1  in  anoxic  peat  soil

microcosms under various in situ-like conditions. (a) Total mRNA of all CDS and (b) selected genes

encoding the sulfate-reduction pathway (sat, dsrA), ribosomal proteins of the large (rplA) and small

subunit (rpsC), cell division (ftsZ), DNA replication (gyrB), and peptidoglycan synthesis (murA). Solid

lines and symbols represent sulfate-stimulated microcosms whereas dashed lines and open symbols

represent  control  microcosms  without  external  sulfate.  Panels  represent  the  various  substrate

incubations,  native  stands  for  native  peat  soil.  Diferent  symbols  represent  replicates  and  are

consistent throughout all panels.

Fig. 3
Transcription patterns of whole pathways and central enzyme complexes involved in the carbon and

energy  metabolism  of  Desulfosporosinus MAG  SbF1  under  in  situ-like  conditions.  In  addition,

transcription patterns of general stress response proteins are shown. Mean abundance for the native

soil  (—)  and  each incubation  treatment  and  time point  is  shown.  Supplemented  substrates  are

indicated by initials and addition of external sulfate is depicted by −S/+S (columns).  Abundance

values are normalized variance-stabilized counts x, which were scaled from 0 to 1 for each CDS

using the formula [x – min(x)] / max[x - min(x)]. Incompletely assembled genes are indicated by _a,

_b, and _c.

20

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 19, 2018. ; https://doi.org/10.1101/284430doi: bioRxiv preprint 

https://doi.org/10.1101/284430
http://creativecommons.org/licenses/by/4.0/


SbF1

Fig. 1.

Stimulated by:
acetate/propionate/lactate/butyrate
formate acetate
propionate lactate butyrate

e–e–

oxaloacetate citrate

isocitrate

2-oxoglutarate

succinyl-CoAsuccinate

malate

fumarate

pyruvate

MaeB

FumXY

SdhCAB

ScpC

acetyl-P

acetate

PflD

Pta

AckA

(R)-methylmalonyl-CoA

(S)-methylmalonyl-CoA

propionyl-CoApropionate

acetatepropionate

CoA

PccBAC

Mce

SbmAB

TCA

L/D-lactate
L-lactate

or D-lactate

acetyl-CoA

CitA_1
  CitA_2

AcnA

Icd
Icd_2

PfoA
PfoA_3
PfoA_2, _4, _5

formate

Pyc

LutDF

LarA

LutP

WL

FdhA_2

sulfate sulfate

APS

sulfite

DsrC-trisulfite

QmoAB

DsrMKJOP

sulfide

DsrCred

AprBA

DsrAB

SatPPi2 Pi
PpaC

SulP

ATP synthase
(complex V)

EtfBA

LutD_2 + EtfBA_2

FdhA_3

[NiFe] Hase
group 1

HndACD_1
HndACD_2
HndACD_3

FdxD

DsrD

ActOP

[FeFe] Hase

DsrN
DsrT

AtpBEF
HAGDC

HynABC
HynABC_2

EqoA

sulfide

FdhCBA′A

CO2

[H2] [2 H+]

H2 + NADP+ NADPH + H+

DsrC

e–ADP ATP

[H+]

H+

NDH-1
(complex I)

NuoABC
DEFGH
IJKLMN

NADH NAD+

[H+]

H+

e–e–

X

X[H]2

ADP + 3 X

ATP + 3 X[H]2 + CO2

2 Fdred + 2 NAD+

2 Fdox + 2 NADH

PEP

PpdK

2 X

2 X[H]2

e–

2 Fdred

+ CO2
2 Fdox

+ CoA

ATP

ADP

ATP + CO2

ADP

e–

ATP(Fd)

AMP2 ADP
Adk

ATP

Pyk

glycolysis
gluconeogenesis

e–

?

DsrM2K2

Ribosome

RplA–RpmI

RpsB–U

?

AsrABC

CoA
Pi CoA

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 19, 2018. ; https://doi.org/10.1101/284430doi: bioRxiv preprint 

https://doi.org/10.1101/284430
http://creativecommons.org/licenses/by/4.0/


Fig. 2.
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Supplementary Information

Supplementary Tables

Table S1
Summary  of  all  genomic  features  in  Desulfosporosinus MAG  SbF1.  Genes  encoding  the  energy

metabolism or  central  cellular  functions  are  given frst.  COG class  IDs  were  assigned  by  MaGe

(Cognitor,  www.ncbi.nlm.nih.gov/COG/).  bactNOG  and  NOG  IDs  were  assigned  by  best-match

principle (Huerta-Cepas et al., 2016; Hausmann et al., 2018). Spearman’s rank correlation is given

for each gene’s transcripts as compared to total mRNA counts (FDR-adjusted p-values are indicated

by asterisks:  ✱, < 0.05; ✱✱, < 0.01; ✱✱✱, < 0.001). Expression clusters represent the clusters

assigned by correlation and hierarchical  clustering analysis.  The next fve columns are log₂ fold-

changes of expression levels after 36 days of incubation in the sulfate-stimulated microcosms (i.e.,

substrate vs no-substrate-control).  Missing fold-changes are due to all  counts being zero in both

compared  treatments.  Ranks  are  based  on  mean  fragments  per  kilobase  per  million  mapped

fragments (FPKM). Also here, only data of sulfate-stimulated microcosms after 36 days of incubation

are shown in addition to the native soil. Missing ranks indicate that expression was never detected in

any replicate. Fragmented, i.e., mainly incompletely assembled genes are indicated by _a, _b, and

_c. A ¹ or ² in the strand column indicates that this CDS is either the frst or last on a scafold,

respectively (depending on the reading frame).

Table S2
Characteristics and coverage of  all  scafolds belonging to  Desulfosporosinus MAG SbF1. The two

scafolds with the highest coverage encode the 23S and 16S rRNA genes, respectively.

Table S3
Expression levels of selected CDS in the analysed anoxic peat soil microcosms given in FPKM (mean

± one standard deviation). Loci are sorted as in Table S1. Headers display the individual treatments

used in the peat soil microcosms: without and with external sulfate added; amended substrate; and

days of incubation.
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Supplementary Figures

Fig. S1
Diferential  coverage  plots  of  assembled  scafolds  with  Desulfosporosinus MAG  SbF1  scafolds

highlighted by black circles. The average coverage per scafold in the SIP metagenome is visualized

without  (a)  and  with  (b)  G+C  content  transformation  (see  Materials  and  Methods).  Taxonomic

affiliation is indicated by color and based on BLAST as described previously (Albertsen et al., 2013).

White circles represent unclassifed scafolds. Only scafolds >10 000 nt length are shown, except

when belonging to SbF1. Scafolds encoding selected genes in SbF1 are labelled accordingly.

Fig. S2
(a) Maximum likelihood 16S rRNA gene tree of species belonging to the genera  Desulfosporosinus

and Desulftobacterium. Branch supports of ≥0.9 and ≥0.7 are indicated by flled and open circles,

respectively.  GenBank  accession  numbers  are  given  in  parentheses.  (b)  Bayesian  inference

phylogenomic  tree  showing  the  phylogenetic  placement  of  Desulfosporosinus MAG  SbF1.  All

branches  were  supported  >0.9  (flled  circles).  The  tree  was  rooted  against  genomes  from  the

Acidobacteria,  Proteobacteria,  and  Verrucomicrobia (not shown).  Genome accession numbers are

given in parentheses.

Fig. S3
Two-way  average  amino  and  nucleic  acid  identities  between  Desulfosporosinus and

Desulftobacterium species genomes (in%, written into cells). The dendrogram is based on Fig. S2b.

Fig. S4
Time-resolved  changes  of  all  unambiguously  identifed  genes  related  to  cell  division  (a),  DNA

replication (b) and cell envelope biogenesis (c); dsrA is included for reference, analogous to Fig. 2.
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Fig. S1.
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Fig. S4a.
Native None Formate Acetate Propionate Lactate Butyrate
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Fig. S4b.
Native None Formate Acetate Propionate Lactate Butyrate
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Fig. S4c.
Native None Formate Acetate Propionate Lactate Butyrate
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