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 25 

Background 26 

Microbial persistence in built environments such as spacecraft cleanroom facilities [1-3] is often 27 

characterized by their unusual resistances to different physical and chemical factors [1, 4-7]. 28 

Consistently stringent cleanroom protocols under planetary protection guidelines over several 29 

decades [1, 8-12], have created a special habitat for multi-resistant bacteria, many of which have 30 

been isolated and identified [13-19]. The potential of many of these isolates to possibly survive 31 

interplanetary transfer [2, 20-24] raises concern of potential forward and backward bacterial 32 

contamination. Understanding the survival mechanisms employed by these organisms is the key 33 

to controlling their impact on exobiology missions. In addition, their occurrence in the closed 34 

environments of the International Space Station, (ISS), could possibly impact the living 35 

conditions there as well [1-3, 25-27]. 36 

Two of the most studied  organisms in the specialized econiches of spacecraft assembly 37 

facilities and the ISS are B. safensis FO-36b
T
 [28] (referred to as FO-36b

 
henceforth) and B. 38 

pumilus SAFR-032 [16] (referred to as SAFR-032). These organisms are representative strains of 39 

the endospore producing Bacillus sp.[13, 16, 29-33]. Both strains produce spores that exhibit 40 

unusual levels of resistance to peroxide and UV radiation [24, 29, 34] that far exceed that of the 41 

dosimetric B. subtilis type strain (B. subtilis subsp. subtilis str. 168, referred to as BSU) [35]. A 42 

third strain, B. safensis MERTA-8-2 (referred to as MERTA), was initially isolated from the 43 

Mars Odyssey Spacecraft and associated facilities at the Jet Propulsion Laboratory and later also 44 

found on the Mars Explorer Rover (MER) before its launch in 2004. It has been reported that this 45 
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strain  actually grows  better on the ISS than on Earth [36]. However, the resistance properties of 46 

its spores have not been directly tested. A recent phylogenetic study of 24 B. pumilus and B. 47 

safensis strains, found FO-36b, and MERTA clustered together in a distinct group of B. safensis 48 

strains [37].   49 

Previously a draft genome of FO-36b with as many as 408 contigs 50 

(https://www.hgsc.bcm.edu/microbiome/bacillus-pumilus-f036b) was compared to SAFR-032 51 

and the type strain B. pumilus ATCC7061
T 

[38, 39] (referred to as ATCC7061). This comparison 52 

identified several genes and a mobile genetic element in SAFR-032 that may be associated with 53 

the elevated resistance [39]. Since this previous study was completed, minor corrections to the 54 

SAFR-032 gene order were made and the annotation was updated [40]. In addition, a draft 55 

genome of MERTA was reported [41]. Herein, we now report a complete genomic sequence for 56 

FO-36b and the results of a detailed comparison of these four genomes.   57 

Methods 58 

Sequencing of the Bacillus safensis FO-36b genome. 59 

5μg of purified genomic DNA of FO-36b was digested with NEBNext dsDNA Fragmentase 60 

(New England Biolabs, Ipswich, MA) yielding dsDNA fragments in a size range of 50 bp up to 61 

1000 bp. The fragments were fractionated on a 2% agarose gel, and those with the length from 62 

300 bp to 350 bp were isolated as described [42]. The dsDNA fragments were converted to a 63 

shotgun DNA library using the TruSeq PCR-Free DNA Sample Preparation Kit LT (Illumina, 64 

San Diego, CA) according to the manufacturer's instructions. Sequencing was performed on the 65 

Illumina HiSeq 2500 sequencer at the University of Arizona Genetic Core Facility (Tucson, AZ). 66 

A total of 10,812,117 pairs of 100 base-long reads with average Phred quality of 34.92/base were 67 

collected. The reads were processed with Sickle 1.33 [43]  and Trimmomatic 0.32 [44] was used 68 
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to remove seven 3'-terminal low-quality bases, and to filter out the reads with average Phred 69 

quality below 16/base as well as reads containing unidentified nucleotides. Overall, 9,047,105 70 

read pairs and 1,435,623 orphaned single reads with a total of 1,816,274,469 nucleotides were 71 

retained after the filtration step. The reads were assembled using the Abyss 1.5.2 de novo 72 

assembler [45] with the  kmer parameter set at 64. The assembly consisted of 22 contigs with a 73 

total length of 3,753,329 bp. The average contig length was 170,605 bp (ranging from 352 to 74 

991,464 bp), with an N50 contig length equal to 901,865 bp. Data from two previous FO-36b 75 

draft genomes (https://www.hgsc.bcm.edu/microbiome/bacillus-pumilus-f036b; and 76 

https://www.ncbi.nlm.nih.gov/biosample/SAMN02746691) did not provide the additional 77 

information needed to order the 22 remaining contigs.  78 

Instead, connections between the contigs were obtained by systematic PCR screening 79 

using LongAmp Taq DNA polymerase (New England Biolabs, Ipswich, MA) and near-terminal 80 

outward-facing primers. The amplicons were gel purified and sequenced by the Sanger method at 81 

SeqWright, Inc (Houston, TX). This allowed closure of all the gaps between the contigs. The 82 

complete FO-36b genome sequence comprises 3.77 Mb and has G+C content of 41.74%. 83 

 84 

B. safensis FO-36b genome annotation  85 

The FO-36b genome was annotated using the NCBI’s Prokaryotic Genome Annotation Pipeline 86 

[46]. 3850 ORFs and 40 non-coding RNAs and riboswitches were predicted and the results were 87 

deposited in Genbank under accession number CP010405. 88 

 89 

 90 

 91 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2018. ; https://doi.org/10.1101/283937doi: bioRxiv preprint 

https://doi.org/10.1101/283937


5 

 

Genomes used in comparisons 92 

The recently updated complete sequence of the SAFR-032 genome was obtained from NCBI 93 

(CP000813.4). The draft genomes of ATCC7061
T 

(Refseq accession no: 94 

NZ_ABRX00000000.1), consisting of 16 contigs and MERTA consisting of 14 contigs (Refseq 95 

accession no: GCF_000972825.1) were obtained from the public databases of the National 96 

Center for Biotechnology Information (NCBI). Several additional B. safensis and B. pumilus 97 

draft genomes from various sources have also been deposited in the NCBI database in recent 98 

years. However, these genomes get excluded when performing a global Genbank Blast (NT) 99 

analysis. To avoid this potential problem, these additional draft genomes were separately 100 

retrieved from the Genbank repository (B. pumilus genomes, 101 

https://www.ncbi.nlm.nih.gov/genome/genomes/440; B. safensis genomes, 102 

https://www.ncbi.nlm.nih.gov/genome/genomes/13476) and locally integrated into the Genbank 103 

NT database. The resulting local database allowed inclusion of these genomes in subsequent 104 

Blast (NT) studies.  Overall, the analysis involved 65 B. pumilus and B. safensis genomes 105 

(including the FO-36b, MERTA, SAFR-032 and ATCC7061 genomes). The names of the 106 

genomes used are given in Additional file 1: Table S1 107 

 108 

BLAST studies 109 

Individual gene and protein sequences from the FO-36b genome, were blasted against each other 110 

as well as against the genomes of SAFR-032, MERTA and ATCC7061 using the standalone 111 

version of NCBI’s BLAST program [47]. The comprehensive search included blastN and blastX 112 

for the nucleotide sequences and blastP for the protein sequences. Additionally, global blast was 113 

performed on the sequences against the updated NR/NT databases downloaded from the NCBI 114 
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on the Opuntia Cluster at the Center of Advanced Computing and Data Systems at the University 115 

of Houston.  116 

 Genes with BLAST results in which the best hit had an e-value greater than (an arbitrary) 117 

0.0001 were considered absent from the target genome, while those with BLAST e-values below 118 

e-10 were considered to be matches. Genes with e-values between e-20 and 0.0001 were further 119 

analyzed by aligning the sequence of the entire gene neighborhood with the corresponding 120 

region in the other genomes to ascertain/verify the BLAST results as well as to look for unusual 121 

features in the sequence. Gene/protein sequence alignments were performed using Bioedit 122 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html).  123 

 124 

Phage analysis  125 

The online tool PHAST [48, 49] was used to predict and annotate potential phage elements in the 126 

genomes. Comparative analysis of the respective homologs on the other genomes, were 127 

performed to map the respective corresponding phage regions on the other genomes. 128 

 129 

Whole Genome Phylogenetic Analysis (WGPA) and Genome-Genome Distance Studies 130 

(GGDC)  131 

In order to obtain an overall view of relationships among the various genomes, we used seven 132 

additional genomes thereby forming a complete set of 72 strains. Overall, the genomes included 133 

65 B. pumilus and B. safensis genomes (including those of FO-36b, MERTA, SAFR-032 and 134 

ATCC7061), four representative strains from the B. altitudinis complex, viz.,  B. aerophilus 135 

C772, B. altitudinis  41KF2b, B. cellulasensis NIO-1130(T), and, B. stratosphericus LAMA 585. 136 
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The genomes of Geobacillus kaustophilus, and B. subtilis served as outliers in the Firmicutes 137 

group, while the genome of Gram-negative E. coli MG1655, served as a non-Firmicutes outlier.  138 

A whole-genome-based phylogenetic analysis was conducted using the latest version of 139 

the Genome-BLAST Distance Phylogeny (GBDP) method [50] as previously described [51]. 140 

Briefly, BLAST+ [52] was used as a local alignment tool and distance calculations were done 141 

under recommended settings (greedy-with-trimming algorithm, formula D5, e-value filter 10e-8). 142 

100 pseudo-bootstrap replicates were assessed under the same settings each. Finally, a balanced 143 

minimum evolution tree was inferred using FastME v2.1.4 with SPR post processing  [53]. 144 

Replicate trees were reconstructed in the same way and branch support was subsequently 145 

mapped onto the tree. The final tree was rooted at the midpoint [54]. The genomes were also 146 

compared using the in-silico genome-to-genome comparison method, for genome-based species 147 

delineation and genome-based subspecies delineation based on intergenomic distance calculation 148 

[50, 55]. 149 

In order to confirm the reasonableness of  these results, a separate analysis was conducted 150 

using DNA gyrase A (gyrA), which has often been used for single gene phylogenetic studies [28, 151 

56-60]. gyrA is preferable to 16S rRNA in this case, because many of the 16S rRNAs are too 152 

similar [61] . 153 

The gyrA sequences were bioinformatically isolated from all 72 genomes and aligned 154 

using Bioedit ((http://www.mbio.ncsu.edu/BioEdit/bioedit.html), ClustalW, and MEGA [62, 63] 155 

with MUSCLE. Maximum Likelihood, Neighbor-Joining and Minimum Evolution trees were 156 

built using MEGA. The Maximum Likelihood tree was built using  the Tamura-Nei model [64]. 157 

The tree with the highest log likelihood (-18473.7156) was used. Initial tree(s) for the heuristic 158 

search were obtained automatically by applying the Neighbor-Join and BioNJ algorithms to a 159 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2018. ; https://doi.org/10.1101/283937doi: bioRxiv preprint 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
https://doi.org/10.1101/283937


8 

 

matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 160 

approach. The topology with superior log likelihood value was selected.  161 

A Minimum Evolution (ME) Tree was built using the method described by Rzhetsky and 162 

Nei (1992) [65].  The ME tree was searched using the Close-Neighbor-Interchange (CNI) 163 

algorithm [66] at a search level of 1. The Neighbor-Joining (NJ) Tree was built using the method 164 

described by Saitou and Nei (1987) [67].  165 

For both the ME and NJ trees, the optimal tree(s) with the sum of branch length = 166 

1.62873358 was derived. The evolutionary distances were computed using the Maximum 167 

Composite Likelihood method [68] and are in the units of the number of base substitutions per 168 

site.  169 

The analysis involved 72 nucleotide sequences. Codon positions included were 170 

1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There 171 

were a total of 2424 positions in the final dataset. Evolutionary analyses were conducted in 172 

MEGA6 [69]. 173 

The Mauve alignment [70] program was used to align the previous draft FO-36b 174 

sequence (GCA_000691165.1 / ASJD00000000) with the current updated sequence (CP010405). 175 

 176 

Screening Genomes for Antibiotic resistance genes. 177 

 A global analysis of each of the four genomes was performed to identify possible antibiotic 178 

resistance loci. This was done using the reference sequences of the Comprehensive Antibiotic 179 

Resistance Database ("CARD") [71], In addition a search for potential ‘resistome(s)’ was 180 

undertaken using the Resistance Gene Identifier feature of the CARD database for the four 181 

genomes. 182 
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Results 183 

Unique and characteristic genes 184 

Genes are considered to be characteristic if they are present in FO-36b, but absent in the other 185 

three organisms examined here.  Unique genes are those that are not only absent in the other 186 

three genomes, but have not yet been found in any other genome. 307 ORFs found in FO-36b are 187 

not shared by SAFR-032. Sixty five of these ORFs did not have homologs in the genomes of 188 

ATCC7061 or MERTA and are therefore considered characteristic (Table 1). Although most are 189 

open reading frames that code for hypothetical proteins, six genes suggest that FO-36b has a 190 

CRISPR system. The likely presence of a CRISPR system is shared by 5 other B. safensis 191 

genomes and 8 other B. pumilus genomes (Additional file 2:  Table S2). Among the 49 192 

hypothetical protein coding ORFs, 26 are predicted to be part of phage element(s). 193 

The analysis was extended to all available genomes of B. safensis 194 

(https://www.ncbi.nlm.nih.gov/genome/genomes/13476) and B. pumilus 195 

(https://www.ncbi.nlm.nih.gov/genome/genomes/440). Nine ORFs/genes classified as FO-36b 196 

characteristic are absent from all the B. safensis and B. pumilus genomes available in the NCBI 197 

database. These nine genes are totally unique to FO-36b with no homologs in the entire NR/NT 198 

databases (Table 2). Four of these are part of predicted phage elements.  In addition, there are 199 

four genes with fewer than five homologs found in other B. pumilus/ B. safensis genomes (Table 200 

3). Overall 217 SAFR-032 ORFs are not shared by B. safensis FO-36b. Sixty three of the 65 FO-201 

36b characteristic ORFs are absent in 28 of the 61 total B. safensis, B. pumilus, and Bacillus sp. 202 

WP8 genomes. 18 are absent in all the B. safensis genomes, while 15 are not found in any of the 203 

B. pumilus genomes (Additional file 3: Table S3).  204 

 205 
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Phage insertions  206 

The genome of FO-36b contains two phage insertions, namely the Bacillus bacteriophage SPP1 207 

(NC_004166.2) insertion and the Brevibacillus phage Jimmer 1 (NC_029104.1) insertion.  The 208 

SPP1 insertion, (Figure 1), consists of 62 genes (RS87_02955 to RS87_03255). Abbreviated 209 

versions are found in the MERTA strain (4 genes) and the ATCC7061 strain (3 genes), (Figure 1 210 

and Figure 2). Portions of this element can also be detected in other B. safensis/ B. pumilus 211 

strains by sequence comparison.  212 

The Brevibacillus phage Jimmer 1 (NC_029104.1) insertion is found to some extent in all 213 

60 draft genomes belonging to the B. safensis/ B. pumilus family and the one Bacillus sp WP8. In 214 

the FO-36b genome, this phage element contains 94 genes (RS87_14155 to RS87_14625). The 215 

entire stretch of this insertion can be divided into three blocks, block A (30 genes, RS87_14155 216 

to RS87_14305), block B (30 genes, RS87_14310 to RS87_14455) and block C (34 genes, 217 

RS87_14460 to RS87_14625). A major chunk of block C (26 genes RS87_14460 to 218 

RS87_14590) is a duplication of block A. The overall scheme of this unique duplication within 219 

the insertion is given in Figure 3.  220 

A similar version of the Jimmer-1 phage region is found in the non-resistant ATCC7061 221 

(Figure 4). In this case, the block A like region is comprised of 32 ORFs (30 genes and 2 222 

pseudogenes, BAT_0021 to BAT_0052). The block C analog is formed from a cluster of 32 223 

ORFs (29 genes and 3 pseudogenes, BAT_0175 to BAT_0206). Finally, a total of 42 ORFs (41 224 

genes and 1 pseudogene, BAT_0053 to BAT_0094) comprise the equivalent of Block B from 225 

FO-36b (Figure 4).  226 

The MERTA and SAFR-032 strains show equivalent regions of block A and block C 227 

from FO-36b. However, both block B and the duplication of the block A equivalent region are 228 
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missing in these strains (Figure 5 and Figure 6). The genome of the non-resistant spore 229 

producing BSU strain contains the block A and block C equivalents in stretches of 28 230 

ORFs/genes (BSU12810 to BSU12580) and 30 ORFs/genes (BSU12810 to BSU12560) 231 

respectively, while block B is entirely missing. However, a major chunk of block A 232 

(RS87_14200 to RS87_14300) equivalent region in BSU is duplicated in a stretch of 20 233 

ORFs/genes (BSU25980 to BSU26190) (Figure 7). In general, the occurrence of phage insertion 234 

regions and genes therein such as the dUTPase and RecT genes do not appear to be strongly 235 

correlated with resistance properties.   236 

 237 

Genes Shared by FO-36b, SAFR-032, and MERTA but missing in ATCC7061 238 

We had earlier reported that a total of 65 genes that were shared by SAFR-032 and FO-36b, were 239 

not found in the ATCC7061 strain [38]. Because they correlate with the presence or absence of 240 

resistance, these genes are of potential interest.  A re-analysis of this list of genes extending to 241 

the MERTA strain showed that 59 of these genes are indeed shared by the MERTA strain as well 242 

(Additional file 4: Table S4). All of these genes are shared by at least several of the available 61 243 

B. pumilus, B. safensis and Bacillis sp. WP8 draft genomes. However, since the resistance 244 

properties of these organisms have typically not been examined, it is not immediately possible to 245 

determine if the correlation can be extended to these strains.  246 

 247 

Antibiotic Resistance loci in the genomes 248 

The four genomes showed vast differences in the number of antibiotic resistance related 249 

mutations that were identified by the CARD [71] search.  FO-36b, SAFR-032, MERTA and 250 

ATCC7061 had 670, 587, 317, and 495 mutations respectively. BSU comparatively had 861 251 
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such mutations. All the four genomes share “cat86”, which is a chromosome-encoded variant of 252 

the cat gene found in Bacillus pumilus [72], belonging to the AMR (antimicrobial resistance) 253 

gene gamily of chloramphenicol acetyltransferase (CAT). 254 

Phylogenetic analysis 255 

Previous efforts to define the phylogenetic relationship between various B. safensis and B. 256 

pumilus strains relied on 24 genomes including the unpublished draft sequence (ASJD00000000) 257 

of B. safensis. Comparing this earlier version with our updated corrected sequence assembly 258 

using Mauve shows our version differs considerably (Additional file 5: Figure S1).  Given this 259 

and the large number of additional draft genomes, it was concluded that a re-analysis would be 260 

appropriate.  Whole Genome Phylogenetic Analysis and Genome-genome distance analysis were 261 

used to examine relationships among the strains. The results of the WGPA are shown in Figure 262 

8, while the GGDC results are given in Additional file 1: Table S1. The phylogenetic trees are 263 

consistent with the earlier work (38). Two large clusters are seen. The first consists primarily of 264 

strains of B. pumilus with no B. safensis strains included. The first major cluster is itself broken 265 

into two large sub clusters, the first one of which includes both SAFR-032 and ATCC7061. The 266 

second sub cluster includes strains from the B. altitudinis complex 267 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1792192), as well as other 268 

strains recently reported to be B. pumilus. The second major cluster consists primarily of B. 269 

safensis isolates but does include several likely misnamed B. pumilus strains too. This latter 270 

cluster includes both the FO-36b and the MERTA8-2 strains.   271 

To further ascertain this observation, a maximum likelihood tree was obtained for the 272 

gene gyrA (Figure 9), which further supports the WGPA and GGDC analysis. Alternative tree 273 
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constructions of gyrA are provided as Additional file 6: Figure S2 and Additional file 7: Figure 274 

S3.  275 

Discussion 276 

If there is a single group of genes accounting for the elevated spore resistances seen in various 277 

strains of B. pumilus and B. safensis then the relevant genes should be shared by all three strains 278 

examined here but absent in the type strain.  The fact that the extent of resistance and type of 279 

resistance (radiation, desiccation etc.) varies suggests there may not be a single set of genes 280 

involved. In any event, the distinctions in resistance seen may occur due to regulatory differences 281 

resulting in key genes associated with resistance being expressed at different levels or for 282 

different times [73-75]. Although not correlated with resistance information, it is of interest that 283 

in FO-36b, there is a dUTPase and a DNA recombinase gene included in the Bacillus 284 

bacteriophage SPP1 (NC_004166.2) homologous region. 285 

 286 

Phage insertions   287 

Conjugative elements and phage-mediated insertions play major roles in the evolution of bacteria 288 

[76] by contributing to the genetic variability between closely related bacterial strains[77]. Such 289 

variability is often implicated in the phenotypical differences such as bacterial pathogenesis [77-290 

80]. Bacteriophage-mediated horizontal gene transfer enhances bacterial adaptive responses to 291 

environmental changes such as the rapid spread of antibiotic resistance [81]. Furthermore, 292 

phages mediate inversions, deletions and  chromosomal rearrangements, which help shunt genes 293 

that could directly impact the phenotype between related strains [77] or between 294 

phylogenetically distant strains via horizontal gene transfer (HGT)[82]. All of these evolutionary 295 

events have implications for selection and fitness.  296 
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The first phage insertion in FO-36b is homologous to the Bacillus bacteriophage SPP1. 297 

The SPP1 is a 44-kb virulent Bacillus subtilis phage, well-known for its ability to mediate 298 

generalized transduction, a widespread mechanism for the transfer of any gene from one 299 

bacterium to another [83].  The second insertion is homologous to Brevibacillus phage Jimmer 1, 300 

which is one of several myoviruses that specifically target Paenibacillus larvae, a Firmicute 301 

bacterium, as a host [84]. 302 

The B. safensis strain lacks the ICEBs1-like element that was previously found in SAFR-303 

032 and as an incomplete analog in ATCC7061 [39]. As reported earlier [39], the ICEBs1-like 304 

element does harbor some  SAFR-032 unique genes and thus, their presence was suggested as 305 

being possibly responsible for the resistance properties of SAFR-032. The absence of the 306 

ICEBs1-like element in the FO-36b genome suggests that this may not be the case.  FO-36b has 307 

an established phenotype showing spore resistance to peroxide exceeding that of the other JPL-308 

CRF isolates [13]. SAFR-032 spores have been demonstrated to show resistance to UV radiation 309 

exceeding that of the other JPL-CRF isolates [16]. Given that both FO-36b and SAFR-032 310 

harbor genes unique to each of them, on their respective phage elements (the two insertion 311 

elements in the case of FO-36b that are reported here and the ICEBs1-like element in the case of 312 

SAFR-032), a role of these unique genes in their respective unique spore phenotypes cannot be 313 

entirely ruled out. 314 

Furthermore, more than one-half of the in silico predicted phage gene products are 315 

hypothetical proteins without any assigned functions [85-89]. Comparative genomic approaches 316 

use closely related phages from different host organisms and exploit the modular organization of 317 

phage genomes [90]. However, these methods are not adequate to address the hypothetical 318 
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protein coding ORFs that are unique to phage insertions found in a given microbial strain that 319 

displays unique phenotypes as in the case of FO-36b and SAFR-032. 320 

Hypothetical phage proteins are considered potential candidates for bacterial detection 321 

and antimicrobial target selection.  In recent times, efforts towards discovering phage-based 322 

antimicrobials have led to the experimental characterization of specific phage proteins [91]. The 323 

identification of hypothetical ORFs unique to FO-36b and SAFR-032 phage insertion elements 324 

mark them out as potential biomarker candidates for the identification/detection of such strains. 325 

The distribution of the phage elements is not consistently associated with resistance 326 

properties. The Jimmer1 phage includes many genes found in all the strains whether resistant or 327 

not. The previously highlighted ICEBs1 like element found in the resistant SAFR-032 is not 328 

found in the resistant FO-36b strain. The SPP1 element found in the resistant ATCC7061 strain 329 

is missing in SAFR-032. One might speculate that individual phage elements might have been 330 

transferred to the main genome in the last two cases thereby maintaining consistency with 331 

resistance properties. However, no examples of this were found. 332 

 333 

Non-phage associated genes 334 

Genes shared by the three resistant spore producing strains but not the non-resistant ATCC7061 335 

strain are candidates for association with thee resistance properties.  Of the 65 ORFs we had 336 

reported earlier to be uniquely shared by SAFR-032 and FO-36b [38], 59 are shared by the 337 

MERTA strain (Additional file 4: Table S4). When the analysis is extended to all 61 genomes it 338 

was found that in each case at least one additional organism had a homolog to the candidate 339 

gene.  For example, one of these ORFs (FO-36b locus tag RS87_09285), is found to be shared by 340 

B. safensis MROC1 (isolated from the feces of Gallus gallus) and B. safensis RP10 (isolated 341 
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from soils contaminated with heavy metals in Chile).  Most of the strains containing these genes 342 

are isolates from environments that have some extreme stress component. However, it is not 343 

known if the stress component would include resistance to radiation or peroxide. Based on their 344 

names alone, some of these strains, such as B. altitudinis, and B. stratosphericus may be of 345 

special interest for further comparison and investigation of their spore resistance properties.  346 

 347 

Highly unique open reading frames   348 

The nine FO-36b ORFs (hypothetical proteins) that were found to be absent from all the B. 349 

safensis/ B. pumilus (and the Bacillus sp. WP8) genomes available in the NCBI database (Table 350 

2A) may be envisioned as possibly contributing to the FO-36b spore resistance. Four of these 351 

highly unique ORFs are found on phage elements (one ORF, RS87_03140 on the Bacillus 352 

bacteriophage SPP1 insertion and three ORFs, viz., RS87_14155, RS87_14285, and 353 

RS87_14310 on the Brevibacillus phage Jimmer 1 insertion). This is similar to the situation with 354 

the ICEBs-1 like element in SAFR-032 that harbors unique  SAFR-032  ORFs [39]. Four other 355 

ORFs had fewer than 5 homologs found in other B. pumilus/B. safensis genomes. Two of these 356 

four ORFs, are also found on the phage elements and hence could be random remnants of lateral 357 

transfer.   358 

 359 

Genes involved in peroxide resistance and DNA repair 360 

We had previously reported 15 peroxide resistance genes in SAFR-032, of which 2 were not 361 

shared by either the earlier draft version of FO-36b, or the type strain ATCC7061 [38]. Five of 362 

these peroxide genes were uniquely shared by SAFR-032 and the earlier draft version of the FO-363 

36b genome. Of the 8 SAFR-032 DNA repair genes reported then, 5 were not shared by FO-36b 364 
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or ATCC7061. We verified those results against the now complete FO-36b genome, and the 365 

status of the genes remains the same as before. 366 

We also looked at the gene coding for ‘Dps’, which is a DNA-binding protein. Dps is 367 

very well-characterized for providing protection to cells during exposure to severe environmental 368 

conditions such as oxidative stress and nutritional deprivation in gram negative bacteria such as 369 

E. coli [92] as well as gram positive Firmicutes species such as Staphylococcus aureus [93], B. 370 

subtilis [94], B. anthracis [95, 96] and B. cereus [97, 98]. With its tripartite involvement in DNA 371 

binding, iron sequestration, and ferroxidase activity, Dps plays important roles in iron and 372 

hydrogen peroxide detoxification and acid resistance [99, 100]. The homolog for the dps gene in 373 

Bacillus strains is ‘mrgA’ [101], which is highly conserved amongst the resistant spore-374 

producing FO-36b and SAFR-032, as well as the non-resistant spore-producing ATCC7061 375 

strain. Likewise, other peroxide resistance genes were checked for their presence/absence and 376 

were all found conserved in the four genomes. Thus it is unlikely that any of these genes play 377 

any role in the resistances seen in B. safensis FO-36b and B. pumilus SAFR-032. 378 

 379 

Antibiotic resistance  380 

There is increasing concern about bacterial pathogenicity under microgravity and/or in human 381 

spaceflight [102]. This is validated by reports that several microbial strains isolated from, or 382 

exposed to space environments, show resistance to desiccation, heat-shock, and/or applied 383 

antibiotics [103, 104].  A global analysis of the four genomes was undertaken to identify the 384 

presence of known antibiotic resistance related mutations. It was found that the FO-36b and 385 

SAFR genomes had significantly larger numbers (approximately 100-200 more) of the mutations 386 

as compared with the MERTA and ATCC7061 genomes. On a comparative scale, the genome of 387 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 24, 2018. ; https://doi.org/10.1101/283937doi: bioRxiv preprint 

https://doi.org/10.1101/283937


18 

 

BSU had almost 200 more AMR related mutations. The mere presence or the number of these 388 

mutations as such cannot be linked with the respective antibiotic resistance properties of these 389 

strains. However, further analysis of antibiotic susceptibility of these strains is warranted to 390 

establish how they differ from other strains. 391 

Phylogenetic analysis 392 

The current study used Whole Genome Phylogenetic Analysis methodology to delineate 393 

phylogenetic distances based on whole genomes of organisms. This and the separate genome-394 

genome distance analysis are consistent with, but more detailed than the earlier study [38]. 395 

Additionally, the “gyrA” tree analysis was found to support the WGPA and GGDC results.  In 396 

agreement with the earlier studies, the B. safensis/ B. pumilus strains form a coherent cluster with 397 

three large sub clusters (Figure 8, 9). One of the large sub clusters includes the FO-36b, and 398 

MERTA strains as well as all other B. safensis strains. B. pumilus strains in this grouping may be 399 

usefully renamed as B. safensis. SAFR-032 and ATCC7061 are in a second sub cluster that is 400 

exclusively populated with B. pumilus strains. The third sub cluster includes all members of the 401 

B. altitudinis group and many B. pumilus strains. 402 

Conclusions    403 

A recent report [105] has implicated that the opposing effects of environmental DNA damage 404 

and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria 405 

that belong to multiple, phylogenetically independent groups including Deinococcus. This view 406 

is not consistent with the four genomes examined in detail here as few arrangements are 407 

observed.  Comparison with earlier results [38, 39] did not yield anything new and thus although 408 

candidates continue to exist, no specific gene has been identified as likely being responsible for 409 
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the resistances exhibited by these organisms. The differences in resistance properties can easily 410 

be attributed to changes in expression level but of what gene or genes? With a larger 411 

phylogenetic tree now available, it should be possible to select a representative subset of strains 412 

for further resistance studies as well as sequencing.   413 

  414 
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Figures  790 

Figure 1. The Bacillus bacteriophage SPP1 (NC_004166) homologous region in the B. safensis 791 

FO-36b genome, as compared with the equivalent genomic regions of B. pumilus ATCC7061
T
, 792 

B. pumilus SAFR-032 and B .subtilis subsp. subtilis str. 168. The locus tag numbers are given 793 

inside the boxes/rectangles. Red diamonds denote absence of a single gene/homolog. Red 794 

rectangle denotes absence of a series/cluster of ORFs/genes. Green box encloses the phage 795 

insertion region. Green diamond denotes absence of a single gene/homolog within the phage. 796 

"hyd" = hydrolase, "chp" = conserved hypothetical protein, "pept" = peptidase, "hp" = 797 

hypothetical protein, "TR" = transcriptional regulator, "Ps"= pseudogene, "lp" = lipoprotein, 798 

“gsp” = group specific protein, “oxi” = oxidase. 799 

 800 

Figure 2. The Bacillus bacteriophage SPP1 (NC_004166) homologous region in the B. safensis 801 

FO-36b genome, as compared with the equivalent genomic region of B. safensis JPL_MERTA8-802 

2. Red diamonds denote absence of a single gene/homolog. Red rectangle denotes absence of a 803 

series/cluster of ORFs/genes. Green box encloses the phage insertion region. 804 

 805 

Figure 3. Overall scheme of the Brevibacillus phage Jimmer1 (NC_029104) phage insertion in 806 

the B. safensis FO-36b genome.  The three blocks A, B and C and the genes they encompass are 807 

shown. The first part of Block C is a duplication of Block A. 808 

 809 

Figure 4. The Brevibacillus phage Jimmer1 (NC_029104) phage insertion in the B. safensis FO-810 

36b genome as compared with the equivalent region in the genome of B. pumilus ATCC7061
T
.  811 

Black box encloses the phage insertion region(s). Green (dashed line) box corresponds to block 812 
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A. Green (dotted line) box corresponds to block B. Blue (dashed line) box corresponds to block 813 

C. Red (dashed line) box encloses ‘terminase’ genes. A diamond denotes absence of a single 814 

gene/homolog within the phage, while rectangle denotes absence of a cluster of genes/homologs. 815 

"hp" = hypothetical protein, "chp" = conserved hypothetical protein, "pp" = phage portal protein, 816 

"sp" = structural protein, "sgp" = spore germination protein, "int" = integrase. 817 

 818 

Figure 5. The Brevibacillus phage Jimmer1 (NC_029104) phage insertion in the B. safensis FO-819 

36b genome as compared with the equivalent region in the genome of B. safensis 820 

JPL_MERTA8-2. "hp" = hypothetical protein, "chp" = conserved hypothetical protein, "pp" = 821 

phage portal protein, "sp" = structural protein, "sgp" = spore germination protein, "int" = 822 

integrase. 823 

 824 

 Figure 6. The Brevibacillus phage Jimmer1 (NC_029104) phage insertion in the B. safensis FO-825 

36b genome as compared with the equivalent region in the genome of B. pumilus SAFR-032. 826 

"hp" = hypothetical protein, "chp" = conserved hypothetical protein, "pp" = phage portal protein, 827 

"sp" = structural protein, "sgp" = spore germination protein, "int" = integrase. 828 

 829 

Figure 7. The Brevibacillus phage Jimmer1 (NC_029104) phage insertion in the B. safensis FO-830 

36b genome as compared with the equivalent region in the genome of B. subtilis. "hp" = 831 

hypothetical protein, "chp" = conserved hypothetical protein, "pp" = phage portal protein, "sp" = 832 

structural protein,"sgp" = spore germination protein, "int" = integrase. 833 

 834 
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Figure 8. Whole genome Phylogenetic Analysis (WGPA) using the latest version of the 835 

Genome-BLAST Distance Phylogeny (GBDP).  836 

B. safensis FO-36b, B. safensis JPL_MERTA8-2B, B. pumilus SAFR-032, and B. pumilus 837 

ATCC7061
T
 are highlighted in red dash-lined rectangles 838 

 839 

Figure 9. Molecular Phylogenetic analysis by the Maximum Likelihood method  840 

B. safensis FO-36b, B. safensis JPL_MERTA8-2B, B. pumilus SAFR-032, and B. pumilus 841 

ATCC7061
T
 are highlighted in red dash-lined rectangles. 842 

 843 

Tables and captions 844 

Table 1: List of B. safensis FO-36b genes not shared by B. pumilus SAFR-032, 845 

B. pumilus ATCC7061
T
 and B. safensis JPL_MERTA8-2. 846 

^ - Genes/ORFs not found in either B. pumilus SAFR-032, or, B. pumilus ATCC7061
T
, or, B. 847 

safensis JPL_MERTA8-2 or any other B. pumilus and B. safensis genomes. HP – Hypothetical 848 

protein(s) 849 

 850 

Table 2: B. safensis F0-36b unique genes. 851 

* Genes that are part of phage elements 852 

 853 

Table 3: B. safensis FO-36b genes (hypothetical proteins) with fewer than 5 homologs 854 

* Genes that are part of phage elements 855 

 856 

 857 
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Additional files 858 

Additional file 1: Table S1. In silico DNA-DNA hybridization (DDH) values showing Genome-859 

genome distance [50] relationship values for the genomes of various B. pumilus, B. safensis, B. 860 

altitudinis strains. The genomes of Geobacillus kaustophilus, and B. subtilis subsp. subtilis str. 861 

168 serving as outliers in the Firmicutes group and that of gram-negative E.coli MG1655, as a 862 

non-Firmicutes outlier. 863 

 864 

Additional file 2: Table S2. Presence and absence of the B. safensis FO-36b CRISPR module 865 

element protein(s) in the other B. pumilus / B. safensis genomes. 866 

 867 

Additional file 3: Table S3. B. safensis FO-36b characteristic genes (ORFs/genes that are absent 868 

from B. pumilus SAFR-032, B. pumilus ATCC7061
T
, and, B. safensis JPL-MERTA-8-2) and 869 

their occurrence (presence/absence) in the B. pumilus/B. safensis genomes available in the NCBI 870 

database. P: Present, A: Absent, *found on phage insertions. 871 

 872 

Additional file 4: Table S4. B. safensis F0-36b genes reported earlier as shared by B. pumilus 873 

SAFR-032 and not found in the B. pumilus ATCC7061
T
 strain [38], compared with the B. 874 

safensis JPL-MERTA-8-2 strain, and the other B. pumilus / B. safensis genomes.  875 

 876 

Additional file 5: Figure S1. Whole genome alignment of the previously existing B. safensis 877 

FO-36b sequence (GCA_000691165.1 / ASJD00000000) with our current updated sequence 878 

(CP010405) using Mauve [70].  879 

 880 
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Additional file 6: Figure S2. Molecular Phylogenetic analysis by the Neighbor-Joining method. 881 

B. safensis FO-36b, B. safensis JPL_MERTA8-2B, B. pumilus SAFR-032, and B. pumilus 882 

ATCC7061
T
 are highlighted in red dash-lined rectangles. 883 

 884 

Additional file 7: Figure S3. Molecular Phylogenetic analysis using the Minimum Evolution 885 

method. B. safensis FO-36b, B. safensis JPL_MERTA8-2B, B. pumilus SAFR-032, and B. 886 

pumilus ATCC7061
T
 are highlighted in red dash-lined rectangles. 887 

  888 

 889 
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Table 1: List of B. safensis FO-36b (characteristic) genes not shared by  

B. pumilus SAFR-032, B.  pumilus ATCC7061
T
 and B. safensis JPL_MERTA8-2. 

 

Hypothetical protein coding ORFs (unknown function) 

Locus tag RS87_#  

 

 

 

 

HP (25) 

 

01590 

02635-40 

02695-700 

02960  

03370  

03615-20  

04125  

04345  

06055^  

09165  

09820^  

12770^ 

14125-30 

14140 

14150^ 

15275^ 
17540 

18710 

18745 

18755-60 

02980, 

02995, 

03000, 

03010, 

03030-35,  

03050^, 
03065, 

03075-095,  

03110, 

03125, 

03195-200, 

03220, 

14285, 

14395, 

14400, 

14310^, 

14320^, 

14410. 

 

 

 

 

HP on phages (24) 

03215 (ps) Pseudogene (on phage) (1) 
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Locus tag 

RS87_# 
Gene 

Function 

03015 recombinase RecT DNA repair/recombination (2) 

03060 dUTPase 

03190 alkaline phosphatase  Phage element components (2) 

03210 phage tail protein  

03225 protein XhlA  

04350 CRISPR module RAMP protein Cmr1 Type III-B CRISPR element 

components (6) 04355 CRISPR-associated protein Cas10/Cmr2 

04360 CRISPR module-associated protein Cmr3 

04365 CRISPR module RAMP protein Cmr4 

04370 CRISPR module-associated protein Cmr5 

04375 CRISPR module RAMP protein Cmr6 

09105 protein IolH Metabolism (4) 

09130 5-deoxy-glucuronate isomerase 

09150 isomerase 

09160 myo-inosose-2 dehydratase 

 

^ - Genes/ORFs not found in either B .pumilus SAFR-032, or, B. pumilus ATCC7061
T
, or, 

B. safensis JPL_MERTA8-2 or any other B. pumilus and B. safensis genomes. 

HP – Hypothetical protein(s). 
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Table 2: FO-36b unique genes (hypothetical proteins) 

 

 

 

 

 

 

 

 

 

 

 

 

          * Genes that are part of phage elements 

 

 

 

 

 

 

 

 

 

 

Locus tag RS87_# 

03140* 

09820 

12770 

14110 

14145 

14150 

14155* 

14285* 

14310* 
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Table 3: FO-36b genes (hypothetical proteins) with fewer than 5 homologs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Genes that are part of phage elements 

 

 

 

 

 

 

Locus tag RS87_# 

03030* 

 

only four homologs in  

B.safensis U41 (GCA_001938685.1),  

B.safensis U17-1 (GCA_001938705.1),  

B.pumilus CCMA-560 (GCA_000444805.1), and, 

B.pumilus strain 36R_ATNSAL (GCA_002744245.1). 

 

03050* 

 

 

only one homolog in B.pumilus strain 36R_ATNSAL (GCA_002744245.1). 

03110 

 

 

 

only two homologs in  

B.safensis 7783 (GCA_002276315.1), and, 

B safensis Bcs96 (GCA_002155005.1). 

 

 

04125 

 

 

only one homolog in B.pumilus PE09-72 (GCA_002174275.1). 
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