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ABSTRACT 

Streptococcus pneumoniae is an opportunistic human 
pathogen that typically colonizes the nasopharyngeal 
passage and causes lethal disease in other host niches 
such as the lung or the meninges. How pneumococcal 
genes are expressed and regulated at the different stages 
of its life cycle, as commensal or as pathogen, has not 
been entirely described. To chart the transcriptional 
responses of S. pneumoniae, we quantified the 
transcriptome under 22 different infection-relevant 
conditions. The transcriptomic compendium exposed 
a high level of dynamic expression and, strikingly, 
all annotated pneumococcal genomic features were 
expressed in at least one of the studied conditions. 
By computing the correlation of gene expression of 
every two genes across all studied conditions, we 
created a co-expression matrix that provides valuable 
information on both operon structure and regulatory 
processes. The co-expression data is highly consistent 
with well-characterized operons and regulons, such 
as the PyrR, ComE and ComX regulons, and had 
allowed us to identify a new member of the competence 
regulon. Finally, we created an interactive data center 
(www.veeninglab.com/pneumoexpress) that enables 
users to access the expression data as well as the co-
expression matrix in an intuitive and efficient manner, 
providing a valuable resource to the pneumococcal 
research community. 

INTRODUCTION

S. pneumoniae (the pneumococcus) is a successful 
opportunistic human pathogen with high carriage rates in 
children, immunocompromised individuals and the elderly. 

The pneumococcus claims the lion’s share of all mortality 
related to LRTIs (Lower Respiratory Tract Infections), single-
handedly placing LRTIs as the deadliest communicable 
disease (1). Additionally, LRTIs are the second principal 
cause for loss of healthy life (disability-adjusted life years, 
a combination of mortality and morbidity, (2). Furthermore, 
the pneumococcus is part of the typical microbiota of the 
respiratory tract (3–5), with four in five young children (< 5 
years, 6) and one in three adults (7) carrying the bacterium. 
Moreover, young children (8) and the elderly (9) are especially 
susceptible to pneumococcal pneumonia. In addition to 
lung infection, S. pneumoniae is responsible for other lethal 
infections, such as sepsis and meningitis (10, 11).

Sequenced pneumococcal genomes from clinical 
and model strains reveal the presence of a pan-genome 
of approximately 3,473 genes (12), with up to 90% gene 
conservation between strains. On the other hand, individual 
pneumococcal strains have a relatively small genome with 
around 2 million bps. For example, strain D39, one of the 
work horses of pneumococcal research, has 2,046,572 bps 
with 2,150 updated genomic features (cite pneumobrowse; 
https://veeninglab.com/pneumobrowse). Specifically, 
prokaryotic genome size strongly correlates with the 
number of coding sequences (13). In effect, this limits the 
quantity of dedicated effectors for specific conditions. One 
of the strategies to circumvent this limit is for the genome 
to encode moonlighting proteins; for example, α-enolase, a 
major glycolytic enzyme, also binds human plasminogen, 
thereby combining carbon metabolism and cellular adhesion 
in one molecule (14, 15). In addition, the pneumococcus 
employs a strategy to optimize regulation of gene expression 
in response to environmental stimuli, in short, fine-tuning 
the timing and amount of gene products to ensure optimal 
survival. For example, we and others have observed the 
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pneumococcus aptly imports varied carbon sources (16, 
17) and epithelium-adherent pneumococci express different 
carbohydrate importers than planktonic bacteria (18).

Here, we precisely quantified the transcriptome of S. 
pneumoniae (strain D39V, CP027540, cite pneumobrowse) 
when exposed to 22 infection-relevant conditions. Next, we 
classified the annotated features into genes that are steadily 
highly expressed and genes with condition-dependent, 
dynamic expression. Furthermore, we generated a co-
expression matrix containing the transcription correlation 
value of every possible pair of genes. We exploited the 
matrix to identify a new member of the competence regulon: 
a small hypothetical protein, encoded by SPV_0391 (briC). 
Furthermore, we provide the compendium consisting of 
normalized expression values, exhaustive fold changes and 
the co-expression matrix in a user-friendly browseable data 
center (www.veeninglab.com/pneumoexpress), enabling 
easy access. Finally, users can simply browse genomic 
environment around gene(s) of interest (via crosslink to 
www.veeninglab.com/pneumobrowse). The work and 
data presented here provide a valuable resource to the 
pneumococcal and microbial research community.

MATERIALS AND METHODS

Culturing of S. pneumoniae D39 and pneumococcal 
transformation
S. pneumoniae was routinely cultured without antibiotics. 
Strain construction and preparation of chemically-defined 
media (CDMs) are described in detail in the Supplementary 
Material and Methods. Oligonucleotides are listed in 
Supplementary Table S10 while bacterial strains are listed 
in Supplementary Table S11.

Infection-relevant growth and shock cultures of S. 
pneumoniae
The infection-relevant conditions were selected from a subset 
of microenvironments that the pneumococcus encounters 
during its opportunistic pathogenic lifestyle. We manipulated 
sugar type and concentration, protein level, temperature, 
partial CO2 pressure and medium pH. Sicard’s defined 
medium was selected as the backbone of infection-relevant 
conditions (19). Rich C+Y medium was used for competence 
related conditions (cite pneumobrowse) while co-incubation 
with epithelial cells was performed as previously described 
(Aprianto et al., 2016). For a full description of infection-
relevant conditions, see Supplementary Materials and 
Methods. A complete list of medium components is available 
in Supplementary Table S1.

Total RNA isolation, library preparation and sequencing
Pneumococcal cultures from infection-relevant conditions 
were pre-treated with ammonium sulfate to terminate 
protein-dependent transcription and degradation. Total RNA 
was isolated and cDNA libraries were created without rRNA 
depletion. The libraries were then sequenced on Illumina 
NextSeq 500 as described previously (18).

Data analysis and categorization of genes
Quality control was performed before and after trimming. 
Trimmed reads were aligned to the recently sequenced 
genome (Accession: CP027540) and counted according 
to the corresponding annotation file, excluding 264 
features that are contained by annotated pseudogenes 
(cite PneumoBrowse). Reads were normalized into TPM 
(transcripts per million, 44) and by regularized log (21). Highly 
expressed and lowly expressed genes were categorized 
from rRNA-excluded TPM. Decile values were used to 
partition expression values into 10 classes. The ninth decile 
serves as the minimum value for highly expressed genes 
while the first decile was used as the maximum limit for 
lowly expressed genes. 61 genes had TPM values above 
the high-limit in all infection-relevant conditions. Along with 
the 12 rRNA loci, these 73 genes were categorized as highly 
expressed genes. On the other hand, no gene is below the 
lower threshold in all conditions. However, 498 genes have 
TPM below the limit in at least one condition; the genes were 
categorized as conditionally-expressed. 

Exhaustive fold changes were calculated (21) for 
every pair of two conditions out of the 22 infection-relevant 
conditions. Then, fold changes with low mean normalized 
count were set to 0. Low mean normalized count was 
signified by DESeq2 with “NA” as adjusted p-value. We 
used the formal definition of low count as previously defined 
(21). Conditionally-expressed genes were excluded from 
the calculation of the limits of high and low variance genes 
because, by definition, those genes are biased towards 
higher variance. The coefficient of variance (cvar) for every 
gene across all fold changes was calculate and used as 
the base for variance-based partition. The cvar ninth decile 
was chosen as the minimum value for high variance genes, 
while the first decile represented the maximum limit for low 
variance genes. There were 165 genes with high variance, 
which, together with conditionally-expressed genes, were 
categorized as dynamic genes. 

Calculations of rRNA fold changes required an 
alternative approach since normalization based on library 
size cannot be used on highly abundant features such as 
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rRNAs. Instead, the expression values of the least variable 
half of all genes (1,071 features) was used as normalization 
factor for rRNA expression values (22).  Then, fold changes 
and normalized expression values were calculated. 

Generation of co-expression matrix
The genome-wide exhaustive fold changes were used to 
calculate the correlation value of every possible set of two 
annotated features. First, the dot-products between fold 
changes of the two target genes and self-dot-products of 
each gene were calculated. Next, the dot-products were 
summed: between two target genes (a) and self-products 
(b and c). The summed dot-product was referred to as non-
normalized correlation value. This value was normalized by 
calculating the ratio between the non-normalized value (a) 
and the geometric mean of summed fold-changes (b and 
c). In turn, the geometric mean of summed fold changes 
was calculated as the square root of the multiplication 
product between the summed self-products. The normalized 
correlation value was then mapped into the matrix by the 
genomic positions of both genes (Figure 4A). 

Online compendium
The compendium can be accessed at www.veeninglab.com/
pneumoexpress. The data are stored in a MySQL database 
as gene expression values. Gene expression graphs are 
generated by D3 (Data Driven Documents, https://d3js.org). 
Gene expression is presented in DESeq2-normalized values, 
rlog (21), TPM (transcripts per million, (20) or log-transformed 
TPM). Exhaustive fold changes and correlation values were 
included as part of the pneumococcal compendium.

Figure 1. Mimicking conditions relevant to the opportunistic 
pathogen lifestyle. A. 22 conditions were selected, including 
growth in five different media (C+Y and nose-like, lung-like, 
blood-like and CSF-like medium); a model of meningeal 
fever; eight transfers between conditions, including 
transmission; three competence time-points and five 
epithelial co-incubation time-points (Table 2). B. Total RNA 
was isolated after ammonium sulfate treatment to inhibit RNA 
degradation. cDNA libraries were prepared without rRNA 
depletion and sequenced. Quality control was performed 
before and after read-trimming. Trimmed reads were aligned 
and counted. Next, highly and conditionally expressed 
genes were categorized based on normalized read counts, 
while high- and low-variance genes were classified based 
on fold changes. High variance and conditionally expressed 
genes together were defined as dynamic genes.
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Luciferin assays
Firefly luciferase (luc) was transcriptionally fused to the 
3’-end of target operons, comCDE and SPV_0391-2157-
0392, to monitor gene expression levels. A kanamycin 
resistance cassette under a constitutive promoter was used 
as selection marker. Plate assays were performed in C+Y 
with 0.25 mg·ml-1 luciferin and with and without the addition 
of 100 ng·ul-1 CSP-1 from the beginning of the experiment or 
after 2 hours incubation.

RESULTS

Infection-relevant conditions: creating the compendium
The natural niche of S. pneumoniae is the human 
nasopharynx. However, due to its lifestyle, the bacteria 
may encounter greatly varied microenvironments. Interhost 
transmission, for example, involves the switch from cellular 
adherence in the nasopharynx to airborne respiratory or 
surface-associated droplets. In both cases, the bacteria must 
survive a lower temperature, desiccation and oxygenated air 
(23). Inside the host, sites of colonization and infections are 
equally challenging with varying acidity and differing levels 
of oxygen and carbon dioxide, diverse temperatures and 
scarcity of carbon sources (24), not to mention the action 
of the innate and adaptive immune system. Additionally, 

the pneumococcus resides in a biodiverse niche with 
numerous occupants, including other pneumococcal strains, 
bacteria, fungi and viruses (24). Theoretical models indicate 
that to colonize successfully in dynamic and competitive 
environments, bacteria must adapt their phenotype according 
to environmental demands (25). To achieve this plasticity, 
flexible gene regulation and continuous fine-tuning of gene 
expression are indispensable, although the extent to which 
the pneumococcus tunes its gene expression is unknown.

To reveal the degree of global gene regulation 
occurring in the pneumococcus under infection-relevant 
conditions, we exposed strain D39V to 22 conditions that 
mimic, to a certain extent, the varying host environment 
and quantified the resulting genome-wide transcriptional 
responses. The conditions and growth media were chosen 
to recapitulate the most relevant microenvironments S. 
pneumoniae might encounter during its opportunistic-
pathogenic lifestyle (Figure 1A and Supplementary Table 
S1). The main host-like growth conditions selected were: 
(i) nose-like (mimicking colonization, NEP), (ii) lung-like 
(mimicking pneumonia, LEP), (iii) blood-like (mimicking 
sepsis, BEP), (iv) cerebrospinal fluid-like (CSF-like; 
mimicking meningitis, FEP), (v) transmission-like, (vi) 
laboratory conditions (C+Y, CEP) that allow rapid growth 

Conditions Description Libraries

NEP Growth in nose-like medium 1,2

NT5 Growth in nose-like medium, transmission 5 min 3,4

NT60 Growth in nose-like medium, transmission 60 min 5,6

NTN Growth in nose-like medium, transm. 5 min, nose-like medium 5 min 7,8

N»L Growth in nose-like medium, in lung-like medium 5 min 9,10

LEP Growth in lung-like medium 11,12

N»B Growth in nose-like medium, in blood-like medium 5 min 13,14

BEP Growth in blood-like medium 15,16

B»C Growth in blood-like medium, in C+Y 5 min 17,18

N»F Growth in nose-like medium, in CSF-like medium 5 min 19,20

FEP Growth in CSF-like medium 21,22

F40 Growth in CSF-like medium, then 40°C (fever-like) 5 min 23,24

C»N Growth in C+Y, in nose-like medium 5 min 25,26

CEP Growth in C+Y 27,28

C03 Growth in C+Y, CSP 3 min 29,30

C10 Growth in C+Y, CSP 10 min 31,32

C20 Growth in C+Y, CSP 20 min 33,34

I00 Co-incubation with A549, 0 minutes post infection 35,36

I30 Co-incubation with A549, 30 minutes post infection 37,38

I60 Co-incubation with A549, 60 minutes post infection 39,40

I120 Co-incubation with A549, 120 minutes post infection 41,42

I240 Co-incubation with A549, 240 minutes post infection 43

Table 1. Definition of infection-relevant conditions.
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and (vii) co-incubation with human lung epithelial cells. The 
growth medium for the first five conditions was based on 
a chemically defined medium (19). In C+Y, a commonly 
used semi-chemically defined medium, we included three 
competence time-points, 3, 10 and 20 minutes (C03, C10 and 
C20) after the addition of exogenous competence stimulating 
peptide-1 (CSP-1). Pneumococcal natural competence may 
be a response to living in a diverse ecosystem to combat 
stress and/or acquire beneficial genetic material from related 
strains and other bacteria (26, 27). Indeed, competence is 
induced by several stress factors including DNA damage 
(28–30) and moderately by co-incubation with epithelial 
cells (18). Importantly, the competence regulon is well-
characterized (31, 32), allowing us to benchmark the quality 
of our experimental data and bioinformatics pipeline.

As S. pneumoniae is able to migrate between 
niches, we also analyzed the transcriptomes of pneumococci 
being transferred between conditions. Specifically, nose-
like to lung-like, (i, N»L),  nose-like to blood-like, (ii, N»B), 
nose-like to CSF-like, (iii, N»F), blood-like to C+Y, (iv, B»C), 
C+Y to nose-like, (v, C»N),  nose-like to transmission-like 
for 5 minutes, (vi, NT5),  nose-like to transmission-like for 
60 minutes, (vii, NT60),  nose-like to transmission-like for 5 
minutes and back to nose-like medium for 5 minutes, (viii, 
NTN). Moreover, a condition mimicking meningeal fever was 
included (F40). Transfers were performed for only 5 minutes 
prior to RNA isolation because of the rapid production and 
turnover of bacterial transcripts (33). Finally, five time-points 
of pneumococci adhering to human lung epithelial cells, 
previously reported by us, completed the array of conditions: 
0, 30, 60, 120 and 240 minutes after infection (I00, I30, I60, 
I120 and I240, (18). Collectively, the 22 growth and transfer 
conditions are referred to as “infection-relevant conditions” 
(Figure 1 and Table 1).

To mimic the different environments, we manipulated 
seven key parameters: type and amount of carbon source, 
level of serum albumin, level of CO2, temperature, acidity 
of the medium and presence of an epithelial monolayer 

(Table 2). We manipulated carbon source because S. 
pneumoniae can utilize at least 32 different carbon sources 
(16), devotes a third of all transport mechanisms to import 
carbohydrate (17) and generates ATP exclusively from 
fermentation (34). Moreover, respiratory mucus is the sole 
carbon source of the niches, from 1  g·l-  1 in the lung (35) 
to 2 g·l-1 in the nasopharyngeal passage (36). In addition, 
N-acetylglucosamine (GlcNAc) is the main monosaccharide 
in the human mucus (32% of dry weight), followed by 
galactose (29%), sialic acid, fucose and N-acetylgalactose 
(37). On the other hand, glucose can be found in high 
concentrations in blood (38). Therefore, two sources of 
carbon were included: GlcNAc in nose-like and lung-like 
conditions and glucose in blood-like, CSF-like, C+Y and 
infection conditions.
 	 In addition, temperature was maintained at 37°C 
for all conditions except for nose-like medium (30°C) since 
nasal temperature ranges from 30-34°C (39). We set fever 
temperature at 40°C and transmission at 20°C (room 
temperature). In particular, transmission was modeled by 
exposing the bacteria to room temperature and ambient 
oxygen level on a sterile surface. Confluent epithelial 
cells present a biotic surface that necessitates a different 
pneumococcal phenotype, such as biofilm formation (43). 
Furthermore, the epithelial layer actively interacts with the 
bacteria and fine-tunes its own transcriptome (18). 

The total number of trimmed reads per library ranges 
from 26 to 149 million reads (average: 89 million reads). 
Most reads from the non-depleted libraries aligned to the 
four rRNA loci of the pneumococcus. On average, 95.4% 
of reads mapped to rRNAs, ranging from 93.4 to 97.7% 
(Figure 2A). At the same time, reads mapping to tRNAs 
occupied only 0.03% of total reads (0.01-0.05%) in the non-
depleted libraries. Excluding rRNA and taking into account 
the read length (75 nt), the sequencing depth of libraries (i.e. 
coverage of the genome) ranges from 76 to 1944, suitably 
deep to elucidate gene expression (44).

Principal component analysis (PCA) indicated that 

Glucose (g.l-¹) GlcNAc (g.l-¹) Serum albumin 
(g.l-¹) CO2 (%) Temp. (°C) pH Epithelial cells 

(A549)
Nose-like - 1.2836,37 136 N.D. 3039 7.040 -

Lung-like - 0.6435,37 335 5 37 7.040 -

Blood-like 0.938 - 6738 5 37 7.438 -

CSF-like 0.4541 - 0.4541 5 37 7.842 -

Transmission - - - N.D. 20 - -

C+Y 1.79* - 0.73* N.D. 37 6.8* -

Infection 2.018 - 1018 518 3718 7.418 +

Table 2. Key parameters in infection-relevant conditions. *As reported in this study.
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three clusters can be observed that roughly correspond to 
the basal medium used to simulate the conditions. The first 
cluster consists of the five time-points during co-incubation 
with human epithelial cells, while the second cluster is made 
up of the competence time-points. Finally, the third cluster 
contains all other conditions (Figure 2B). Interestingly, 
growth in C+Y (CEP) clusters with the latter group and 
not with competence samples, indicating that clustering 
represents biological responses, and not solely on type of 
medium. On the other hand, since the first cluster contained 
data from a different preparation and sequencing batch, we 
performed batch effect correction (45). However, we failed to 
see an appreciable difference in distribution before and after 
removal of the putative batch effect and concluded that the 
clustering behavior is due to different biological responses. 
Subsequently, downstream analysis used the non-corrected 
dataset. To visualize gene expression, we generated the 
“shortest tour” through the PCA plot (Supplementary 
Figure S1). We calculated distances between infection-
relevant conditions in the PCA plot, in an Euclidean manner 
and subsequently selected the minimum total distance 
between all the conditions using a TSP algorithm (46). We 
have further validated gene expression values by qPCR 
(Supplementary Figure S2). Taken together, we observed 
large differential gene expression of S. pneumoniae 
depending on its environment.

Categorization of genes: highly expressed and dynamic 
genes
Normalization of read counts was performed in two ways: 
TPM (transcripts per million, (20) and regularized logarithm 
(rlog, (21). While TPM-normalization corrects for the size of 
the library and length of a feature, rlog scales abundance 
directly to a log2-scale while adjusting for library size. The 
rlog is more suitable for visualization of gene expression 
across diverse conditions, while TPM values were used to 
categorize genes as highly or lowly expressed.

The 73 highly expressed genes, 46 of which are 
described as essential (47), include genes encoding rRNAs 
and 34 genes coding for ribosomal structural proteins. Other 
genes, including the two translation elongation factors fusA 
and tuf, DNA-dependent RNA polymerase rpoA, transcription 
termination protein nusB, and DNA binding protein hlpA, 
were also highly expressed in all conditions. Additionally, a 
set of genes associated with carbohydrate metabolism were 
highly expressed: fba (fructose-bisphosphate aldolase), eno 
(enolase), ldh (lactate dehydrogenase), gap (glyceraldehyde-
3-phosphate dehydrogenase), and an ATP synthase, atpF. 
A complete list of highly expressed genes is available in 
Supplementary Table S2.

On the other hand, 48 out of the 498 conditionally 
expressed genes encode proteins involved in carbohydrate 
transport, including importers of galactosamine (gadVWEF), 
cellobiose (celBCD), hyaluronate-derived oligosaccharides 

Figure 2. Distribution of libraries and conditions. A. Number of trimmed reads of the 43 libraries (Table 1) ranges from 26 to 
149 million reads, averaging at 89 million reads. Non rRNA-depleted libraries are dominated by reads mapped to ribosomal 
RNA, averaging at 95% (93 to 98%, libraries 1-34). B. Principal component analysis of gene expression in all conditions 
showed three clusters of conditions: conditions based on competence (C03, C10 and C20; purple), epithelial co-incubation 
(I00, I30, I60, I120 and I240; green) and other CDM-based conditions (orange).
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(SPV_0293, SPV_0295-7), galactose (SPV_0559-61), 
ascorbic acid (ulaABC) and mannose (SPV_1989-92). 
Since we provided either N-acetylglucosamine or glucose 
as carbon source, the downregulation of these sugar 
importers indicates that S. pneumoniae only expresses the 
importers when the target sugar is available. In contrast, 
some alternative sugar importers were upregulated even 
though in some conditions only N-acetylglucosamine or 
glucose was available. For example, cellobiose (celCD), 
galactose (SPV_0559-61) and multi-sugar (SPV_1583-
5) transporters were upregulated upon co-incubation with 
epithelial cells. We postulated that the epithelial mucosal 
layer incites the expression of these importers since the 
washed epithelial layer did not result in a similar response 
(18). A full list of conditionally expressed genes is available 
in Supplementary Table S3. 

In addition, exhaustive comparisons (231 in total) 
between every set of two conditions were performed. The 
coefficient of variation of the summarized fold changes 
per gene were used to categorize high and low variance 
genes (Materials and Methods). High variance genes 
include pyrimidine-related genes (pyrFE, pyrKDb, uraA, 
pyrRB-carAB) and purine-associated genes (purC, purM, 
purH). These genes were activated during co-incubation 
(I00 to I240), transfer to transmission (NT5 and NT60) and 
growth in lung (LEP). Furthermore, members of the ComE 
regulon were heavily upregulated in all competence time 
points (C03, C10 and C20), CSF-like growth (FEP), fever 
(F40) and late co-incubation (I120 and I240). In contrast, 
the also dynamic expression of the ComX regulon peaks 
10 minutes after addition of CSP-1 (C10) and on transfer to 
transmission (NT5, NT60). We have combined conditionally 
expressed genes and high variance genes into a single 
category: the dynamically expressed genes (Figure 3 and 
Supplementary Table S4). Visualization of low-variance 
genes can be observed in Supplementary Figure S2A. 
Together, this coarse-grained analysis showed the presence 
of a large set of genes that are conditionally expressed 
(approximately 25% of all genetic features), indicating large 
scale rewiring of the pneumococcal transcriptome upon 
changing conditions.

Growth-dependent expression of rRNA
rRNA depletion introduces bias to sequenced libraries (48). 
We have opted not to deplete rRNAs in the majority of 
the libraries, endowing the compendium with an unbiased 
quantification of total RNA. This approach also gave us 
the rare opportunity to investigate the expression levels of 

Figure 3. Categorization of genes. A. Visualization of 
the number of genes in all conditions according to their 
categories: steadily highly expressed (purple), conditionally 
expressed (green), and others (orange). Of the 2,150 
features, 73 are classified as highly expressed, while 498 
features are conditionally expressed (lowly expressed in 
at least one condition). B. Highly expressed genes include 
essential genes, genes encoding ribosomal proteins and 
rRNAs. Dynamic genes are a combination of the 165 high 
variance genes and 498 conditionally-expressed genes. 
C. 23S rRNA was significantly downregulated in nose-like 
(NEP) and lung-like (LEP) growth, compared to rich C+Y 
growth (CEP) (p<0.05). 16S rRNA showed a similar trend 
but was not statistically significant (p = 0.33, CEP to NEP; 
p = 0.83, CEP to LEP, error bars represent standard error). 
D. Normalized expression values of high-variance genes 
were centered, as described in Supplementary Materials 
and Methods, and plotted as heat maps. Distinct clusters 
of gene expression can readily be observed (purple: high 
expression, green: low expression).
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ribosomal RNAs in the conditions under study. Because of 
rRNA abundance and stability, we adopted an alternative 
normalization procedure prior to calculating fold-change. 
Rather than normalizing rRNA read counts based on the total 
number of reads in the library (as is the standard procedure), 
we exploited read counts of low variance features to define 
an artificial normalization factor (Materials and Methods). 
The rRNA levels were significantly higher in fast-growing 
pneumococci (C+Y, CEP) compared to slow-growing cells 
(nose-like and lung-like growth, Figure 3C). Ribosomal RNA 
expression in the Gram-positive model organism Bacillus 
subtilis has previously been reported to be regulated by 
availability of dGTP, due to the fact that the initiating nucleotide 
of rRNA transcripts is a GTP, rather than the more common 
ATP (49). Even though rRNA operons in S. pneumoniae 
are also initiated with GTP (cite pneumobrowse), we did 
not observe a correlation between initiating nucleotide and 
gene expression levels in cells growing in different media 
(Supplementary Figure S2C). Nevertheless, in prokaryotes 
including S. pneumoniae, genes encoding ribosomal RNAs 
and proteins are conserved in a location close to the origin 
of replication (50–52). The ori-proximal location of the four 
pneumococcal rRNA loci results in a higher gene copy 
number of rRNAs in fast-growing cells, such as in C+Y, as 
a direct consequence of the increase in replication initiation 
frequency. Indeed, we find that in general, constitutively 
expressed genes located close to the origin of replication 
demonstrate higher expression under fast growth (29, 50). 

Assembly of genome-wide correlation values to 
generate a co-expression matrix
We created a co-expression matrix from the fold changes 
between conditions. First, we exhaustively compared 
genome-wide fold changes between every two conditions of 
the 22 infection-relevant conditions. Next, we calculated the 
dot-product of the vector containing all fold changes of gene 
1 with the vector containing all fold changes of gene 2 (a, 
non-normalized correlation value). Similarly, we determined 
self-dot-products of gene 1 (b) and gene 2 (c). A normalized 
correlation value was obtained by calculating the ratio of the 
non-normalized value (a) to the geometric mean of self-dot-
products (b and c). We then mapped this correlation value 
according to the genomic positions of the original genes 
(Figure 4A and Materials and Methods). The maximum 
correlation value including self-correlation is 1 and the 
determined correlation values range from -0.97 to 1. Close to 
the matrix diagonal, we observed blocks of highly correlated 
genes indicating their co-expression and proximity. These 

proximity blocks are referred to as putative operons and 
used as input for further analysis (cite pneumobrowse). In 
particular, the well-known cps operon (53) can be observed 
in the co-expression matrix, whereby 16 consecutive genes 
are co-expressed as a single operon (Figure 4B inset). In 
contrast, the correlation values between members of the 
cps operon and either genes upstream or downstream of 
the locus, are considerably lower.

In addition to belonging to the same operon, 
co-expression can be mediated by shared expression-
regulatory properties. Regulatory proteins typically interact 
with the promoter regions of regulated genes. From the 
matrix, we recovered 46 features (of 26 operons) that are 
highly correlated to dprA, a member of the ComX regulon. 
Motif enrichment analysis on the 50-nt region upstream of 
the corresponding 26 start sites resulted in a 28 nucleotide 
motif (Figure 4C) that closely matches the ComX binding 
site as previously reported (54). Furthermore, we clustered 
pneumococcal genes based on their normalized expression 
value (transcripts per million, TPM), and recovered 25 
clusters (55, 56). The first cluster, cluster 0, is a non-modular 
cluster, containing all genes that did not fit into any of the 
other clusters. This cluster can therefore be considered as a 
random control. When we plotted correlation values of every 
set of two genes within each cluster, we observed a bias 
towards higher correlation values in all clusters except for the 
non-modular cluster (Figure 4D). As an additional control, 
we selected 120 random genes, divided into 3 groups and 
plotted the correlation values within the groups. There, we 
observed a truly random distribution of correlation values 
in all groups (Supplementary Figure S3A). We concluded 
that the co-expression matrix represents a simple network 
of genome-wide expression profiles that reveals meaningful 
transcriptomic responses to a changing environment. 
Moreover, by comparing gene expression profiles across 
a wide range of conditions, it unveils direct and indirect 
regulatory connections between genes. The co-expression 
matrix also has the potential to elucidate negative regulators 
by strong negative correlation coefficients with their target 
genes.

Exploiting the matrix to reveal a new member of the 
competence regulon
Two-component regulatory systems (TCSs) are essential 
for the pneumococcus to sense its microenvironment and 
to fine-tune its gene expression (56, 57). ComDE, the 
best-described TCS, is controlled by a quorum-sensing 
mechanism and regulates the activation and synchronization 
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Figure 4. Assembly of co-expression matrix from correlation values of every two pneumococcal genes. A. The exhaustive 
fold changes of every set of two genes are converted into a correlation value: first, the dot-product between two genes 
(a, orange) and the dot product of each gene with itself (b and c, blue) are calculated. The correlation value is the ratio 
between a and the geometric mean of b and c. Values were assembled by the genomic coordinates of the target genes. B. 
The co-expression matrix as a visualized gene network. Self-correlation values are 1 by definition and correlation values 
were plotted according to the genomic positions of target genes. Purple and green indicate positive and negative correlation 
values between two genes, respectively. Color intensities represent correlation strength. Blocks of highly correlated genes 
close to the matrix diagonal indicate operon structures, for example for the cps operon (inset). C. Enriched promoter 
motif recovered from genes highly correlated to dprA (SPV_1122) matches the consensus ComX binding site (54). D. 
Pneumococcal genes were clustered into 25 clusters based on TPM (transcripts per million). Then, correlation values for 
every two genes within each cluster were plotted. Cluster 0 is non-modular and its correlation values can be considered as 
random. Within-cluster values showed a clear trend towards higher correlation (purple).
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of competence, or X-state, which in turn is responsible for the 
expression of ~100 genes and a wide range of phenotypic 
changes (58, 59). From the co-expression matrix, we 
recovered genes strongly correlated with comE, encoding the 
DNA-binding regulator. Specifically, we identified 26 comE-
associated genes with correlation values above 0.8. ComE 
autoregulates its own expression along with expression of 
comC1 (SPV_2065) and comD (SPV_2064), which belong 
to the same operon and indeed correlate strongly with comE. 
Furthermore, other known members of the ComE regulon, 
such as comAB (SPV_0049-50), comW (SPV_0023) and 
comM (SPV_1744) belong to the same cluster. 

Interestingly, SPV_0391, encoding a conserved 
hypothetical protein, was included in the group. SPV_0391 
has not been reported as part of the competence regulon 
in array-based pneumococcal competence studies (31, 
32). Furthermore, comE-associated genes are not localized 
in a specific genomic location, but spread out throughout 
the genome (Figure 5A), ruling out the effect of genomic 
location. Expression values of comCDE and SPV_0391 
across infection-relevant conditions demonstrated strong 
correlation between the genes (Figure 5B). In the promoter 
region of SPV_0391, we observed a ComE-binding site 
consisting of two ComE-boxes, which suggests direct 
regulation by ComE. In order to study the expression of 
SPV_0391 and the responsiveness of the identified ComE 
site, we transcriptionally inserted firefly luciferase (luc) 

downstream of SPV_0391, which is immediately followed by 
pseudogene ydiL (SPV_2157). Importantly, no terminators 
or additional transcription start sites were detected between 
SPV_0391 and ydiL, suggesting they form an operon 
together. Previous annotation include the presence of a 
small hypothetical protein, SPD_0392 within ydiL. Thus, we 

Figure 5. The co-expression matrix reveals a new 
competence-regulated gene. A. The gene encoding a 
pneumococcal response regulator, ComE, was used to 
recover 26 highly correlated features (orange diamonds). 
The group is mainly populated by known members of 
the ComE regulon, except for SPV_0391, a conserved 
hypothetical gene not previously reported to be part of 
the competence regulon. B. Centered expression values 
of SPV_0391 (orange) and comCDE (shades of blue) 
were plotted against the shortest tour of infection-relevant 
conditions. Expression values of the four genes closely 
clustered together. C. Genomic environment of SPV_0391 
with two preceding ComE boxes. SPV_0391 shared operon 
structure to a pseudogene, ydiL. D. Firefly luciferase (luc) 
was transcriptionally fused downstream of SPV_0391 or 
comCDE to characterize their expression profiles with and 
without the addition of exogenous CSP-1 (competence 
stimulating peptide-1, 100 ng·ul-1). Addition of exogenous 
CSP-1 incited similar luminescence profiles in SPV_0391-
SPV_0392-luc and in comCDE-luc strains.
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chose to integrate luc downstream of SPV_0392 to avoid 
potential downstream effects (Figure 5C).   We compared 
the luminescence signal in this strain to that in a D39 
derivative that expresses luc transcriptionally fused to the 
3’-end of comCDE (29). 

Exogenous addition of 100 ng·ul-1 CSP-1 stimulated 
luciferase activity in both strains with luc behind SPV_0391 
and comCDE (Figure 5C). Although the luciferase signal 
from SPV_0391 was an order of magnitude lower than 
luminescence driven by comCDE, the signal profiles 
were very similar. Difference in signal strength may 
stem from a weaker promoter driving SPV_0391 than 
comCDE. Additionally, we added CSP-1 after 2 hours of 
incubation and observed identical luminescence responses 
(Supplementary Figure S3B). Furthermore, we disrupted 
SPV_0391 to elucidate its role in pneumococcal competence. 
Deletion of this conserved feature did not affect growth in 
C+Y or the expression profiles of luciferase downstream 
of comCDE and ssbB, member of the ComX regulon (not 
shown). Finally, transformation efficiency in the deletion 
strain was not significantly different from that in the parental 
strain. Thus, while SPV_0391 is under the control of ComE 
and part of the pneumococcal competence regulon, we could 
not determine its role in pneumococcal competence. Indeed, 
recent work has shown that SPV_0391 (renamed to briC) 
does not play a role in transformation but rather promotes 
biofilm formation and nasopharyngeal colonization (60). 

Development of an interactive data center to explore 
gene expression and correlation
To enable users to easily mine the rich data produced 
here, we developed an interactive data center accessible 
from www.veeninglab.com/pneumoexpress where users 
can easily extract expression values and fold changes of a 
gene of interest, as well as quantitative information on how 
its expression profile correlates with that of other genomic 
features (Figure 6). As a proof of principle, in addition to 
the competence regulon, we demonstrate results obtained 
by looking at the PyrR regulon. Traditional transcription 
factors bind the promoter region of a DNA molecule and to 
confidently predict all of their binding sites is challenging. 
PyrR, on the other hand, controls expression of its regulon 
by interaction with a riboswitch (61, 62). We identified four 
of these riboswitches (in front of uraA, pyrFE, pyrRB-carAB 
and pyrKDb) that are predicted to regulate the expression 
of nine genes, based on putative operon structures (cite 
pneumobrowse). As expected, the eight genes show strong 
correlation with pyrR (> 0.9). 

DISCUSSION

Extensive mineable transcriptome databases only exist 
for a few model bacteria such as Bacillus subtilis (63, 64), 
Staphylococcus aureus (65), Escherichia coli (66, 67) and 
Salmonella enterica serovar Typhimurium (68). These 
resources have been proven to be invaluable for the research 
community. Here, we set out to map the transcriptome 
landscape of the important opportunistic human pathogen 
Streptococcus pneumoniae. In this study, we coupled 
exposure to wide-ranging and dynamic infection-relevant 
conditions (Table 2 and Figure 1A) to high-throughput RNA-
seq and generated a compendium of the pneumococcal 
transcriptome. Indeed, our data demonstrates that S. 
pneumoniae has a highly dynamic transcriptome with all 
of its genomic features differentially expressed under one 
conditions or the other (Figure 2B and 3C). 

Previously, bacterial exposure to conditions relevant 
to its natural lifestyle has been reported to incite genome-
wide transcriptional responses (64, 69–71). Moreover, 
we have shown that under these varied infection-relevant 
conditions, a subset of genes was constantly highly 
expressed while there is no gene that is always lowly 
expressed - highlighting the saturated and dynamic nature 
of the pneumococcal transcriptome. Previously, we have 
reported that all pneumococcal genes are expressed during 
early infection (18). In this study, we again observed that 
throughout the array of conditions, there are no genes that 
are consistently silent. 

The pneumococcus occupies a rich and diverse 
niche of the respiratory tract (24). While we tried to estimate 
the relevant conditions for the pneumococcus during its 
pathogenic lifestyle, other important physicochemical 
parameters, like the concentration of metal ions, play 
important roles in survival (72) and virulence (73). 
Moreover, the pneumococcus shares a busy ecosystem in 
the respiratory tract with other bacteria, fungi and viruses 
(24). Activities of other residents may be detrimental to 
the pneumococcal survival, as in the case of Haemophilus 
influenzae recruiting host cells to remove S. pneumoniae 
(74). On the other hand, pneumococcal interactions 
with influenza viruses yield bountiful nutrients to support 
pneumococcal expansion (75). Dual transcriptomics studies 
involving the interaction with other relevant species will offer 
interesting insights into pneumococcal gene expression and 
will greatly enhance our understanding of pneumococcal 
biology and pathogenesis (18, 76).

Additionally, we have proposed a simple and 
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Figure 6. An intuitive interactive database to access expression and correlation data. A. Users can specify their gene(s) of 
interest in the field “Pneumococcal Genes” and adjust other settings including normalization method, conditions to display, 
color scales and graph dimensions. Multiple genes of interest in a query is possible by separating names or tags by “|”. 
Immediate genomic environment of gene(s) of interest can be explored in pneumobrowse by clicking locus tag on the result 
table. B. Target expression values are plotted against infection-relevant conditions and the values can be downloaded 
for further analysis. The example shown is the nine genes correlated to pyrR. C. The co-expression matrix can be mined 
by simple inquiry of a gene of interest. Additionally, users can specify a desired threshold of co-expression values. D. 
Correlation values to pyrR, note that self-correlation is 1. Here, genomic environment can be browsed by clicking the locus 
tag in the result table.

straightforward manner to convert the dense and substantial 
sequencing data into a form of gene network which we 
call the co-expression matrix (Figure 4). The matrix was 
assembled by arranging correlation values between two 
genes by their respective genomic locations. The potential 

of the matrix was demonstrated by the elucidation of a new 
member of the ComE regulon (Figure 5). The gene had 
not been identified by array-based transcriptomics studies 
on the development of competence (31, 32), confirming the 
power of next-generation sequencing over hybridization 
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technology. Lastly, we provide the comprehensive and rich 
dataset to the research community by building a user-friendly 
online database (www.veeninglab.com/pneumoexpress) 
where users can easily extract expression values and 
fold changes of a gene of interest, as well as quantitative 
information on how its expression profile correlates with 
that of other genomic features (Figure 6). By a simple click 
in the database, users can explore immediate genomic 
environments of genes of interest in pneumobrowse. Finally, 
we invite other researchers to harness these resources 
and generate their own hypotheses, to gain new insights 
into pneumococcal biology and, ultimately, to identify novel 
treatment and prevention strategies against pneumococcal 
disease. In addition, the resources assist efforts in 
comparative genomics and transcriptomics to other bacteria.

DATA AVAILABILITY

The source code for the online compendium is available in 
Zenodo, https://doi.org/10.5281/zenodo.1157923. Licensed 
under Creative Commons Attribution-Non Commercial. The 
transcriptomic datasets are available in the GEO repository: 
accession number GSE108031.

ACKNOWLEDGMENTS

We are grateful to V. Benes and B. Haase (GeneCore, EMBL, 

Heidelberg) for their continuing support in sequencing; C.J. 
Albers, B. Jayawardhana, E.C. de Wit and M.H. Silvis for many 
fruitful discussions; A. de Jong for bioinformatics support; 
and A. Lun (Cambridge) for insightful recommendations 
concerning rRNA analysis. We would like to thank the Center 
for Information Technology of the University of Groningen for 
their support and for providing access to the Peregrine high-
performance computing cluster. We appreciate the following 
creators: Hyhyhehe, Misha Petrishchev, Alberto Gongora, 
Hea Poh Lin, and Icon 54 for making their cliparts freely 
available at thenounproject.com. 

FUNDING

Work in the Veening lab is supported by the Swiss National 
Science Foundation (project grant 31003A_172861), a VIDI 
fellowship (864.11.012) of the Netherlands Organization 
for Scientific Research (NWO-ALW), a JPIAMR grant (50-
52900-98-202) from the Netherlands Organisation for Health 
Research and Development (ZonMW) and ERC starting 
grant 337399-PneumoCell.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

REFERENCES

1. Troeger,C., Forouzanfar,M., Rao,P.C., Khalil,I., Brown,A., Swartz,S., Fullman,N., Mosser,J., Thompson,R.L., Reiner,R.C., 
et al. (2017) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract 
infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis., 17, 
1133–1161.

2. Kassebaum,N.J., Arora,M., Barber,R.M., Bhutta,Z.A., Brown,J., Carter,A., Casey,D.C., Charlson,F.J., Coates,M.M., 
Coggeshall,M., et al. (2016) Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and 
injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 
2015. The Lancet, 388, 1603–1658.

3. Miller,E., Andrews,N.J., Waight,P.A., Slack,M.P. and George,R.C. (2011) Herd immunity and serotype replacement 4 
years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. 
Lancet Infect. Dis., 11, 760–768.

4. Bosch,A.A.T.M., Levin,E., van Houten,M.A., Hasrat,R., Kalkman,G., Biesbroek,G., de Steenhuijsen Piters,W.A.A., de 
Groot,P.-K.C.M., Pernet,P., Keijser,B.J.F., et al. (2016) Development of upper respiratory tract microbiota in infancy is 
affected by mode of delivery. EBioMedicine, 9, 336–345.

5. Bosch,A.A.T.M., van Houten,M.A., Bruin,J.P., Wijmenga-Monsuur,A.J., Trzciński,K., Bogaert,D., Rots,N.Y. and 
Sanders,E.A.M. (2016) Nasopharyngeal carriage of Streptococcus pneumoniae and other bacteria in the 7th year after 
implementation of the pneumococcal conjugate vaccine in the Netherlands. Vaccine, 34, 531–539.

6. Regev-Yochay,G., Abullaish,I., Malley,R., Shainberg,B., Varon,M., Roytman,Y., Ziv,A., Goral,A., Elhamdany,A., Rahav,G., 
et al. (2012) Streptococcus pneumoniae carriage in the Gaza Strip. PLoS ONE, 7, e35061.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/283739doi: bioRxiv preprint 

http://www.veeninglab.com/pneumoexpress
https://doi.org/10.5281/zenodo.1157923
https://doi.org/10.1101/283739
http://creativecommons.org/licenses/by/4.0/


14

7. Wyllie,A.L., Rümke,L.W., Arp,K., Bosch,A.A.T.M., Bruin,J.P., Rots,N.Y., Wijmenga-Monsuur,A.J., Sanders,E.A.M. and 
Trzciński,K. (2016) Molecular surveillance on Streptococcus pneumoniae carriage in non-elderly adults; little evidence 
for pneumococcal circulation independent from the reservoir in children. Sci. Rep., 6, 34888.

8. Wardlaw,T., Salama,P., Johansson,E.W. and Mason,E. (2006) Pneumonia: the leading killer of children. Lancet Lond. 
Engl., 368, 1048–1050.

9. Welte,T., Torres,A. and Nathwani,D. (2012) Clinical and economic burden of community-acquired pneumonia among 
adults in Europe. Thorax, 67, 71–79.

10. Henriques-Normark,B. and Tuomanen,E.I. (2013) The pneumococcus: epidemiology, microbiology, and pathogenesis. 
Cold Spring Harb. Perspect. Med., 3.

11. O Brien,K.L., Wolfson,L.J., Watt,J.P., Henkle,E., Deloria-Knoll,M., McCall,N., Lee,E., Mulholland,K., Levine,O.S., 
Cherian,T., et al. (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: 
global estimates. Lancet Lond. Engl., 374, 893–902.

12. Donati,C., Hiller,N.L., Tettelin,H., Muzzi,A., Croucher,N.J., Angiuoli,S.V., Oggioni,M., Dunning Hotopp,J.C., Hu,F.Z., 
Riley,D.R., et al. (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related 
species. Genome Biol., 11, R107.

13. Hou,Y. and Lin,S. (2009) Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene 
content estimation for Dinoflagellate genomes. PLoS ONE, 4.

14. Bergmann,S., Rohde,M., Chhatwal,G.S. and Hammerschmidt,S. (2001) alpha-Enolase of Streptococcus pneumoniae is 
a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol., 40, 1273–1287.

15. Bergmann,S., Wild,D., Diekmann,O., Frank,R., Bracht,D., Chhatwal,G.S. and Hammerschmidt,S. (2003) Identification of 
a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiol., 
49, 411–423.

16. Bidossi,A., Mulas,L., Decorosi,F., Colomba,L., Ricci,S., Pozzi,G., Deutscher,J., Viti,C. and Oggioni,M.R. (2012) A 
functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. 
PLoS ONE, 7, e33320.

17. Buckwalter,C.M. and King,S.J. (2012) Pneumococcal carbohydrate transport: food for thought. Trends Microbiol., 20, 
517–522.

18. Aprianto,R., Slager,J., Holsappel,S. and Veening,J.-W. (2016) Time-resolved dual RNA-seq reveals extensive rewiring 
of lung epithelial and pneumococcal transcriptomes during early infection. Genome Biol., 17, 198.

19. Paixao,L., Oliveira,J., Veríssimo,A., Vinga,S., Lourenço,E.C., Ventura,M.R., Kjos,M., Veening,J.-W., Fernandes,V.E., 
Andrew,P.W., et al. (2015) Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key 
sugar in colonisation and infection. PloS One, 10, e0121042.

20. Wagner,G.P., Kin,K. and Lynch,V.J. (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is 
inconsistent among samples. Theory Biosci. Theor. Den Biowissenschaften, 131, 281–285.

21. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol., 15, 550.

22. McCarthy,D.J., Chen,Y. and Smyth,G.K. (2012) Differential expression analysis of multifactor RNA-seq experiments with 
respect to biological variation. Nucleic Acids Res., 40, 4288–4297.

23. Walsh,R.L. and Camilli,A. (2011) Streptococcus pneumoniae is desiccation tolerant and infectious upon rehydration. 
mBio, 2, e00092-11.

24. Man,W.H., de Steenhuijsen Piters,W.A.A. and Bogaert,D. (2017) The microbiota of the respiratory tract: gatekeeper to 
respiratory health. Nat. Rev. Microbiol., 15, 259–270.

25. Lymbery,A.J. (2015) Niche construction: evolutionary implications for parasites and hosts. Trends Parasitol., 31, 134–
141.

26. Kadioglu,A., Weiser,J.N., Paton,J.C. and Andrew,P.W. (2008) The role of Streptococcus pneumoniae virulence factors 
in host respiratory colonization and disease. Nat. Rev. Microbiol., 6, 288–301.

27. Veening,J.-W. and Blokesch,M. (2017) Interbacterial predation as a strategy for DNA acquisition in naturally competent 
bacteria. Nat. Rev. Microbiol., 15, 621–629.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/283739doi: bioRxiv preprint 

https://doi.org/10.1101/283739
http://creativecommons.org/licenses/by/4.0/


15

28. Prudhomme,M., Attaiech,L., Sanchez,G., Martin,B. and Claverys,J.-P. (2006) Antibiotic stress induces genetic 
transformability in the human pathogen Streptococcus pneumoniae. Science, 313, 89–92.

29. Slager,J., Kjos,M., Attaiech,L. and Veening,J.-W. (2014) Antibiotic-induced replication stress triggers bacterial 
competence by increasing gene dosage near the origin. Cell, 157, 395–406.

30. Stevens,K.E., Chang,D., Zwack,E.E. and Sebert,M.E. (2011) Competence in Streptococcus pneumoniae is regulated by 
the rate of ribosomal decoding errors. mBio, 2, e00071-11.

31. Dagkessamanskaia,A., Moscoso,M., Hénard,V., Guiral,S., Overweg,K., Reuter,M., Martin,B., Wells,J. and Claverys,J.-P. 
(2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers 
stationary phase autolysis of ciaR mutant cells. Mol. Microbiol., 51, 1071–1086.

32. Peterson,S.N., Sung,C.K., Cline,R., Desai,B.V., Snesrud,E.C., Luo,P., Walling,J., Li,H., Mintz,M., Tsegaye,G., et al. 
(2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA 
microarrays. Mol. Microbiol., 51, 1051–1070.

33. Selinger,D.W., Saxena,R.M., Cheung,K.J., Church,G.M. and Rosenow,C. (2003) Global RNA half-life analysis in 
Escherichia coli reveals positional patterns of transcript degradation. Genome Res., 13, 216–223.

34. Tettelin,H., Nelson,K.E., Paulsen,I.T., Eisen,J.A., Read,T.D., Peterson,S., Heidelberg,J., DeBoy,R.T., Haft,D.H., 
Dodson,R.J., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science, 
293, 498–506.

35. Kaliner,M., Shelhamer,J.H., Borson,B., Nadel,J., Patow,C. and Marom,Z. (1986) Human respiratory mucus. Am. Rev. 
Respir. Dis., 134, 612–621.

36. Ugwoke,M.I., Agu,R.U., Verbeke,N. and Kinget,R. (2005) Nasal mucoadhesive drug delivery: background, applications, 
trends and future perspectives. Adv. Drug Deliv. Rev., 57, 1640–1665.

37. Xia,B., Royall,J.A., Damera,G., Sachdev,G.P. and Cummings,R.D. (2005) Altered O-glycosylation and sulfation of airway 
mucins associated with cystic fibrosis. Glycobiology, 15, 747–775.

38. Krebs,H.A. (1950) Chemical composition of blood plasma and serum. Annu. Rev. Biochem., 19, 409–430.
39. Lindemann,J., Leiacker,R., Rettinger,G. and Keck,T. (2002) Nasal mucosal temperature during respiration. Clin. 

Otolaryngol. Allied Sci., 27, 135–139.
40. Lai,S.K., Wang,Y.-Y. and Hanes,J. (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal 

tissues. Adv. Drug Deliv. Rev., 61, 158–171.
41. Deisenhammer,F., Bartos,A., Egg,R., Gilhus,N.E., Giovannoni,G., Rauer,S., Sellebjerg,F. and EFNS Task Force (2006) 

Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol., 13, 913–922.
42. Weed,L.H. (1922) The cerebrospinal fluid. Physiol. Rev., 2, 171–203.
43. Marks,L.R., Parameswaran,G.I. and Hakansson,A.P. (2012) Pneumococcal interactions with epithelial cells are crucial 

for optimal biofilm formation and colonization in vitro and in vivo. Infect. Immun., 80, 2744–2760.
44. Creecy,J.P. and Conway,T. (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr. Opin. Microbiol., 23, 133–

140.
45. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and Smyth,G.K. (2015) limma powers differential expression 

analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
46. Dolan,E.D. (2001) NEOS Server 4.0 Administrative Guide. arXiv.
47. Liu,X., Gallay,C., Kjos,M., Domenech,A., Slager,J., van Kessel,S.P., Knoops,K., Sorg,R.A., Zhang,J. and Veening,J. 

(2017) High‐throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol. 
Syst. Biol., 13.

48. Lahens,N.F., Kavakli,I.H., Zhang,R., Hayer,K., Black,M.B., Dueck,H., Pizarro,A., Kim,J., Irizarry,R., Thomas,R.S., et al. 
(2014) IVT-seq reveals extreme bias in RNA sequencing. Genome Biol., 15, R86.

49. Krasny,L. and Gourse,R.L. (2004) An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA 
transcription regulation. EMBO J., 23, 4473–4483.

50. Couturier,E. and Rocha,E.P.C. (2006) Replication-associated gene dosage effects shape the genomes of fast-growing 
bacteria but only for transcription and translation genes. Mol. Microbiol., 59, 1506–1518.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/283739doi: bioRxiv preprint 

https://doi.org/10.1101/283739
http://creativecommons.org/licenses/by/4.0/


16

51. Slager,J. and Veening,J.-W. (2016) Hard-wired control of bacterial processes by chromosomal gene location. Trends 
Microbiol., 24, 788–800.

52. Soler-Bistué,A., Timmermans,M. and Mazel,D. (2017) The proximity of ribosomal protein genes to oriC enhances Vibrio 
cholerae fitness in the absence of multifork replication. mBio, 8, e00097-17.

53. Wen,Z., Liu,Y., Qu,F. and Zhang,J.-R. (2016) Allelic variation of the capsule promoter diversifies encapsulation and 
virulence In Streptococcus pneumoniae. Sci. Rep., 6.

54. Luo,P. and Morrison,D.A. (2003) Transient association of an alternative sigma factor, ComX, with RNA polymerase 
during the period of competence for genetic transformation in Streptococcus pneumoniae. J. Bacteriol., 185, 349–358.

55. Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC 
Bioinformatics, 9, 559.

56. Langfelder,P. and Horvath,S. (2012) Fast R Functions for Robust Correlations and Hierarchical Clustering. J. Stat. 
Softw., 46.

57. Gomez-Mejia,A., Gamez,G. and Hammerschmidt,S. (2017) Streptococcus pneumoniae two-component regulatory 
systems: The interplay of the pneumococcus with its environment. Int. J. Med. Microbiol., 10.1016/j.ijmm.2017.11.012.

58. Havarstein,L.S., Hakenbeck,R. and Gaustad,P. (1997) Natural competence in the genus Streptococcus: evidence that 
streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol., 179, 6589–6594.

59. Moreno-Gamez,S., Sorg,R.A., Domenech,A., Kjos,M., Weissing,F.J., van Doorn,G.S. and Veening,J.-W. (2017) Quorum 
sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun., 
8, 854.

60. Aggarwal,S.D., Eutsey,R., West-Roberts,J., Domenech,A., Xu,W., Abdullah,I.T., Mitchell,A.P., Veening,J.-W., Yesilkaya,H. 
and Hiller,N.L. (2018) The Streptococcus pneumoniae competence-induced BriC peptide promotes nasopharyngeal 
colonization and impacts biofilm development. bioRxiv, 10.1101/245902.

61. Bonner,E.R., D’Elia,J.N., Billips,B.K. and Switzer,R.L. (2001) Molecular recognition of pyr mRNA by the Bacillus subtilis 
attenuation regulatory protein PyrR. Nucleic Acids Res., 29, 4851–4865.

62. Martinussen,J., Schallert,J., Andersen,B. and Hammer,K. (2001) The pyrimidine operon pyrRPB-carA from Lactococcus 
lactis. J. Bacteriol., 183, 2785–2794.

63. Michna,R.H., Zhu,B., Mäder,U. and Stülke,J. (2016) SubtiWiki 2.0 - an integrated database for the model organism 
Bacillus subtilis. Nucleic Acids Res., 44, D654-662.

64. Nicolas,P., Mäder,U., Dervyn,E., Rochat,T., Leduc,A., Pigeonneau,N., Bidnenko,E., Marchadier,E., Hoebeke,M., 
Aymerich,S., et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus 
subtilis. Science, 335, 1103–1106.

65. Gopal,T., Nagarajan,V. and Elasri,M.O. (2015) SATRAT: Staphylococcus aureus transcript regulatory network analysis 
tool. PeerJ, 3.

66. Chang,X., Li,Y., Ping,J., Xing,X.-B., Sun,H., Jia,P., Wang,C., Li,Y.-Y. and Li,Y.-X. (2011) EcoBrowser: a web-based tool 
for visualizing transcriptome data of Escherichia coli. BMC Res. Notes, 4, 405.

67. Ishii,N., Nakahigashi,K., Baba,T., Robert,M., Soga,T., Kanai,A., Hirasawa,T., Naba,M., Hirai,K., Hoque,A., et al. (2007) 
Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science, 316, 593–597.

68. Kroger,C., Colgan,A., Srikumar,S., Händler,K., Sivasankaran,S.K., Hammarlöf,D.L., Canals,R., Grissom,J.E., 
Conway,T., Hokamp,K., et al. (2013) An infection-relevant transcriptomic compendium for Salmonella enterica Serovar 
Typhimurium. Cell Host Microbe, 14, 683–695.

69. Kroger,C., Dillon,S.C., Cameron,A.D.S., Papenfort,K., Sivasankaran,S.K., Hokamp,K., Chao,Y., Sittka,A., Hébrard,M., 
Händler,K., et al. (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. 
Proc. Natl. Acad. Sci. U. S. A., 109, E1277-1286.

70. Sharma,C.M., Hoffmann,S., Darfeuille,F., Reignier,J., Findeiß,S., Sittka,A., Chabas,S., Reiche,K., Hackermüller,J., 
Reinhardt,R., et al. (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature, 464, 
250–255.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/283739doi: bioRxiv preprint 

https://doi.org/10.1101/283739
http://creativecommons.org/licenses/by/4.0/


17

71. Toledo-Arana,A., Dussurget,O., Nikitas,G., Sesto,N., Guet-Revillet,H., Balestrino,D., Loh,E., Gripenland,J., Tiensuu,T., 
Vaitkevicius,K., et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature, 459, 950–
956.

72. Ogunniyi,A.D., Mahdi,L.K., Trappetti,C., Verhoeven,N., Mermans,D., Van der Hoek,M.B., Plumptre,C.D. and Paton,J.C. 
(2012) Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo 
transcriptomic analysis. Infect. Immun., 80, 3268–3278.

73. Shafeeq,S., Kuipers,O.P. and Kloosterman,T.G. (2013) The role of zinc in the interplay between pathogenic streptococci 
and their hosts. Mol. Microbiol., 88, 1047–1057.

74. Lysenko,E.S., Lijek,R.S., Brown,S.P. and Weiser,J.N. (2010) Within-host competition drives selection for the capsule 
virulence determinant of Streptococcus pneumoniae. Curr. Biol., 20, 1222–1226.

75. Siegel,S.J., Roche,A.M. and Weiser,J.N. (2014) Influenza promotes pneumococcal growth during coinfection by 
providing host sialylated substrates as a nutrient source. Cell Host Microbe, 16, 55–67.

76. Wolf,T., Kämmer,P., Brunke,S. and Linde,J. (2017) Two’s company: studying interspecies relationships with dual RNA-
seq. Curr. Opin. Microbiol., 42, 7–12.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/283739doi: bioRxiv preprint 

https://doi.org/10.1101/283739
http://creativecommons.org/licenses/by/4.0/

