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Abstract

[S=Y

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million
people worldwide with no effective treatment available. Development of AD follows a distinctive
pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen both the spatial
scope of the study of AD and prioritise the study of human brains. Here we show that functionally
distinct human brain regions show varying and region-specific changes in protein expression. These
changes provide novel insights into the progression of disease, novel AD-related pathways, the
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presence of a ‘gradient’ of protein expression change from less to more affected regions, and the

9 presence of a ‘protective’ protein expression profile in the cerebellum. This spatial proteomics
10 analysis provides a framework which can underpin current research and opens new avenues of interest
11  to enhance our understanding of molecular pathophysiology of AD, provides new targets for

12 intervention and broadens the conceptual frameworks for future AD research.
13
14
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Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive
dementi&®. Accumulation of A& peptide and microtubule-associated protein tau, which exhibits
hyperphosphorylation, and oxidative modifications into so-called ‘plaques’ and ‘tangles’ are
considered to be central to the pathology of®ADther prominent features of AD include early
region-specific decline in glucose utilisation and mitochondrial dysfunction and consequently
depleted ATP production and increased reactive oxygen species production in ‘heurons
Excitotoxicity in the AD brain arising from altered glutamatergic signallimgd dysregulation in

other neurotransmitters has also been documented, including abnormalities of adrenergic, serotonergic
and dopaminergic neurotransmissSioin response to pathological stimuli associated with AD,
inflammatory events mediated through both innate and cell-mediated immune mechanisms are also

present

Despite an increase in research into the underlying pathology of AD over the last decade, there
remains controversy around what underpins this disease process, which in turn affects the pipeline of
new disease modifying agents. There remains a lack of detailed mechanistic knowledge about what
happens in the human brain in AD. This is exacerbated by the fact that different brain regions develop
pathology at different times in the disease process, adding a spatial element to the disease which is not
captured by work in cell culture models and is often overlooked in human studies, which tend to focus
on single regions. Animal models also fail to capture the full disease process, at either the behavioral
or biochemical levels such that translation of both basic biological findings and/or the activity of
potential disease-modifying interventions from animals into humans is relatively unsuccessful. While
there have been several studies which have focused on the transcriptome in human AD, there is a
wealth of evidence that suggests many protein expression changes in biological systems can occur
independently of transcript-level regulation, and that studying the proteome can prove new insights on

the regulation of functionally active molecules in a given biological or diseas® state

Mass spectrometry based proteomics has been recognised as a powerful tool with the potential to
uncover detailed changes in protein expressido date, however, there are few studies of protein
expression in AD carried out using human brain tissue, and those that exist typically examine a single
AD affected brain regidfi*!, and use different patient cohorts and analytical methods that makes
between-region comparisons difficult. Such studies also frequently use either small numbers of
samples (n<4) or cohorts poorly matched for age or tigssemortendelay®*** This study aims to
overcome some of these existing limitations by providing a spatially-resolved analysis of protein
expression in six regions of human control and AD-affected brain in well matchedpa$tentortem

delay tissue.
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Results

=

In this study, we analysed six functionally distinct regions of hupast-mortenbrain; hippocampus

(HP), entorhinal cortex (ENT), cingulate gyrus (CG), sensory cortex (SCx), motor cortex (MCx), and
cerebellum (CB), by mass spectrometry to gain a more comprehensive understanding of protein
expression changes within the AD brain. These regions were selected to represent parts of the brain
known to be heavily affected (HP, ENT, CG), lightly affected (SCx, MCx) and relatively ‘spared’

(CB) during the disease process. Donors were well matched for agesinortendelay times
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were short, with no significant difference between cases and control. Donor data is provided in
9  Supplementary Table 1. Relative protein expression was determined using an isobaric tagging
10  approach followed by 2-dimensional liquid chromatography and mass spectrometry. Peptide-level
11  data were then analysed using a Bayesian model that infers a posterior probability distribution for the
12  relative levels of each protein between ‘cases’ and ‘controls’ based on the underlying relative peptide
13 levels. To promote sharing and usage of these data, we have developed a searchable web interface that

14  hosts all of our resultsvivw.manchester.ac.uk/dementia-proteomes-proglescribed in

15  Supplementary Information), which also includes Bayesian probability distributions for each protein
16  across all individual brains examined in this study. The complete workflow is illustrated in Figure 1.
17  The complete processed data for each region (at protein identification FDR <1%) can be found in
18 Supplementary Table 2. Raw mass spectral data can be accessed via PRIDE, with initial search
19  outputs prior to Bayesian modelling available via the Open Science Framework at DOI

20  10.17605/0SF.10/6BXJQ (Supplementary methods).
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Figure 1. Proteomics workflow.Selected brain regions were pre-dissected prior to storage at -80°C until
analysis. Each region was lysed, and protein assigned to an iTRAQ 8plex. Following digestion and labelling,
samples were pooled, peptides fractionated by High-pH reverse phase chromatography and fractions analysed
by standard LC-MS/MS methods. Peptides were identified and quantified based on their iTRAQ reporter area;
relative protein quantification was inferred from these values using a Bayesian model. All data are deposited in

a searchable online database.

Each brain region was analysed in isolation, adding strength to our comparison of protein expression
changes across multiple regions, since these were identified and quantified independently. Combining
all protein identifications (at 1% false discovery rate) across the six experiments yielded a total of
5,825 unique protein identifications across all regions. In our data, 990 proteins were quantified with
only one or two spectra in any single region, and were subsequently omitted from our downstream
cross-regional comparison in order to retain the proteins with the most precise quantification —
optimisation data suggests that when the same sample is split and processed independently, >99% of
proteins are defined as not being significantly different above this threshold (data not shown).
However, many of these will be quantified correctly (we have previously validated expression
changes based on a single spectrum, e.g. gj3and as such these data have been included in
Supplementary Table 2 and our online database. We thus quantified a total of 4,835 distinct proteins
in at least one brain region, among which 3,302 proteins were common to at least three regions, and
1,899 to all six regions (Fig. 2a). These data allow us to a) define protein changes as a result of AD in
any given region of the human brain being studied, and b) identify differences in how distinct brain
regions are affected in AD, and by extension protein changes which occur in multiple regions of the
AD brain.
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Figure 2. Summary of protein expression dataa) 5,825 proteins were identified, with 990 quaatifwith

only one or two spectra and which were thus omitted from our primary comparative analysis. The remaining
4,835 proteins are classified as to whether they were quantified in six or fewer distinct regions. b) Proportion of
identified, quantified proteins showing a change in expression in AD in each of the six regions under study. c)
Heat map and dendrogram showing the relationship between protein expression in each region mapped using
proteins present in all six regions, with three distinct ‘groups’ based on highly affected (HP, ENT, CG),
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moderate (MCx, SCx) and spared (CB) clearly visible. d) Edwards-Venn diagram showing the overlap of

o]

protein expression changes between brain regions, including only proteins quantified in all regions. e) Isometric
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mapping (Isomap) representation of protein expression data between brain regions showing a broadly linear

-
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relationship from non-affected towards affected regions, with the exception of cerebellum, which shows distinct
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patterns of protein expression in AD.
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Comparison of the total number of proteins whose expression is altered in each region reveals,
perhaps unsurprisingly, that the more severely affected areas in AD (HP, ENT, CG) show the largest
number of changes in protein expression (~30% of quantified proteins), while less affected regions
(MCx, SCx) have fewer changes (11-13%). Strikingly, the CB, which many think to be pathologically
‘unaffected’, shows a substantial number of protein changes (20%; Fig. 2b). This observation
accurately recapitulates data from our previous study of the metabolome on these brain‘samples
Unsupervised hierarchical clustering of protein expression changes from all six regions demonstrates
that the changes observed in CB are distinct from those seen in the affected HP, CG and ENT (Fig.2c).
This is supported by an Edwards-Venn representation of the data which shows that 120/403 (29.8%)
of changes in CB are not seen elsewhere (Fig.2d; Supplementary Table 3). While it has long been
reported that the CB in AD can contain amyloid pladésis considered to be relatively ‘spared’ in

AD. There is a lack of neurofibrillary tangles in cerebeffjrand this region does not appear to
develop significant neuronal loss, such that this region is often used as a control in imaging studies of
the AD brai’*® However, recent work by Guai al. suggests a distinct pattern of cerebellar atrophy,
which spreads from intrinsic connectivity networks within the cerebtuand alterations in
cerebellar glucose metabolism have been reported in late stages of thedis@@sedata strongly
suggest that the CB is heavily affected by AD at the molecular level, at least in late stage disease, and
is so to a greater extent than other regions associated with later degeneration such as MCx or SCx,
where protein changes were fewer and encompass those seen in the more severely affected regions.
That the changes in CB are different from those seen elsewhere in the brain raises the possibility that,
rather than being ‘spared’, the CB is affected in a different way to other brain regions and that, given
it shows little pathology, these changes may reflect some level of active protection.

Hereinafter, we refer to HP, ENT and CG as the severely affected, and MCx and SCx as the less
affected regions based on the number of significantly altered proteins and pathways observed within

this study.

Unsupervised clustering of brain regions based on their protein expression, by performing a
dimensionality reduction on these data using isomeric feature mapping (Isomap), clearly shows this
hypothesized ‘evolution’ of the disease from the least affected cortical regions to the most affected,
with cerebellum following a distinct pathway from the inception of disease (Figure 2e). This non-
linear approach has been shown to be an improvement over the more standard PCA approach for
analysis of gene and signalling netwdfkdhese data also further support our previous observation

that CB stands out as a single, uniquely affected brain region based on the distinctive patterns of
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changes found here while the other regions line up along the same vector in accordance with disease
severity. Previous studies using gene co-expression networks and transcriptomics analysis have
demonstrated a pattern where the molecular signatures in less-affected areas of the brain overlap with
but are less marked than the grossly affected areas, and have implied that these overlapping changes
represent those which occur early in AD-related neurodegenéfai@ur data at the protein level

would support this conclusion - the less affected regions (MCx and SCx) contain very few protein
changes which are not seen elsewhere, and a clustering analysis suggests that these regions are simply
at an earlier stage down a similar pathway. Therefore, our data shows that by comparing more and
less affected brain regions in a multi-regional approach we can observe different stages of the same
disease process, enabling identification of early molecular changes, even in patients with late-stage

disease.

To probe the differences in AD-related protein expression between brain regions in more mechanistic
detail, we performed a pathway enrichment analysis for all differentially expressed proteins for each
region. Such analyses enable us to visualise which processes are affected in the AD brain, and also
whether two (or more) regions are showing dysregulation in the same pathway even if different
subsets of proteins are identified as ‘changing’. These data are summarised in Figs 3a-f (and

Supplementary Table 4).

Reflecting the individual protein expression data, HP and CG showed the highest number of
biological pathways being affected by AD. The changes in specific molecular pathways were
comparable between HP, ENT, and CG. CB, on the other hand, showed altered regulation of a set of
molecular pathways with limited overlap with those affected in the other five brain regions, again

arguing for the presence of a distinct cellular response to disease in this region.

One of the most consistent features across all brain regions was a significant change in proteins and
pathways involved with the innate immune response. In AD, aggregatef chrtrigger both
pathogen-associated and initiate immune responses, and a persisting elevafomay elicit a

chronic reaction of the innate immune systerin this study, we observed strong evidence for the
global activation of the innate immune response, including of the acute-phase response, the
complement system (classical and alternative pathways) and the coagulation system, consistent with
widespread neuroinflammation, suggesting that this may be a relatively early (prior to atrophy) event
in pathogenesis. Previous studies have also implicated complement family proteins as potential AD
biomarker$’, and GWAS studies have identified AD risk loci in a number of complement pathway
gene&™?, It is worthy of note that these studies do not directly inform on the activation state of the
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complement pathway, and indeed in our study we see upgregulation of SerpinG1, which inhibits
complement C4 cleavage by C1 and MASP2, as well as increased levels of C4, C3 and various
regulators in AD. While it is highly likely that dysregulation of this pathway plays a role in AD, the
precise nature of this role remains to be determined. Overall, HP, ENT and CG showed substantive
evidence for a broader spectrum of changes in immune responses compared to MCx, SCx and CB.
These included specific cellular pathways including granulocyte adhesion and dendritic cell
maturation (Fig. 3a—f, Supplementary Data Table 4 and 5), implying that the innate immune system
becomes activated early, and that the adaptive immune response plays a role later in the disease
process. However the interplay between these two systems is complex and it is yet to be determined if

these changes are a cause, or a consequence of other aspects of AD patfiogenesis

This pathway-level analysis also identified signaling pathways involved in apoptosis and cell cycle
regulation as being widely dysregulated in severely affected regions of AD brain, including the
HIPPO, ERK/MAPK, PI3K/AKT, and Wnf-catenin pathways (Fig.3a, b, d), all known to be
critically involved in regulation of apoptosis and the cell cycle. Reduced abundance of proteins
involved in Polo-Like Kinase signaling and G2/M DNA Damage Checkpoint Regulation are likely a
cause of impaired cell cycle regulation, marking these pathways out as potentially key contributors to
neuronal cell death in AD. Strikingly, less affected regions SCx and MCx do not show large changes
in these pathways (Fig.3e, f), reflecting reduced levels of apoptosis seen in these areas. The only
exceptions are the G2/M checkpoint and the Hippo pathway, whose members are significantly
decreased in these regions, suggesting that inactivation of this key developmental pathway, possibly
via the observed upregulation of CB%4or altered regulation of associated proteins such as the
synaptic scaffolding proteins DLG2, DLG3, and DLG4, all of which are downregulated, is an early
event in AD development. In CB, only granzyme A signaling was identified as an apoptosis-related

pathway, indicative of fewer cell death signals in this region.
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We also observed both global and regional metabolic impairments in the AD brain. Defects in brain
metabolism and energetics are central to the pathogenesis of AD as evidence by epidemiological,
neuropathological, and functional neuroimaging stddli€khe AD brain characteristically exhibits
defective cerebral perfusitiand glucose uptak® which is believed to underlie hypometabolism and
cognitive declin&. Alterations in pathways of monosaccharide/glucose metabolism are highly
significant in severely affected brain regions and CB (Fig.3a — f, Supplementary Data Table 4),
consistent with our previous finding of elevated free glucose levels in AD*brai@A enzyme
abundance was generally decreased in all regions of AD brain, going some way to explaining the
previously observed shift from primarily aerobic glycolysis (i.e. glycolysis followed by complete
oxidation in mitochondria) to the ketogenic/fatty acpdoxidation pathway, with impaired
mitochondrial bioenergetits Severely affected brain regions also showed substantial alterations in
signals related to altered regulation of neurotransmitters/hormones (noradrenaline/adrenaline,
dopamine, and aldosterone) that were not observed in less affected regions. While this might suggest
that altered neurotransmitter biology is a late or downstream process in pathogenesis, it is notable that
the enzymes in a key upstream pathway of neurotransmitter production which results in the
production of tetrahydrobiopterin (BH4), a precursor of dopamine, noradrenaline and serotonin, is
significantly upregulated in all regions studied. Previous work has suggested a decrease in BH4 levels
in AD brair™ and the observations at the protein level may reflect a feedback loop where the cell is
responding to decreased BH4. The presence of this dysregulation early in disease suggests it is a

target which deserves closer attention.

While comparison of affected regions yields a range of interesting and novel observations about the
molecular underpinning of AD, the presence of a large number of changes in ‘unaffected’ cerebellum
provides a surprising finding, even more so when one observes that these changes are distinct from
those manifest elsewhere. To investigate this population of protein changes further, we analysed
proteins uniquely affected in CB using both DAVID and STRING. These analyses supported our
earlier global pathway analysis in demonstrating that CB additionally showed alteration in
Semaphorin and ciliary neurotrophic factor (CNTF) pathway members which play important roles in
neuronal survival and neurodevelopment/neuronal regeneration (Fig.3c and Fig.4a, b). SEMA7A,
shown here to be upregulated in CB of AD brains, is known to be involved in repair of the glial scar
following spinal cord injury and to play a role in the development of multiple sclerosis, but has not
previously been linked to the disease process i’ ADB also showed a significant reduction in
levels of both nuclear and mitochondrial aminoacyl-tRNA synthetases. In CB, significantly depleted
aminoacyl tRNA synthetases, including those encoded in the mitochondrial genome as well as those
from the nuclear genome (Fig.3c and Supplementary Data Table 3), could disrupt translational

fidelity, leading to accumulation of misfolded protéfagiowever, these proteins are multifunctional.
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For example, Ishimureet al. have shown that misregulated tRNA processing can lead to
neurodegeneratidh and tRNA synthetases have also been shown to be mediators of inflammation
““thus downregulating these proteins may confer some level of protection. This finding could also
provide a supportive mechanism for the hypothesis that ribosomal dysfunction is an early event in
AD*. Taken together with its known roles in inflammation and signaling, and in several other
neurodegenerative disord&sour data suggest that the role of tRNA synthetases in Alzheimer's

disease is worthy of significant further investigation.

One of the most distinct changes observed in this CB-specific analysis was that a much greater
number of proteins of electron transport chain (ETC) complex 1 were consistently more reduced in
abundance (Fig.4b, ¢ Supplementary Data Table 5) than was found in other areas. Furthermore, CB
showed increases in oxidative defense proteins involved in glutathione redox reactions and ascorbate
recycling (Fig.3c). These data provide strong additional evidence for a protective mechanism in CB
that decreases ROS-production by ETC while simultaneously increasing ROS defenses. Another
interesting observation in CB was the activation of a Purine Ribonucleosides Degradation pathway,
which could not only contribute substrate to the pentose phosphate pathway, but also participate in
guanine/guanosine production in this brain region. Combined with the observed activation of Guanine
and Guanosine Salvage | pathway, and an increase in guanosine level in CB as previously reported by
our metabolomics analysfs these changes may also confer a previously unknown neuroprotective

effect in this brain regidi

Pathway ID Pathway description FDR

@® GO0:0006120 mitochondrial electron transport, 3.31e-06
NADH to ubiquinone

@ G0:0007399 nervous system development 6.94e-06
G0:0031175 neuron projection development 7.66e-06

Figure 4. CB-specific biological processes in AD braima) 120 proteins that showed CB-specific

alterations were enriched for molecular processes in STRING using default setting. Each node
represents a protein, and proteins involved in b) significantly enriched pathways were highlighted. c)
Dysregulation of the mitochondrial electron transport chain was highlighted by pathway analysis, and
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proteins affected mapped (red star) into the NADH dehydrogenase complex in KEGG oxidative
phosphorylation map.

It is well established that CB does not display extensive apoptotic activation seen elsewhere in the
brain in Alzheimer’s disease, which is unsurprising given its structurally unaffected status. Our
findings indicate that the lack of significant neurodegeneration in this region is not merely due to the
absence of an apoptotic signal (e.g. Tau tangles) but instead that CB actively induces a unique pattern
of upregulated neuronal survival pathways alongside protection against oxidative and inflammatory
damage; a protective mechanism of gene/protein expression which limits disease-related degeneration

in this region.

Given the apparently similarity in protein expression which we seen wining each group (severely
affected and less affected), we next attempt to identify key regulators of what appears to be a
coordinated alteration in protein expression across the brain in response to AD. We performed a
correlation network analysis to identify key nodes which may be responsible for the programme of
protein expression observed, using the Cytoscape ModuLand pfugFire resulting correlation
network is shown in Figure 5a. Each cluster is coloured differently according to a distinct meta-node,
the key regulators of which can be determined by visualizing higher levels of this hierarchy (Fig. 5b).
Using this method, we can identify the most influential genes in this correlation network which we
hypothesize to be key regulators of protein expression during the pathogenesis of AD. It is noteworthy
that in this correlation matrix we are aiming to correlate what we believe to be two distinct processes
— AD pathogenesis (seen in HP, ENT, CG, MCx and SCx) and a protective programme that we
observe in CB. By overlaying protein expression data onto this network, we can identify which nodes
are associated with which process. This overlay (Fig. 5¢c-h) clearly demonstrates that the correlation
network is mainly constructed from proteins involved in AD pathogenesis in the affected regions —
few proteins in the network are changed in CB despite the relatively large number of CB proteins
which we observe to be changed in the complete dataset. This is to be expected as CB-specific protein
changes have limited correlation to the remainder of the dataset. This network is therefore likely to
provide a good representation of the key events in AD pathogenesis, and reveals four proteins with the
most overall influence on the correlated expression networks: STXBP1 (syntaxin binding protein 1);
CRMP1, (collapsin response-mediator protein 1); ACTR10, (actin-related protein 10 homologue); and
AMPH (amphiphysin).

STXBP1 is the regulator with the most influence in this network. It is reportedly upregulated’n AD
has been linked to NFf%sand may interact with P&1 It also plays a major role in neurotransmitter
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1  release. STXBPL1 thus provides a potential mechanistic explanation for our observation that pathways
2 of neurotransmitter metabolism including dopamine-, noradrenaline-, and serotonin-related signalling
3  showed significant changes in severely affected regions and SCx, but not in MCx or CB. Another
4  important regulator of the network, CRMP1, is part of the semaphorin signalling pathway which is
5 known to guide axons in developing nervous tissue and participates in shaping of neurat’circuits
6 ACTR10 may affect prion susceptibility through its involvement in prion propagation and clédrance
7 and has been identified by large scale computational network analyses as one of a large number of
8 potentially important genes in hippocampal ageing, but our finding is novel i Abe 4" key
9 network regulator identified here, AMPHs a candidate AD risk gene that may participate in
10 receptor-mediated endocytosis and hence be involved in APP metabolism/cféa@uocdinding
11  that these four genes appear to be central to various pathological processes known to be involved in
12 AD development is important, and suggests that further work should be performed to focus on the role
13  of these potentially key mediators of Alzheimer’s disease progession.
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Figure 5. Global networks analysiswas performed using Cytoscape ModulLand plug-in. a)
Correlation network of altered proteins in AD brain, with differently coloured clusters representing
different meta-nodes b) key regulators of each meta-node c-h) Overlays of protein expression data

from each region and the correlation network.

Since one of the key factors in AD pathogenesis is thought to be the build-up of amyloid consisting of
AP peptide generated as a proteolytic product of the Amyloid precursor protein (APP) we examined
our data for information about the levels and distribution of these molecules. We found no marked
change in APP levels overall but significantly elevatgdp&ptide levels (Supplementary Figure 2a-

b), consistent with previous repdftsThe extent of the increase i Aetween regions does not
appear to follow a gradient of ‘affectedness’, albeit there may be a more pronounced increase in
hippocampus. There is no way to determine the primary structure ofithepiide(s) present in each
region from these data. Interestingly, while in the AD group almost all samples showed uniformly
high levels of A peptide, there was marked variation in levels in control samples (Supplementary
Figure 2c). While the quantification offfAis necessarily from one peptide, these data emanate from
between 5 and 12 unique spectra in each sample we consider this observation is likely robust. This
variability is therefore likely to be due to inherent variations in the control population. Although all
patients in this group were asymptomatic, it is likely that varying degrees of prodromal disease could
have been present, given their age. This is most noticeable in our control 115. While initially
assigned as a control, a pathological re-examination performed as a result of the findings of this study
and our previous metabolomics analy$es-classified this individual as a Braak Il pre-clinical AD
patient. This patient has the highest level gfdk all of the control samples and interestingly appears

to demonstrate some AD-related changes both in their metabolome and in some of the proteins which
we observe to be changed in symptomatic disease. This observation supports the idea that increases in
AB levels may reflect varying degrees of prodromal disease in these elderly controls. It also
demonstrates that studies of the type performed here in earlier stage presymptomatic patients will be

critical to further tease out the very earliest events in AD pathogenesis.

In summary, this study provides a map of molecular changes that are present irnpbatraortem

brain tissue in patients with AD and matched controls, providing insights into the brain region
specificity of disease at two levels; individual proteins and pathways. We observed global
perturbation of protein expression in all six regions of the AD brain which we studied. An association
between extent of molecular changes and affectedness was observed for five regions, allowing us to
delineate probably ‘early’ and ‘late’ changes in protein expression and revealing previously novel
involvement of several pathways and processes. The sixth region, CB, showed an unexpectedly
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distinct pattern of protein changes, suggestive of induction of a protective response. Correlation
network analysis identified four candidate genes STXBP1, CRMP1, ACTR10, and AMPH which may
underpin significant portions of the protein expression response to AD. Finally, we recognize that
these data have significant value to the community and that other researchers will no doubt wish to
assess the status of other AD-related changes not discussed here. As such we have provided all results
in an accessible format via a freely-available, searchable on-line database, to allow others to probe
specific pathways or individual proteins and their expression in regions across the human Alzheimer’'s

disease brain and matched controls.
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