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Abstract 
As experiments to interrogate circadian rhythms increase in scale and complexity, methods to 
analyze the resulting data must keep pace. Although methods to detect rhythmicity in 
genome-scale data are well established, methods to detect changes in rhythmicity or in average 
expression between experimental conditions are often ad hoc. Here we present LimoRhyde 
(linear models for rhythmicity, design), a flexible approach for analyzing transcriptome data from 
circadian systems. Borrowing from cosinor regression, LimoRhyde decomposes circadian or 
zeitgeber time into multiple components, in order to fit a linear model to the expression of each 
gene. The linear model can accommodate any number of additional experimental variables, 
whether discrete or continuous, making it straightforward to detect differential rhythmicity and 
differential expression using state-of-the-art methods for analyzing microarray and RNA-seq 
data. In this approach, differential rhythmicity corresponds to a statistical interaction between an 
experimental variable and circadian time, whereas differential expression corresponds to the 
main effect of an experimental variable while accounting for circadian time. To demonstrate 
LimoRhyde's versatility, we applied it to murine and human circadian transcriptome datasets 
acquired under various experimental designs. Our results show how LimoRhyde systematizes 
the analysis of such data, and suggest that LimoRhyde could become a valuable approach for 
assessing how circadian systems respond to genetic and environmental perturbations. 

Introduction 
In diverse species from cyanobacteria to plants to mammals, circadian clocks drive rhythms in 
gene expression throughout the genome ​(Covington et al., 2008; Liu et al., 1995; Panda et al., 
2002)​. Accordingly, transcriptome measurements have revealed circadian clocks’ influence on 
physiology, as well as potential applications for circadian medicine ​(Anafi et al., 2017; Hughey, 
2017; Laing et al., 2017; Mure et al., 2018; Zhang et al., 2014)​. Transcriptome measurements 
are also beginning to reveal how circadian systems are affected by factors such as diet, 
infection, and cancer ​(Haspel et al., 2014; Masri et al., 2016; Tognini et al., 2017)​. The resulting 
datasets thus include samples not just from multiple time-points, but also from multiple 
conditions. 
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A common step in analyzing circadian or otherwise rhythmic transcriptome data is identifying 
which genes show evidence of rhythmic expression. This step can now be accomplished by 
various computational methods, including JTK_CYCLE and RAIN ​(Hughes et al., 2010; 
Hutchison et al., 2015; Thaben and Westermark, 2014)​. Importantly, though, these methods are 
only designed to detect rhythmic features (e.g., genes) based on samples from one condition. 
They are not designed to detect which features show a difference in rhythmicity between 
conditions (e.g., by comparing lists of rhythmic genes from each condition), and using them as 
such can lead to a high rate of false positives and false negatives ​(Thaben and Westermark, 
2016)​. Indeed, the lack of a standard approach to analyze omics data from multiple conditions 
was highlighted in the recent guidelines for genome-scale analysis of biological rhythms 
(Hughes et al., 2017)​. 
 
A classic approach for rhythm detection is cosinor regression (or harmonic regression), which is 
based on fitting a time series to the first harmonic of a Fourier series, i.e., sine and cosine 
curves of a set period ​(Cornelissen, 2014; Nelson et al., 1979)​. Because cosinor regression 
corresponds to a linear model, coefficients for even complex time series can be estimated 
efficiently using least squares. Inspired by cosinor regression, Thaben and Westermark recently 
made a significant advance in the statistically rigorous analysis of rhythmic transcriptome data 
from multiple conditions ​(Thaben and Westermark, 2016)​. Their method, called DODR, detects 
changes in rhythm amplitude, phase, and signal-to-noise ratio, which they call “differential 
rhythmicity.” DODR is relatively narrow in scope, though, as it is only designed to detect 
differential rhythmicity between two conditions. DODR cannot detect changes in average 
expression level between conditions, and cannot handle more complex experimental designs 
(e.g., with continuous variables such as age). 
 
In addition to being a fundamental part of cosinor regression, linear models are one of two 
features shared by nearly all state-of-the-art methods for assessing differential expression in 
transcriptome data. The second is called empirical Bayes. While linear models provide the 
ability to handle complex experimental designs, empirical Bayes shares information across 
genes in order to make more stable estimates of gene-wise variance and thereby improve 
statistical power and accuracy (Smyth, 2004). These methods can also appropriately deal with 
read counts from RNA-seq ​(Soneson and Delorenzi, 2013)​. Despite these methods' flexibility 
and widespread success, their application to circadian transcriptome data has been relatively 
limited ​(Hsu and Harmer, 2012; Montagner et al., 2016; Pembroke et al., 2015; Spörl et al., 
2012)​. To our knowledge, there has been no unification of cosinor-based approaches with these 
state-of-the-art tools for differential expression. 
 
We sought to develop a general approach to systematically analyze circadian transcriptome 
data from various experimental designs. Our approach, which we call LimoRhyde (linear models 
for rhythmicity, design), builds on cosinor regression to express complex circadian experiments 
in terms of a linear model, which makes circadian transcriptome data amenable to analysis by 
existing tools for differential expression. We validated our approach in the two-condition 
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scenario by comparing it to DODR on six datasets from mice. To explore LimoRhyde’s flexibility, 
we then applied it to two datasets from humans. Our results suggest that LimoRhyde offers a 
valuable framework for assessing how rhythmic biological systems respond to genetic and 
environmental perturbations. 

Materials and Methods 
All data and code to reproduce this study are available at 
https://figshare.com/s/31dcb1346ef7f4268aa6. The LimoRhyde R package is available at 
https://github.com/hugheylab/limorhyde. 

Processing the gene expression data 
For the RNA-seq datasets (GSE73552 and E-MTAB-3428), we downloaded the raw reads, then 
quantified gene-level abundances (based on Ensembl Gene IDs) in units of transcripts per 
million (TPM) using salmon v0.8.2 and tximport v1.6.0 ​(Patro et al., 2017; Soneson et al., 2015)​. 
We kept for analysis only those genes having TPM ≥ 0.5 in at least half the samples. For all 
analyses and plots, we converted expression values to log ​2​(TPM+1). For the microarray 
datasets, we downloaded the raw (Affymetrix) or processed (Agilent or Illumina) expression data 
from NCBI GEO, then used metapredict v0.0.0.9019 for mapping probes to Entrez Gene IDs, 
intra-study normalization, and log-transformation ​(Hughey and Butte, 2015)​. Details of all 
datasets are in Suppl. Table S1. 

Detecting rhythmic, differentially rhythmic, and differentially expressed 
genes using LimoRhyde and limma 
To make circadian transcriptome data amenable to analysis using linear models, LimoRhyde 
follows the strategy of cosinor regression, decomposing zeitgeber or circadian time into a sine 
and cosine of period 24 h. Although this decomposition is the simplest, one could also 
decompose time based on multiple harmonics of the Fourier series or on periodic splines. Thus 
a single variable becomes at least two variables in the linear model. For data derived from 
several cycles in constant conditions, one could also include a linear time (e.g., time in free-run) 
to control for drift. Additional terms for condition, subject, or other covariates can be included as 
appropriate. In this approach, differential rhythmicity corresponds to a statistical interaction 
between the experimental factor of interest (e.g., genotype) and each term related to 
zeitgeber/circadian time. Differential expression, meanwhile, corresponds to the main effect of 
the experimental factor of interest. 
 
After constructing the linear model, the transcriptome data can be analyzed using multiple 
existing methods based on linear models and empirical Bayes. In this paper, we used limma 
v3.34.9 ​(Ritchie et al., 2015; Smyth, 2004)​. For all datasets (microarray and RNA-seq), we used 
limma with largely the default settings, expect we allowed it to fit a mean-variance trend across 
genes (limma-trend) ​(Law et al., 2014)​. To control the false discovery rate at every step of the 
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analysis, p-values were converted to q-values using the method of Benjamini and Hochberg 
(Benjamini and Hochberg, 1995)​. 
 
In the datasets from mice, which have discrete time-points spaced throughout the circadian 
cycle, we detected genes with rhythmic expression using RAIN (see next section). In the 
dataset based on samples from human brain (GSE71620), one experimental factor (age) is 
continuous and the zeitgeber time-points are approximately randomly distributed. Therefore, to 
calculate a q-value of rhythmicity (accounting for age), we first used LimoRhyde to construct an 
additive model with terms for age, brain region, and zeitgeber time. The model does not include 
a term for donor, because although each donor has a corresponding sample from each of two 
brain regions, those two samples correspond to the same age and the same zeitgeber time, 
making it impossible to reliably account for inter-donor variation. We then used limma to perform 
a moderated F-test on the coefficients corresponding to the two terms for zeitgeber time. 

Detecting rhythmic genes using RAIN 
For datasets with two conditions, our goal was to detect genes rhythmic in at least one 
condition. For datasets with discrete time-points (all mouse datasets), we followed a similar 
procedure as used previously ​(Thaben and Westermark, 2016)​. We first ran RAIN v1.12.0 
(default settings and period 24 h) separately on the samples from each condition, which resulted 
in a p-value for each gene in each condition. We then used the minimum p-value for each gene 
to calculate q-values of rhythmicity (q ​rhy​). Comparing acrophase across conditions only makes 
sense, if the gene is rhythmic in both conditions. We calculated q-values of being rhythmic in 
both conditions (q ​rhy,max​) similarly, but using the maximum p-value instead of the minimum. 

Detecting differentially rhythmic genes using DODR 
We used DODR v0.99.2 with the default settings ​(Thaben and Westermark, 2016)​, which 
performs both robustDODR and robustHarmScaleTest. We used only the former, which tests for 
a combination of amplitude and phase change and corresponds to the moderated F-test in 
limma. The robustHarmScaleTest, which tests for a difference in noise level of rhythmic 
expression, was less informative in our experience. If desired, one could test for differential 
variability of rhythmic expression in the LimoRhyde/limma framework using a method called 
DiffVar ​(Phipson and Oshlack, 2014)​. 

Comparing LimoRhyde and DODR for detecting differential rhythmicity 
To evaluate the agreement between LimoRhyde (followed by limma) and DODR in calling 
genes differentially rhythmic, we calculated Cohen’s kappa at various q-value cutoffs using irr R 
package v0.84. To estimate each method’s tendency to call false positives in each dataset, we 
first identified genes rhythmic in at least one condition using RAIN on the true sample labels, 
then permuted the sample labels (wild-type or knockout) within samples from the same 
time-point. This strategy attempts to preserve rhythmic expression patterns, but remove 
differential rhythmicity. For each dataset, we then calculated the mean number of differentially 
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rhythmic genes (across 50 permutations) at various q-value cutoffs. Because the order of 
magnitude of differentially rhythmic genes varies across datasets, we summarized the overall 
results using the geometric mean. 
 
To ensure a sufficient number of rhythmic genes for comparison, we used a cutoff of q ​rhy​ ≤ 0.1 
for five of the six datasets. We used a cutoff of q ​rhy​ ≤ 0.15 for E-MTAB-3428, which has only four 
time-points and eight samples per genotype. 

Calculating gene-wise rhythmic parameters using ZeitZeiger 
We estimated rhythm amplitude and zeitgeber/circadian time of peak expression (acrophase) 
using ZeitZeiger v1.0.0.5 with default settings ​(Hughey et al., 2016; Hughey and Butte, 2016)​. 
For the mouse datasets, we ran ZeitZeiger separately on the samples from each condition. For 
the human brain dataset, to calculate each gene’s overall rhythmic properties, we used 
LimoRhyde and limma to adjust the expression values for age and brain region, then ran 
ZeitZeiger on the residual expression values from all samples. To estimate the change in 
rhythmic properties with age, we split donors into a younger 50% and older 50%, then 
calculated the rhythm amplitude and acrophase on the unadjusted expression values within 
each cohort. For all datasets, we calculated Δamplitude as the arithmetic difference in rhythm 
amplitude, and Δacrophase as the circular difference (constrained between -12 and +12 h). 

Performing gene set analysis using CAMERA 
The CAMERA method ​(Wu and Smyth, 2012)​ is part of the limma R package. To identify gene 
sets enriched for differential expression, we used the “camera” function, which takes as input an 
expression matrix, a list of gene sets, a design matrix corresponding to a linear model, and a 
single contrast (e.g., genotype or age). As in the limma analysis, we allowed camera to fit a 
mean-variance trend. To identify gene sets enriched for differential rhythm amplitude, we used 
the “cameraPR” function (default settings), which takes as input a vector of gene-wise statistics 
(in our case, Δamplitude) and a list of gene sets. We used the mouse and human C5 GO (gene 
ontology) gene sets of MSigDB v5.2 ​(Liberzon et al., 2011)​, which are available at 
http://bioinf.wehi.edu.au/software/MSigDB/index.html. The gene sets are based on Entrez Gene 
IDs, so for the gene set analysis of GSE73552, we mapped Ensembl Gene IDs to Entrez Gene 
IDs using the org.Mm.eg.db R package, keeping only genes with a one-to-one mapping. 

Results 

Applying LimoRhyde to circadian transcriptome data from a two-condition 
design 
To develop a workflow for using LimoRhyde, we first sought to analyze a circadian 
transcriptome dataset that is representative of a common experimental design, in which 
samples are acquired at discrete time-points throughout the circadian cycle in two conditions. 
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We selected a dataset that included samples taken every 4 h from livers of wild-type and Arntl-/- 
mice under night-restricted feeding in LD 12:12, with gene expression measured by RNA-seq 
(Atger et al., 2015)​. Starting with the RNA-seq reads, we estimated gene-level abundances 
using salmon and tximport ​(Patro et al., 2017; Soneson et al., 2015)​. Using RAIN ​(Thaben and 
Westermark, 2014)​, we then identified 2,434 genes rhythmic in at least one genotype (q ​rhy​ ≤ 
0.01; Fig. 1A and Suppl. Fig. S1A). 
 
We next used LimoRhyde to express the experimental design in terms of a linear model (Fig. 
1A), in order to use a method called limma to determine which rhythmic genes showed evidence 
of differential rhythmicity between wild-type and Arntl-/- mice. Limma is a general method for 
analyzing microarray and RNA-seq data based on linear models and empirical Bayes ​(Ritchie et 
al., 2015; Smyth, 2004)​. We used limma to calculate a moderated F-statistic for each rhythmic 
gene, which tests the null hypothesis that both coefficients corresponding to the interaction 
between genotype and zeitgeber time are zero. This amounts to testing for a difference in a 
combination of rhythm amplitude and phase ​(Thaben and Westermark, 2016)​. Of 2,434 
rhythmic genes, 1,641 genes were differentially rhythmic at a cutoff of q ​DR​ ≤ 0.1 (Suppl. Fig. 
S1B). Of the 16 genes with the lowest q ​DR​, 8 genes are part of or directly driven by the core 
circadian clock (Rorc, Arntl, Nr1d1, Dbp, Cry1, Ciart, Nr1d2, and Per3). 
 
Although the moderated F-statistic can provide evidence of a change in rhythmicity, it does not 
indicate the nature of the change. Therefore, for each rhythmic gene, we used ZeitZeiger 
(Hughey et al., 2016)​ to quantify the rhythm amplitude and the zeitgeber time of peak 
expression (acrophase) in wild-type and Arntl-/- mice. We found that the genes with the 
strongest evidence for differential rhythmicity had strongly reduced rhythm amplitude in Arntl-/- 
mice (Fig. 1B). Among genes that exhibited at least moderate evidence of rhythmicity in each 
genotype (q ​rhy,max​ ≤ 0.2; see Materials and Methods), changes in acrophase were widely 
distributed (Fig. 1C). As expected ​(Thaben and Westermark, 2016)​, genes with stronger 
evidence of differential rhythmicity tended to have larger absolute changes in acrophase. 
 
We then used a simpler linear model, one lacking an interaction between genotype and 
zeitgeber time, to identify genes differentially expressed between wild-type and Arntl-/- mice. 
Here differential expression refers to a difference in average expression level between 
genotypes, accounting for possible rhythmicity. For this step, we considered only the 11,737 
genes for which there was not strong evidence of differential rhythmicity (q ​DR​ > 0.1) or for which 
differential rhythmicity was not examined (q ​rhy​ > 0.01). Among these genes, 3,038 genes were 
differentially expressed (q ​DE​ ≤ 0.01), of which 301 genes had an absolute log ​2​ fold-change > 1 
(Fig. 1D). 
 
Finally, to complement the gene-wise analysis, we used a method called CAMERA to perform 
gene set analysis ​(Wu and Smyth, 2012)​. Because methods such as CAMERA are unable to 
work directly with the F-statistics of differential rhythmicity (which have only a positive sign), we 
instead plugged into CAMERA the differences in rhythm amplitude as quantified by ZeitZeiger. 
Consistent with the gene-wise analysis, four of the five top-ranked gene sets with altered rhythm 
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amplitude were related to circadian rhythms (all with q ≤ 10 ​-8​ and reduced amplitude in Arntl-/-; 
Suppl. Table S2). Gene sets enriched for differential expression, meanwhile, tended to be 
related to the ribosome and various catabolic processes (with increased expression in Arntl-/-; 
Suppl. Table S3). 
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Figure 1.​ Using LimoRhyde to analyze circadian transcriptome data from livers of wild-type and Arntl-/- mice under 
night-restricted feeding (GSE73552). ​(A) ​ Schematic of workflow and linear model formulae used to detect rhythmic, 
differentially rhythmic (DR), and differentially expressed (DE) genes. ZT corresponds to zeitgeber time. Each formula 
corresponds to a linear regression fit, in which expression of each gene (expr) is modeled as a function of the 
variables to the right of the the tilde. The formulae do not show intercepts or coefficients. Multiplication in a model 
formula indicates inclusion of the main effects and the interaction. ​(B) ​ Scatterplot of -log ​10​(q ​DR​) vs. Δamplitude. q ​DR 
corresponds to a rhythmic gene’s q-value of differential rhythmicity, calculated using LimoRhyde and limma (Model 
1). Δamplitude corresponds to the change in rhythm amplitude between genotypes, where a negative value indicates 
lower amplitude in Arntl-/-. Only genes with a q​rhy​ ≤ 0.01, where q ​rhy​ is the q-value of rhythmicity, were considered. In 
(B), (C), and (D), each point represents a gene. In (B) and (C), the 16 rhythmic genes with the highest -log​10​(q ​DR​) are 
labeled. ​(C) ​ Scatterplot of -log ​10​(q ​DR​) vs. Δacrophase. The latter corresponds to the change in zeitgeber time of peak 
expression, where a positive value indicates a phase advance in Arntl-/-. Only genes with q-value for rhythmicity in 
both genotypes ≤ 0.2 are shown. ​(D) ​ Scatterplot of -log ​10​(q ​DE​) vs. log​2​ fold-change, both calculated using LimoRhyde 
and limma (Model 2). q​DE​ corresponds to the q-value of differential expression. A positive log​2​ fold-change indicates 
higher average expression in Arntl-/-. The 10 genes with the highest -log​10​(q ​DE​) are labeled. ​(E) ​ Venn diagram of 
genes meeting criteria for rhythmicity (q​rhy​ ≤ 0.01), differential rhythmicity (q ​DR​ ≤ 0.1), and differential expression (q ​DE​ ≤ 
0.1). ​(F)​ Plots of three example genes. Each point represents a sample. Based on the criteria, Per2 is classified as 
rhythmic only, Per3 as differentially rhythmic, and Hectd2 as differentially expressed only. 
 
Given criteria for rhythmicity, differential rhythmicity, and differential expression, the assignment 
of genes to each group can be expressed as a Venn diagram (Fig. 1E). To illustrate the various 
expression patterns, we show three genes as examples (Fig. 1F). Taken together, these results 
suggest that LimoRhyde provides a cohesive framework for differential analysis of circadian 
transcriptome data. 

Comparing LimoRhyde and DODR in the assessment of differential 
rhythmicity 
The recently developed method DODR is designed to detect differential rhythmicity between two 
conditions. As in LimoRhyde, differential rhythmicity in DODR is defined as a statistical 
interaction in a linear model based on cosinor regression. Although DODR does not use 
empirical Bayes to share information between genes, it does use rank-based statistics to 
achieve robustness to outlier samples. 
 
To compare LimoRhyde (followed by limma) and DODR, we assembled six circadian 
transcriptome datasets (four microarray, two RNA-seq). Each dataset included samples taken at 
discrete circadian time-points from wild-type mice and clock gene knockout mice (Suppl. Table 
S1). For each dataset, we used RAIN to detect genes rhythmic in at least one genotype, 
applying a less stringent cutoff (q ​rhy​ ≤ 0.1) to have more genes for comparison. For rhythmic 
genes, we then used LimoRhyde and DODR to calculate q-values of differential rhythmicity (Fig. 
2A). The median runtime of LimoRhyde and limma was 0.3 seconds per dataset, whereas the 
median runtime of DODR was 2 minutes per dataset. 
 

8/17 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2018. ; https://doi.org/10.1101/283622doi: bioRxiv preprint 

https://doi.org/10.1101/283622
http://creativecommons.org/licenses/by/4.0/


 
Figure 2.​ Comparing LimoRhyde (followed by limma) and DODR for detecting differential rhythmicity (DR) between 
wild-type and clock gene knockout mice. For details of datasets, see Suppl. Table S1. In each dataset, rhythmic 
genes were identified using RAIN (q​rhy​ ≤ 0.1). ​(A) ​ Scatterplots of q-value of differentially rhythmicity as calculated by 
each method. The title of each plot indicates the knocked-out gene(s) and the tissue in which gene expression was 
measured. Each point represents a rhythmic gene. The line indicates y = x. For each dataset, up to 15 genes with 
extremely high -log​10​(q ​DR​ LimoRhyde) are not shown. ​(B) ​ Cohen’s kappa, a measure of inter-rater agreement, 
between DODR and LimoRhyde at various q-value cutoffs. Each point represents a dataset. ​(C) ​ Geometric mean 
(across datasets) of the number of differentially rhythmic genes at various q-value cutoffs. ​(D) ​ Geometric mean 
(across datasets) of the mean (across permutations) number of differentially rhythmic genes at various q​DR​ cutoffs, in 
data in which the sample labels (wild-type or knockout) were permuted. Labels were permuted after identifying 
rhythmic genes, and were only permuted within samples at the same time-point. Thus, DR genes identified in 
permuted data can be considered false positives for differential rhythmicity. 
 
Overall, q-values from the two methods were highly correlated (median Pearson correlation 
0.90). In addition, based on Cohen's kappa, LimoRhyde and DODR showed moderate to strong 
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agreement at various q-value cutoffs (Fig. 2B). Although the number of differentially rhythmic 
genes varied between datasets, LimoRhyde tended to select slightly more genes than DODR at 
a low q-value cutoff (q ​DR​ ≤ 0.01) and somewhat fewer genes at higher q-value cutoffs (q ​DR​ ≤ 0.1 
or q ​DR​ ≤ 0.2; Fig. 2C and Suppl. Fig. S2A). To evaluate the ability of the two methods to control 
false positives, we performed permutation testing on each dataset (see Materials and Methods). 
Both methods effectively controlled false positives, detecting many fewer differentially rhythmic 
genes on permuted data than on the unpermuted data, although again LimoRhyde tended to 
select fewer genes (i.e., was more conservative) than DODR at higher q-value cutoffs (Fig. 2D 
and Suppl. Fig. S2B). These results suggest that LimoRhyde (followed by limma) and DODR 
provide comparable detection of differential rhythmicity in circadian transcriptome data. 

Applying LimoRhyde to human transcriptome data from diverse 
experimental designs 
To explore the flexibility of LimoRhyde, we used it to analyze two transcriptome datasets from 
humans, each of which has a different experimental design than the datasets from mice. The 
first dataset from humans was based on brain tissue from postmortem donors, with the 
zeitgeber time for each sample based on the respective donor's geographic location, date, and 
time of death ​(Chen et al., 2016)​. The 146 donors ranged in age from 16 to 96 years old (50.7 ± 
15.3, mean ± SD). Given how sleep-wake patterns change with age ​(Roenneberg et al., 2004; 
Yoon et al., 2003)​, this dataset presents an excellent opportunity to examine the interaction 
between aging and circadian rhythms in two regions of the human prefrontal cortex 
(Brodmann’s areas 11 and 47). The original analysis, however, was forced to discretize donors 
into younger and older, which discards information and sacrifices statistical power. LimoRhyde, 
on the other hand, can accommodate continuous variables such as age without discretizing 
them. 
 
Because the time-points are based on times of death, they are approximately randomly spaced, 
precluding the use of RAIN or JTK_CYCLE. Therefore, to identify rhythmic genes, we used an 
additive model in LimoRhyde, including terms for age, zeitgeber time, and brain region (Fig. 3A; 
three example genes are shown in Fig. 3B-C). This additive model is equivalent to cosinor 
regression. To estimate each gene’s overall rhythm amplitude, we applied ZeitZeiger to the 
residuals of an additive model lacking terms for zeitgeber time (see Materials and Methods). 
Applying the criteria of q ​rhy​ ≤ 0.1 and rhythm amplitude ≥ 0.1, we identified 891 genes as 
rhythmic (Fig. 3D and Suppl. Fig. S3A). 
 
Using the original additive model, we then identified 4,551 genes whose expression increased 
or decreased with age, accounting for zeitgeber time (q ​DE​ ≤ 0.01; Fig. 3D and Suppl. Fig. S3B). 
Genes whose expression decreased with age were strongly enriched for involvement in 
glutamate receptor signaling, synapse structure and activity, and mitochondria (Suppl. Table 
S4), which is consistent with previous findings ​(Lu et al., 2004)​. 
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Figure 3.​ Using LimoRhyde to analyze transcriptome data based on postmortem samples from human brain 
(GSE71620). ​(A) ​ Schematic of workflow and linear model formulae used to detect rhythmic, differentially rhythmic 
(DR), and differentially expressed (DE) genes. ​(B) ​ and ​(C) ​ Scatterplots for three example genes, showing 
log-normalized expression as a function of age and as a function of zeitgeber time of death within younger and older 
donors. Each point represents a sample. ARHGAP10 is classified as DE only, TRIB2 as DE and DR, and PER3 as 
rhythmic only. ​(D) ​ Venn diagram of genes meeting criteria for rhythmicity (q​rhy​ ≤ 0.1 and rhythm amplitude ≥ 0.1), 
differential rhythmicity (q​DR​ ≤ 0.1), and differential expression (q​DE​ ≤ 0.01). ​(E) ​ and ​(F)​ Histograms of Δamplitude and 
Δacrophase for differentially rhythmic genes between younger and older donors, calculated using ZeitZeiger. Positive 
Δamplitude indicates higher rhythm amplitude in older donors. Positive Δacrophase indicates a phase advance in 
older donors. 
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To find genes whose rhythmic expression varied with age, we altered the linear model to include 
an interaction between age and zeitgeber time (Fig. 3A). Of the 891 genes that met our criteria 
for rhythmicity, 196 genes were differentially rhythmic (q ​DR​ ≤ 0.1; Fig. 3D and Suppl. Fig. S3C). 
For each differentially rhythmic gene, we used ZeitZeiger to estimate rhythm amplitude and 
acrophase within the younger 50% and older 50% of donors. Changes in rhythm amplitude were 
centered near zero, with similar numbers of genes showing increased or decreased amplitude in 
older donors (Fig. 3E). Genes with decreased rhythm amplitude were enriched for involvement 
in leukocyte-mediated immunity and the adaptive immune response (Suppl. Table S5). Changes 
in acrophase were shifted from zero, corresponding to a mean advance of 3.1 h in older donors 
(circular mean; Fig. 3F). 
 
The second dataset from humans was based on suction-blister epidermis samples acquired 
from 20 subjects at three time-points (9:30am, 2:30pm, and 7:30pm) ​(Spörl et al., 2012)​. The 
original analysis, which used limma but considered the time-points as categorical variables (a la 
ANOVA) and did not adjust for inter-subject variation, identified 294 genes whose expression 
varied with time of day (q ≤ 0.05). 
 
To analyze the dataset using LimoRhyde, we constructed a linear model with terms for subject 
and time of day (Suppl. Fig. S4A). We then used limma to perform a moderated F-test on the 
two coefficients corresponding to time of day, which identified 1,436 genes with 
time-of-day-dependent expression (q ≤ 0.05; Suppl. Fig. S4B-C). Among the 15 top-ranked 
genes were eight core clock genes (NR1D1, PER3, CIART, NPAS2, PER1, ARNTL, NR1D1, 
and PER2, all with q ≤ 2·10 ​-8​). 
 
Because this dataset has exactly three time-points, the LimoRhyde time decomposition and 
ANOVA are equivalent; they both correspond to two parameters in the linear model (the 
increased number of detected genes in our analysis is a result of adjusting for inter-subject 
variation). As the number of time-points increases, though, LimoRhyde will continue to favor 
genes whose expression varies sinusoidally over time, whereas ANOVA, which ignores the 
relationship between time-points, will not. Taken together, these examples demonstrate how 
LimoRhyde enables statistically rigorous analysis of circadian transcriptome data from diverse 
experimental designs. 

Discussion 
Despite the increasingly complexity of experiments to interrogate rhythmic biological systems, 
methods to analyze the resulting genome-scale data have remained largely ad hoc. Here we 
described LimoRhyde, a unified approach to detect gene-wise differential rhythmicity and 
differential expression in circadian or otherwise rhythmic transcriptome data. LimoRhyde is 
inspired by cosinor regression and is applicable to data from any experimental design that can 
be described by a linear model. LimoRhyde thus functions as an adapter, making circadian 
transcriptome data amenable to analysis by the ever-improving and growing set of methods 
designed for differential analysis of microarray and RNA-seq data. 
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For detecting differential rhythmicity in the common two-condition scenario, our results suggest 
that LimoRhyde performs similarly to DODR. Although LimoRhyde (followed by limma) is 
considerably faster, the absolute difference in runtime is trivial compared to the amount of time 
required to perform the experiments. On some datasets, LimoRhyde followed by limma may be 
more conservative than DODR, implying that one could use a higher q-value cutoff to capture a 
similar number of differentially rhythmic genes at a similar false discovery rate. 
 
LimoRhyde distinguishes itself by its versatility. First, LimoRhyde can be used to detect rhythmic 
or time-of-day-dependent gene expression in datasets in which time-points are either randomly 
spaced or do not cover the full circadian cycle, scenarios for which methods such as 
JTK_CYCLE and RAIN are ill-suited. In this application, LimoRhyde is conceptually equivalent 
to cosinor regression, with the advantage of using empirical Bayes procedures in methods such 
as limma to share information between genes. Second, LimoRhyde enables the detection of 
differential expression between conditions, accounting for possible rhythmicity. This could reveal 
expression changes in genes whose mRNAs are too stable to be rhythmic or differentially 
rhythmic ​(Lück et al., 2014)​. Our results suggest that a typical circadian experiment is well 
powered to detect even relatively small log fold-changes. Third, LimoRhyde can be applied to 
transcriptome data from complex experimental designs. Here we analyzed a dataset in which an 
experimental variable was continuous and a dataset in which multiple samples were collected 
from each participant. 
 
While LimoRhyde provides rigorous p-values, other methods are useful for interpretation. For 
example, given a set of differentially rhythmic genes, methods such as ZeitZeiger can quantify 
the changes in rhythm amplitude and phase. Furthermore, gene set analysis methods such as 
CAMERA can identify biological processes that are enriched for changes in average expression 
level or in rhythm amplitude. An analogous method called Phase Set Enrichment Analysis could 
identify processes enriched for changes in phase ​(Zhang et al., 2016)​. 
 
Regardless of the computational method, detection of differential rhythmicity and differential 
expression requires two assumptions. First, one must assume a value for the period of the 
rhythm. For typical experiments using entrained or free-running organisms, the assumed period 
should likely correspond to the period of the zeitgeber (T) or the free-running period of the 
organism (tau), respectively. Second, one must assume an alignment of the time-points 
between different conditions. For example, if samples are collected from organisms in different 
photoperiods, the results will depend on whether time 0 in each photoperiod is defined as the 
time of lights on or the time of lights off. Consequently, we advise caution when calculating and 
interpreting differential rhythmicity and differential expression in datasets based on free-running 
organisms for which tau varies considerably between conditions. The danger of this 
experimental design is that, if the time-points are not aligned properly, the results will be 
confounded by differences in the organisms' intrinsic circadian phase ​(Hsu and Harmer, 2012)​. 
In addition to these assumptions, drawing a distinction between rhythmic, differentially rhythmic, 
and differentially expressed genes — although convenient — requires arbitrary cutoffs of 
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q-value and/or rhythm amplitude. An alternative approach would be to test the coefficients for 
the main effect and the statistical interaction jointly, which would identify genes showing 
evidence for either differential rhythmicity or differential expression. 
 
Multiple features of LimoRhyde remain to be explored. For example, although in this paper we 
used LimoRhyde in conjunction with limma, which is fast and can handle both microarray and 
RNA-seq data, LimoRhyde is compatible with multiple other methods for differential expression 
analysis. In addition, although here we decomposed time using sine and cosine curves (as in 
cosinor), it is also possible to apply a decomposition based on a periodic smoothing spline (as in 
ZeitZeiger). LimoRhyde could also be used to detect differences in higher-order harmonics of 
circadian gene expression ​(Hughes et al., 2009)​. 
 
In conclusion, we have developed a general approach to analyze rhythmic transcriptome data in 
which there are multiple experimental variables. Here we concentrated on microarray and 
RNA-seq data, but given limma’s success on proteomics, DNA methylation, and ChIP-Seq data 
(Brusniak et al., 2008; Lun and Smyth, 2014; Maksimovic et al., 2012)​, we are optimistic that 
LimoRhyde could be applied to other types of genome-scale data as well. Altogether, 
LimoRhyde can help ensure that our ability to analyze rhythmic omics data continues to scale 
with our ability to acquire it. 
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