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ABSTRACT (256 words)
Alcohol abuse is common, imposes a staggering burden on public health, and is challenging to treat, underscoring the need to develop a deeper
understanding of the underlying neurobiology. When administered acutely, ethyl alcohol reduces threat reactivity in humans and other
animals, and there is growing evidence that threat-dampening and related negative reinforcement mechanisms support the etiology and
recurrence of alcohol and other kinds of substance misuse. Converging lines of evidence motivate the hypothesis that these effects are
mediated by the central extended amygdala (EAc)—including the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis
(BST)—Dbut the relevance of this circuitry to acute alcohol effects in humans remains poorly understood. Using a single-blind, randomized-
groups design, multiband imaging data were acquired from 49 social drinkers while they performed an fMRI-optimized emotional-
faces/places paradigm after consuming alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to threat-related
emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from anatomically defined Ce
and BST regions-of-interest. Analyses revealed a similar pattern of dampening across the two regions. In short, alcohol acutely dampens
reactivity to threat-related faces in humans and it does so similarly across the two major divisions of the EAc. These observations provide a
framework for understanding the translational relevance of addiction models derived from work in rodents, inform on-going debates about
the functional organization of the EAc, and set the stage for bi-directional translational models aimed at developing improved treatment

strategies for alcohol abuse and other addictions.
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INTRODUCTION
Alcohol abuse is common (i.e., nearly three-quarters of Americans consumed some form of ethanol in the past year and, among them, 17.5%
met criteria for an alcohol use disorder); contributes to a wide range of adverse social outcomes (e.g., crime); and imposes a substantial and
growing burden on global public health and the economy 1-3. Existing treatments are incompletely effective 4, underscoring the urgency of
developing a clearer understanding of the neural systems contributing to the development, maintenance, and recurrence of alcohol abuse >.
When administered acutely, alcohol has anxiolytic properties in humans and rodents -8, and there is clear evidence that threat- and stress-
dampening effects (i.e., negative reinforcement) contribute to the etiology and recurrence of alcohol misuse and abuse 8°. Yet, remarkably

little is known about the neural circuitry underlying the threat-dampening effects of acute alcohol administration in humans.

Converging lines of mechanistic, anatomical, physiological, and pharmacological evidence highlight the potential importance of the central

extended amygdala (EAc), including the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST). The EAc plays a

critical role in assembling defensive responses to a range of threats 10-13, Anatomically, the EAc is poised to govern vigilance and other aspects -

of fear and anxiety via dense mono- and poly-synaptic projections to downstream effector regions 1415, Imaging and lesion studies demonstrate
that the EAc plays a key role in selecting and prioritizing the processing of ‘threat-related’ cues, such as fearful faces 1¢ (see Supplementary
Comment). EAc function co-varies with individual differences in anxious temperament and likely contributes to the development and
maintenance of anxiety disorders 1215-17. Conversely, acute administration of classic anxiolytics (e.g., diazepam, lorazepam) is associated with

reduced reactivity of the dorsocaudal amygdala (in the region of the Ce) to threat-related faces 1819
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Despite this progress, the relevance of the EAc to alcohol-induced threat-dampening in humans remains poorly understood. Although a few
functional MRI (fMRI) studies have been reported (Table 1), with some suggesting that alcohol dampens amygdala reactivity to threat-related
faces (i.e., fearful or angry expressions), they are limited by small samples (Ns<15) and coarse spatial resolution. Many relied on thresholding
procedures that are now known to markedly inflate the risk of false discoveries 2021, Often, null results were interpreted as evidence of threat-
dampening 22. None explicitly examined either the Ce or the BST 23-26, All relied on randomized cross-over designs, despite evidence
questioning the retest reliability of amygdala activation e.g., 27. In short, it remains unclear whether the Ce and BST are dampened by alcohol

and, if so, whether they differ in their sensitivity.
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Table 1. The effects of acute alcohol administration on reactivity to threat-related faces in human imaging studies.
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a Older normalization techniques (e.g., affine, EPI-to-EPI) introduce substantial spatial smoothing and registration error, which is a concern for work focused on small
subcortical structures, such as the EAc. b Social drinker ('control’) group. Abbreviations—BAL, blood alcohol level; BBR, boundary-based registration of the T1- and T2-
weighted images; Corr, corrected; IV, intravenous; N/A, not applicable; NS, not significant; Unc, uncorrected.
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Here, we used a novel combination of approaches to assess the influence of acute alcohol administration on reactivity to threat-related faces
in the Ce and the BST. Using a single-blind, placebo-controlled, randomized-groups design (Table 2), fMRI data were acquired from 49
psychiatrically healthy social drinkers while they performed an fMRI-optimized emotional-faces/places paradigm after consuming an
alcoholic or placebo beverage. Several methods enhanced precision, including a multiband pulse sequence and advanced co-registration and
spatial normalization techniques 28. Recently developed, anatomically defined Ce and BST regions-of-interest (ROIs) 2930 made it possible to
directly compare the hypothesized threat-dampening effects of alcohol in the BST and the Ce for the first time. Understanding the role of the
EAc in alcohol-induced threat-dampening is important. It is a necessary step to determining the translational relevance of addiction models
derived from rodent models e.g., 31. It would also provide insight into the EAc’s role in social drinking and other kinds of substance use, inform
on-going debates about the functional organization of the EAc 123233, and guide the development of bi-directional translational models 1234

aimed at developed improved treatment strategies 35,

METHOD

Methods and materials are summarized below. Detailed descriptions are provided in the Supplement.

Subjects

Eighty-seven social drinkers (21-35 years old) were recruited from the community as part of a larger study. All reported an absence of
substance, neurological, or psychiatric problems. Of these, 61 completed the emotional faces/places paradigm. Twelve subjects were excluded

from analyses due to unusable anatomical data (n=3), scanner problems (n=1), incidental neurological findings (n=2), inadequate behavioral
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performance (>2 SDs below the mean; n=3), or excessive motion artifact (see below; n=3), yielding a final sample of 49 subjects (Table 2).

Subjects provided informed written consent. Procedures were approved by the local Institutional Review Board.

Table 2. Demographic and descriptive variables.

Total Placebo Alcohol Difference
Sample size 49 22 27 N/A
Mean Age in Years (SD) 22.4 (2.5) 22.1(1.4) 22.6 (3.1) t(47) =.69, p=0.50
Gender: Female/Male 23/26 11/11 12/15 x?=.15, p=0.8
Mean BAL? (SD) N/A 0.00 (0.00) 0.09 (0.02) t(47) =27.20, p <.001
Mean Subjective Estimate of = N/A 2.07 (1.09) 4.56 (1.25)¢ t(47)=7.32,p <.001
Number of Drinks Consumed
During the Study (SD)
Mean Motion, Frame-to- .13 (.03) 12 (.03) .13 (.03) t(47)=1.01,p =32

Frame Displacement (SD)

a Pre-MRI and post-MRI BAL were strongly correlated, r(47)=.96, p<.001. » Within-group difference from zero, t(26)=8.87, p<.001. ¢ Within-group difference from zero,

t(26)=18.93, p<.001.

Overview and General Procedures

*9SUBI| [eUOIFRUIBIU] 0" AN-ON-AG-D0®

Subjects abstained from alcohol and other substances for 24 hours and food/drink for 3 hours prior to the session. At the start of the session,

subjects were randomly assigned (stratified by sex and race/ethnicity) to receive an alcoholic or placebo beverage, which was consumed just

prior to scanning. Blood alcohol level (BAL) was assessed (Alcosensor IV Breathalyzer; Intoximeters Inc., St. Louis, MO) immediately before

and after scanning. Subject status was continuously monitored using an MRI-compatible eye-tracker. At the end of the session, subjects

estimated the number of standard alcoholic drinks they had consumed.
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Alcohol/Placebo Procedures

Well-established procedures were used for administering alcohol or placebo 3637, Consistent dosing was achieved using a formula that uses
height, weight, age, and sex to produce a target BAL of 0.08% or 0.12% with an anticipated variance of #0.02% ~30 minutes after the
completion of beverage consumption 38. This produced a unimodal BAL distribution (range: 0.06% - 0.12%; Table 2). Alcoholic beverages
contained a mixture of juice and 100-proof vodka. To control absorption, subjects consumed 3 equal doses over 30 minutes. The placebo group
received a similar beverage, with distilled water replacing the vodka. Subjects assigned to the alcohol (or placebo) group observed the
experimenter pouring the vodka (or distilled water) from a vodka bottle. The placebo manipulation was reinforced by floating 3 ml of bitters
and 3 ml of vodka on the surface of the beverage and delivering a minute amount of aerosolized vodka to the rim of the beverage containers
outside the subject’s view. On average, subjects in the placebo group estimated that they consumed ~2 drinks, validating the manipulation

(Table 1).

Emotional-Faces/Places Paradigm

Building on work by our group 3° and others 1940, imaging data were acquired while subjects viewed alternating blocks of emotional faces (8
blocks) or places (9 blocks). Block length (~16.3 s) was optimized to detect between-condition differences 4142, To minimize habituation 41-43,
blocks consisted of 16 brief presentations of faces or places (~1.02 s/image). During face blocks, subjects discriminated threat-related (i.e.,

fearful; 75% trials) from neutral expressions (25% trials) presented in a pseudorandomized order 3°. This design choice was aimed at reducing
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monotony and minimizing potential habituation to the fearful expressions 43. During place blocks, subjects discriminated suburban residential

residences (i.e., houses; 75%) from urban commercial buildings (i.e., skyscrapers; 25%). Face and place stimuli were adapted from prior work

4445,

MRI Data Acquisition

MRI data were acquired using a Siemens Magnetom TIM Trio 3 Tesla scanner (32-channel head-coil). Sagittal T1-weighted images were
acquired using a MPRAGE sequence (TR=1,900 ms; TE=2.32 ms; inversion time=900 ms; flip angle=9°; sagittal slice thickness=0.9 mm; in-
plane=0.449x0.449mm; matrix=512x512; field-of-view=230x230). To enhance resolution, a multi-band sequence was used to collect a total
of 286 oblique-axial EPI volumes during a single scan of the faces/places task (multiband acceleration=6; TR=1,000 ms; TE=39.4 ms; flip
angle=36.4° slice thickness=2.2 mm, number of slices=60; in-plane resolution=2.1875x2.1875 mm; matrix=96x96). To minimize
susceptibility artifacts, images were collected in the oblique axial plane. Co-planar oblique-axial spin echo (SE) images were collected in

opposing phase-encoding directions (TR=7,220 ms; TE=73 ms) to enable fieldmap correction.

MRI Data Preprocessing

MRI data were visually inspected before and after processing for quality assurance.

Anatomical Data Processing. Methods are similar to those described in other recent reports by our group 2830, T1 images were brain-

extracted (‘skull-stripped’) using a multi-tool approach 39. Brain-extracted T1 images were normalized to the MNI152 template using the high-

'9sua?l| [euoneulaiu] 0’y AN-ON-AG-00e
Japun a|qejrene apew si 1| ‘Ainadiad ul Juudaid ayy Aejdsip 01 asuadl| B AIxHolq pajuelb sey oym ‘1spunyioyine ayl si (mainai 1aad Aq palined
10U sem yaiym) Juudauid siy 1oy Jspjoy 1yBuAdod syl "8TOZ ‘9T YaseN paisod uoIsIaA SIy) :8Se€82/T0TT 0T/b10 10p//:sdny :10p uudaid AxHolq


https://doi.org/10.1101/283358
http://creativecommons.org/licenses/by-nc-nd/4.0/

J Hur et al,, Alcohol dampens EAc 10
precision diffeomorphic approach implemented in SyN 46. The mean of the normalized T1 images is depicted in Supplementary Figure S1.

FSL was used to create a fieldmap and undistorted SE image.

Functional Data Processing. The first 3 volumes of each EPI scan were removed. Remaining volumes were de-spiked and slice-time corrected
using AFNI 47. For co-registration of the functional and anatomical images, an average EPI image was created. The average image was
simultaneously co-registered with the corresponding T1-weighted image in native space and corrected for geometric distortions using the
boundary-based registration method implemented in FSL and the previously created fieldmap, undistorted SE image, and T1 image. Spatial
transformations were concatenated and applied to the functional data in a single step. The transformed images were re-sliced (2-mm3),
smoothed (6-mm), and filtered (0.0078125-Hz high-pass). To assess residual motion artifact, the variance of volume-to-volume displacement
of a selected voxel in the center of the brain (x=5, y=34, z=28) was calculated using the motion-corrected EPI data. Subjects (n=3) with extreme

motion variance (>25Ds above the mean) were excluded from analyses.

fMRI data were modeled using SPM12 and in-house MATLAB code. The emotional-faces/places task was modeled using a boxcar function 48.
Block onsets were modeled using two additional event-related nuisance predictors. Predictors were convolved with a canonical hemodynamic
response function. Additional nuisance variates included motion and physiological noise estimates. To attenuate physiological noise, white
matter (WM) and cerebrospinal fluid (CSF) time-series were identified by thresholding the tissue prior images distributed with FSL. The EPI

time-series was orthogonalized with respect to the first 3 right eigenvectors of the data covariance matrix from the WM and CSF compartments
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49, Reactivity to threat-related faces (i.e., the main effect of Condition: Emotional Faces vs. Places) was assessed using a voxelwise one-sample
t test controlling for mean-centered age and sex. The impact of alcohol administration was assessed using a voxelwise two-sample ¢t test
controlling for mean-centered age and sex, equivalent to testing the Group (Alcohol vs. Placebo) x Condition (Emotional Faces vs. Places)

interaction.

Hypothesis Testing Strategy

Alcohol-Dampening in the EAc. The first aim of the study was to test the hypothesized dampening effects of acute alcohol administration on
EAc reactivity to threat-related faces. Accordingly, the Group x Condition interaction was thresholded at p<.05 familywise error (FWE)
corrected for the extent of the EAc (Supplementary Figure S2; 1,205 voxels; 9,640 mm3). The EAc region-of-interest (ROI) encompassed the
amygdala, substantia innominata/sublenticular extended amygdala (SI/SLEA), and BST bilaterally 3050, Significant clusters (p<.05, whole-
brain FWE corrected) outside the EAc are reported on an exploratory basis for voxelwise analyses of the Condition (Emotional Faces vs. Places)

and Group x Condition effects.

Alcohol-Dampening: BST vs. Ce. The second major aim of our study was to test the differential sensitivity of the BST and the Ce—the two
major sub-divisions of the EAc—to the hypothesized threat-dampening effects of alcohol. To do so in an unbiased manner, we extracted and
averaged standardized contrast coefficients using anatomically defined, a priori ROIs 21, as shown in Supplementary Figure S3. The BST was
defined using the ROI of Theiss and colleagues (2016). The Ce was defined using the ROI of Tillman and colleagues (2018). A mixed-model

general linear model was used to compare the impact of Group and Hemisphere on regional reactivity to threat-related faces. Significant
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interactions were decomposed using the appropriate tests of simple effects. The Group effect is reported using the Welch-Satterthwaite

correction for unequal variances (Fw-s).

RESULTS
Behavior

On average, subjects were highly accurate at performing the simple discrimination tasks (M=86.8%, SD=7.9). Nevertheless, performance was
~8% lower in the alcohol (M=83.2%, SD=8.2) compared to the placebo group (M=91.1%, SD=4.9; Fw-s(1,47)=15.98, p<.001), consistent with
prior work 51. Subjects were ~4% more accurate when performing the places (M=88.8%, SD=8.8) compared to the faces discrimination
(M=84.4%, SD=8.4; F(48)=22.37, p<.001), but the Group x Condition interaction was not reliable (F(1,47)=.24, p=.63). As noted below and
detailed in the Supplement, control analyses indicated that these modest differences in performance were not the primary determinant of

alcohol-related differences in neural reactivity.

The Dorsal Amygdala is Sensitive to Threat-Related Faces

within the EAc, threat-related faces were associated with significant activation of the dorsal amygdala, bilaterally (p<.05, FWE-corrected; Left:

t=12.59, volume=1,032 mm3; x=-20, y=-10, z=-14; Right: t=12.22, volume=1,368 mm?3; x=22, y=-8, z=-16; Figure 1a and Supplementary Table
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1), consistent with prior work e.g., 16. As shown in Supplementary Figure S4, the amygdala cluster overlapped the anatomically defined Ce

ROI, with the left and right peaks lying in the dorsocaudal region where the Ce, medial, and basomedial nuclei abut.

On an exploratory basis, we also computed a series of whole-brain analyses. Results indicated that the dorsal amygdala and fusiform cortex
(‘fusiform face area’) were significantly more sensitive to threat-related faces, whereas the parahippocampal cortex (‘parahippocampal place
area’) was significantly more sensitive to places, as expected 5253(p<.05, FWE-corrected; Supplementary Figure S5 and Supplementary

Table 2).
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Figure 1. The impact of acute alcohol administration on reactivity to threat-related
cues in the central extended amygdala. A. Consistent with prior work, voxelwise
regression analyses revealed significant activation to threat-related faces in the dorsal
amygdala (p < .05, FWE corrected for the volume of the anatomically defined EAc
region-of-interest; total volume: 1,205 voxels; 9,640 mm3). Inset indicates the location
of the coronal slice. Significant clusters within the EAc ROI (Supplementary Figure S2)
are depicted here. For additional results, see Supplementary Figures S4 and S5 and
Supplementary Tables S1 and S2. B. Voxelwise analyses revealed a significant
reduction in reactivity to threat-related faces in the region of the left BST in the alcohol
compared to the placebo group (same threshold; equivalent to testing the Group x
Condition interaction). The left half of the panel depicts the BST cluster. The right half
depicts the BST (green) in the corresponding section of the atlas of Mai and colleagues
(2015). Note the similar appearance of key landmarks, including the fornix and lateral
ventricle (white), as well as the optic tract and anterior commissure (gold). Upper left
inset indicates the location of the coronal slice. Upper right inset depicts the
myeloarchitecture (Weigert fiber stain) of this region in the atlas. The left BST was the
only significant cluster in EAc-focused or whole-brain analyses. For additional results,
see Supplementary Figure S6 and Supplementary Table S3. C. For illustrative
purposes, barplot depicts mean standardized regression coefficients extracted from the
peak voxel in the BST cluster for the alcohol (light green) and placebo (dark green)
groups. Hypothesis testing was performed on a voxelwise basis (corrected for multiple
comparisons). Error bars indicate the standard error of the mean. Portions of this figure
were adapted with permission from the atlas of Mai and colleagues 54. Abbreviations—
ac, anterior commissure; BST, bed nucleus of the stria terminalis; Cd, caudate; EAc,
central division of the extended amygdala; FWE, family-wise error; fx, fornix; GPe,
external globus pallidus; GPi, internal globus pallidus; L, left hemisphere; LV, lateral
ventricle; OT, optic tract; Pu, putamen; R, right hemisphere; SVC, small volume
correction.
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Alcohol Dampens BST Reactivity to Threat-Related Faces
Within the EAc, acute alcohol administration was associated with a significant reduction in left BST reactivity to threat-related faces (Group x
Condition: p<.05, FWE-corrected; t=5.46, volume=104 mm3; x=-8, y=-2, z=0; Figures 1b-1c and Supplementary Table 3). As shown in
Supplementary Figure S6, the left BST cluster overlapped the anatomically defined BST ROI. Exploratory whole-brain analyses revealed no
additional clusters. As detailed in the Supplement, control analyses indicated that the dampening effects of alcohol on BST reactivity to threat-

related faces were not a consequence of group differences in performance.

Alcohol Exerts Similar Effects in the Ce and the BST

To assess regional differences in EAc activation in an unbiased manner 21, standardized contrast coefficients (i.e., faces vs. places) were
extracted from the left and right Ce and BST—the two major subdivisions of the EAc—using anatomically defined, a priori ROIs, as shown in
the upper portion of Figure 2 (Ce: cyan; BST: green). A mixed-model GLM was then used to compare the impact of Group and Hemisphere on
regional reactivity to threat-related faces. Analyses revealed greater threat-related activation in the Ce relative to the BST (Region:
F(1,47)=32.99, p<.001) and a near-significant alcohol-dampening effect across regions (Group: Fw-s(1,47)=3.93, p=.053]. Other omnibus effects
were not significant (ps>.15). Analyses performed using a performance-matched sub-sample revealed similar results (Supplement).
Collectively, these observations indicate that alcohol acutely dampens reactivity to threat-related faces and it does so similarly in the Ce and

the BST.
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Figure 2. The impact of acute alcohol administration on the two major divisions of the EAc. Barplot depicts mean regression coefficients associated with the emotional-
faces/places task for the anatomically defined Ce and BST ROIs for each group. The Ce was significantly more reactive to threat-related faces, relative to the BST (p<.001).
On average, subjects randomly assigned to the alcohol group showed significantly less reactivity to threat-related faces, relative to those in the placebo group (p =.053;
equivalent to testing the Group x Condition interaction). The Group x Region interaction was not significant (p =.88), suggesting that the Ce and BST are similarly sensitive
to the threat-dampening impact of acute alcohol administration. Error bars indicate the standard error of the mean. Abbreviations—EAc, central extended amygdala; RO],
region of interest.
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DISCUSSION

Recent epidemiological work indicates that “the United States is facing a crisis with alcohol use, one that is currently costly and about to get
worse” 35, yet the neural circuitry most relevant to human alcohol consumption has remained incompletely understood. The etiology of alcohol
abuse is complex and involves multiple neurocognitive and motivational systems 3, but observations gleaned from clinical research in humans
and mechanistic work in rodents highlights the potential importance of negative reinforcement effects mediated by the EAc 58. Leveraging a
placebo-controlled randomized-groups design, the present results demonstrate for the first time that that acute alcohol administration
significantly dampens reactivity to threat-related faces in the BST (Figure 1). Analyses performed using unbiased, anatomically defined ROIs
revealed a similar pattern of alcohol dampening across the Ce and BST (Figure 2). Control analyses indicated that these results were not an
artifact of group differences in performance (Supplement). Collectively, these findings indicate that acute alcohol intoxication dampens

reactivity to threat-related faces in humans and it does so similarly across the EAc.

The present results reinforce the translational relevance of addiction models derived from preclinical research in mice and rats >°. Work in
rodent models directly implicates the EAc in the threat-dampening consequences of alcohol 756-59, Immediate early gene studies show that
alcohol robustly engages both the Ce and the BST ¢0. While the molecular consequences of alcohol are complex, acute alcohol inhibits excitatory
(i.e., glutamatergic) neurotransmission in the Ce and the BST 61-63 and increases the release of the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA) in the Ce via interactions with the corticotropin-releasing factor (CRF) type-1 receptor 626469, Enhanced GABAergic
tone within the Ce is, in turn, thought to inhibit cells in the BST and other downstream effector regions 865, Other work indicates that CRF

projections from the Ce to the BST play a critical role in excessive drinking in alcohol-dependent rats 79, consistent with evidence implicating
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the EAc in withdrawal-related negative affect and stress-induced substance use 31. While our observations align with this body of research, as
with any human neuroimaging study, our conclusions are tempered by questions about the origins and significance of the blood oxygen level-

dependent fMRI signal 71.

The present results are broadly consistent with clinical research underscoring the importance of negative reinforcement mechanisms in
recreational drinking as well as alcohol abuse. Many drinkers expect alcohol to reduce tension or stress 72 and those seeking stress reduction
are at greater risk for developing an AUD 7374, Individuals with a more anxious temperament and patients with anxiety orders (e.g., social

phobia) are more likely to misuse alcohol 7576, and homologous effects have been found in rodents ¢77. In the laboratory, moderate doses of

alcohol selectively dampen defensive responses (e.g., startle) elicited by uncertain physical danger 8. Our results suggest that some of these !

effects may reflect a downstream consequence of dampened EAc reactivity to potential threat.

Although static images of fearful faces do not elicit robust signs of fear or anxiety 78, they are relevant to daily experience, can increase anxiety

symptoms, and are perceived as more threatening and arousing than neutral or happy faces 79-81. Fearful faces have also been shown to
promote vigilance, increasing visual sensitivity, boosting the resolution of visual processing, and enhancing the efficiency of attentional search
16, Vigilance is thought to be mediated by circuits centered on the EAc and, once elicited, increases the likelihood experiencing more extreme
or pervasive states of anxiety 1682, A key challenge for future research will be to examine the impact of alcohol on EAc reactivity to more intense
anxiety-provoking stimuli, such as uncertain threat-of-shock. This approach would dovetail with work in rodent models, enhancing the

likelihood of successful bi-directional translation 34 Prospective longitudinal imaging research would be useful for understanding the
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relevance of EAc circuitry to the development of alcohol use disorder and other addictions. Combined with more naturalistic measures of
stress-induced drinking in the laboratory or field (e.g., ecological momentary assessment), this approach might provide a means of stratifying

at-risk populations or patients into the subset for whom negative reinforcement circuits are most relevant to intervention.

The present results are also relevant to on-going debates about the functional organization of the EAc 13. Among researchers focused on
humans, it is widely believed that the Ce and BST are functionally dissociable. Inspired by an earlier generation of lesion and inactivation
studies in rodents 83, this ‘double-dissociation’ or ‘strict-segregation’ hypothesis suggests that the Ce (or the amygdala more generally) rapidly

assembles phasic responses to clear-and-immediate threats (e.g., a cue associated with the imminent delivery of shock), whereas the BST

comes on-line more slowly and is responsible for orchestrating sustained responses to dangers that are diffuse, uncertain, or remote. While

this hypothesis remains popular, and has even been incorporated into the National Institute of Mental Health’s Research Domain Criteria

(RDoC) initiative, a range of evidence gleaned from studies of rodents, monkeys, and humans makes it clear that while the Ce and the BST are

certainly not interchangeable, they are more alike than different 1284, Leveraging an unbiased ROI approach, our results extend this work to -

show that the Ce and BST are similarly sensitive to the threat-dampening effects of alcohol. Whether this generalizes to more intense threat-

related cues (e.g., film clips) or other anxiolytics (e.g., benzodiazepines) remains an important avenue for future studies.

Existing treatments for alcohol use and other additions are far from curative 48>, highlighting the need to develop a deeper understanding of
the underlying motivational processes and neural systems. The present results demonstrate that acute alcohol intoxication dampens reactivity

to threat-related cues across the human EAc. The use of a relatively large sample (Table 1), placebo-controlled between-groups design,
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ecologically relevant dosing, fMRI-optimized task, best practices for the acquisition and processing of functional neuroimaging data, and
unbiased ROI analytic approach enhances confidence in the clinical and translational significance of these results. More broadly, these findings

set the stage for mechanistic work aimed at developing more effective treatments for alcohol abuse and other debilitating addictions.
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Figure 1. The impact of acute alcohol administration on reactivity to threat-related
cues in the central extended amygdala. A. Consistent with prior work, voxelwise
regression analyses revealed significant activation to threat-related faces in the dorsal
amygdala (p < .05, FWE corrected for the volume of the anatomically defined EAc
region-of-interest; total volume: 1,205 voxels; 9,640 mm?3). Inset indicates the location
of the coronal slice. Significant clusters within the EAc ROI (Supplementary Figure S2)
are depicted here. For additional results, see Supplementary Figures S4 and S5 and
Supplementary Tables S1 and S2. B. Voxelwise analyses revealed a significant
reduction in reactivity to threat-related faces in the region of the left BST in the alcohol
compared to the placebo group (same threshold; equivalent to testing the Group x
Condition interaction). The left half of the panel depicts the BST cluster. The right half
depicts the BST (green) in the corresponding section of the atlas of Mai and colleagues
(2015). Note the similar appearance of key landmarks, including the fornix and lateral
ventricle (white), as well as the optic tract and anterior commissure (gold). Upper left
inset indicates the location of the coronal slice. Upper right inset depicts the
myeloarchitecture (Weigert fiber stain) of this region in the atlas. The left BST was the
only significant cluster in EAc-focused or whole-brain analyses. For additional results,
see Supplementary Figure S6 and Supplementary Table S3. C. For illustrative
purposes, barplot depicts mean standardized regression coefficients extracted from the
peak voxel in the BST cluster for the alcohol (light green) and placebo (dark green)
groups. Hypothesis testing was performed on a voxelwise basis (corrected for multiple
comparisons). Error bars indicate the standard error of the mean. Portions of this figure
were adapted with permission from the atlas of Mai and colleagues 54 Abbreviations—
ac, anterior commissure; BST, bed nucleus of the stria terminalis; Cd, caudate; EAc,
central division of the extended amygdala; FWE, family-wise error; fx, fornix; GPe,
external globus pallidus; GPi, internal globus pallidus; L, left hemisphere; LV, lateral
ventricle; OT, optic tract; Pu, putamen; R, right hemisphere; SVC, small volume
correction.
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Figure 2. The impact of acute alcohol administration on the two major divisions of the EAc. Barplot depicts mean regression coefficients associated with the emotional-
faces/places task for the anatomically defined Ce and BST ROIs for each group. The Ce was significantly more reactive to threat-related faces, relative to the BST (p<.001).
On average, subjects randomly assigned to the alcohol group showed significantly less reactivity to threat-related faces, relative to those in the placebo group (p =.053;
equivalent to testing the Group x Condition interaction). The Group x Region interaction was not significant (p =.88), suggesting that the Ce and BST are similarly sensitive
to the threat-dampening impact of acute alcohol administration. Error bars indicate the standard error of the mean. Abbreviations—EAc, central extended amygdala; RO],
region of interest.
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TABLES

Table 1. The effects of acute alcohol administration on reactivity to threat-related faces in human imaging studies.
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a Older normalization techniques (e.g., affine, EPI-to-EPI) introduce substantial spatial smoothing and registration error, which is a concern for work focused on small
subcortical structures, such as the EAc. b Social drinker ('control') group. Abbreviations—BAL, blood alcohol level; BBR, boundary-based registration of the T1- and T2-
weighted images; Corr, corrected; IV, intravenous; N/A, not applicable; NS, not significant; Unc, uncorrected.
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Table 2. Demographic and descriptive variables.

Total Placebo Alcohol Difference
Sample size 49 22 27 N/A
Mean Age in Years (SD) 22.4 (2.5) 22.1(1.4) 22.6 (3.1) t(47)=.69, p=0.50
Gender: Female/Male 23/26 11/11 12/15 x2=.15 p=0.8
Mean BAL? (SD) N/A 0.00 (0.00) 0.09 (0.02) t(47) =27.20, p <.001
Mean Estimated Number of N/A 2.07 (1.09)® 4.56 (1.25)¢ t(47)=7.32,p <.001
Drinks Consumed During the
Study (SD)
Mean Motion, Frame-to- .13 (.03) 12 (.03) .13 (.03) t(47)=1.01,p =32

Frame Displacement (SD)

a Pre-MRI and post-MRI BAL were strongly correlated, r(47)=.96, p<.001. » Within-group difference from zero, t(26)=8.87, p<.001. ¢ Within-group difference from zero,

t(26)=18.93, p<.001.
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