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ABSTRACT 21 

Background: The distribution and composition of cis-regulatory modules (e.g. transcription 22 

factor binding site (TFBS) clusters) in promoters substantially determine gene expression 23 

patterns and TF targets, whose expression levels are significantly regulated by TF binding. TF 24 

knockdown experiments have revealed correlations between TF binding profiles and gene 25 

expression levels. We present a general framework capable of predicting genes with similar 26 

tissue-wide expression patterns from activated or repressed TF targets using machine learning 27 

to combine TF binding and epigenetic features. 28 

Methods: Genes with correlated expression patterns across 53 tissues were identified 29 

according to their Bray-Curtis similarity. DNase I HyperSensitive region (DHS) -accessible 30 

promoter intervals of direct TF target genes were scanned with previously derived information 31 

theory-based position weight matrices (iPWMs) of 82 TFs. Features from information density-32 

based TFBS clusters were used to predict target genes with machine learning classifiers. The 33 

accuracy, specificity and sensitivity of the classifiers were determined for different feature sets. 34 

Mutations in TFBSs were also introduced to examine their impact on cluster densities and the 35 

regulatory states of predicted target genes. 36 

Results:  We initially chose the glucocorticoid receptor gene (NR3C1), whose regulation has 37 

been extensively studied, to test this approach. SLC25A32 and TANK were found to exhibit the 38 

most similar expression patterns to this gene across 53 tissues. Prediction of other genes with 39 

similar expression profiles was significantly improved by eliminating inaccessible promoter 40 

intervals based on DHSs. A Random Forest classifier exhibited the best performance in 41 

detecting such coordinately regulated genes (accuracy was 0.972 for training, 0.976 for testing). 42 

Target gene prediction was confirmed using CRISPR knockdown data of TFs, which was more 43 

accurate than siRNA inactivation. Mutation analyses of TFBSs also revealed that one or more 44 

information-dense TFBS clusters in promoters are required for accurate target gene prediction.   45 
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Conclusions: Machine learning based on TFBS information density, organization, and 46 

chromatin accessibility accurately identifies gene targets with comparable tissue-wide 47 

expression patterns. Multiple, information-dense TFBS clusters in promoters appear to protect 48 

promoters from the effects of deleterious binding site mutations in a single TFBS that would 49 

effectively alter the expression state of these genes. 50 

KEYWORDS 51 

Information theory, transcription factors, DNA binding sites, gene expression, mutation analysis, 52 

machine learning   53 

BACKGROUND 54 

The distinctive organization and combination of transcription factor binding sites (TFBSs) and 55 

regulatory modules in promoters dictates specific expression patterns within a set of genes [1]. 56 

Clustering of multiple adjacent binding sites for the same TF (homotypic clusters) and for 57 

different TFs (heterotypic clusters) defines cis-regulatory modules (CRMs) in human gene 58 

promoters and can amplify the influence of individual TFBSs on gene expression through 59 

increasing binding affinities, facilitated diffusion mechanisms and funnel effects [2]. Because 60 

tissue-specific TF-TF interactions in TFBS clusters are prevalent, these features can assist in 61 

identifying correct target genes by altering binding specificities of individual TFs [3]. Previously, 62 

we derived iPWMs from ChIP-seq data that can accurately detect TFBSs and quantify their 63 

strengths by computing associated Ri values (Rate of Shannon information transmission for an 64 

individual sequence [4]), with Rsequence being the average of Ri  values of all binding site 65 

sequences and representing the average binding strength of the TF [3]. Furthermore, 66 

information density-based clustering (IDBC) can effectively identify functional TF clusters by 67 

taking into account both the spatial organization (i.e. intersite distances) and information density 68 

(i.e. Ri values) of TFBSs [5]. 69 
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TF binding profiles, either derived from in vivo ChIP-seq peaks [6–8] or computationally 70 

detected binding sites and CRMs [9], have been shown to be predictive of absolute gene 71 

expression levels using a variety of tissue-specific machine learning classifiers and regression 72 

models. Because signal strengths of ChIP-seq peaks are not strictly proportional to TFBS 73 

strengths [3], representing TF binding strengths by ChIP-seq signals may not be appropriate; 74 

nevertheless, both achieved similar accuracy [10]. CRMs have been formed by combining two 75 

or three adjacent TFBSs [9], which is inflexible, as it arbitrarily limits the number of binding sites 76 

contained in a module, and does not consider differences between information densities of 77 

different CRMs. Chromatin structure (e.g. histone modification (HM) and DNase I 78 

hypersensitivity) were also found to be highly redundant with TF binding in explaining tissue-79 

specific mRNA transcript abundance at a genome-wide level [7,8,11,12], which was attributed to 80 

the heterogeneous distribution of HMs across chromatin domains [8]. Combining these two 81 

types of data explained the largest fraction of variance in gene expression levels in multiple cell 82 

lines [7,8], suggesting that either contributes unique information to gene expression that cannot 83 

be compensated for by the other.  84 

The number of genes directly bound by a TF significantly exceeds the number of genes 85 

whose expression levels significantly change upon knockdown of the TF. Only a small subset of 86 

genes whose promoters overlap ChIP-seq peaks were differentially expressed (DE) after 87 

individually knocking 59 TFs down using small interfering RNAs (siRNAs) in the GM19238 cell 88 

line [13]. Correlation between TFBS counts and gene expression levels across 10 different cell 89 

lines among 8,872 genes from these knockdown data were more predictive of DE targets than 90 

setting a minimum threshold on TFBS counts [14]. Their TFBS counts were defined as the 91 

number of ChIP-seq peaks overlapping the promoter, though it was unknown how many binding 92 

sites were present in these peaks; true positives might not be direct targets in the TF regulatory 93 

cascade, as the promoters of these targets were not intersected with ChIP-seq peaks. By 94 
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perturbing gene expression with CAS9-directed clustered regularly interspaced short 95 

palindromic repeats (CRISPR) of 10 different TF genes in K562 cells, the regulatory effects of 96 

each TF on 22,046 genes were dissected by single cell RNA sequencing with a regularized 97 

linear computational model [15]; this accurately revealed DE targets and new functions of 98 

individual TFs, some of which were likely regulated through direct interactions at TFBS in their 99 

corresponding promoters. Machine learning classifiers have also been applied in a small 100 

number of gene instances to predict targets of a single TF using features extracted from n-101 

grams derived from consensus binding sequences [16], or from TFBSs and homotypic binding 102 

site clusters [5]. 103 

To investigate whether the distribution and composition of information theory-based CRMs in 104 

promoters substantially determines gene expression profiles of direct TF targets, we developed 105 

a general machine learning framework that predicts which genes have similar expression 106 

profiles to a given gene and DE direct TF targets by combining information theory-based TF 107 

binding profiles with DHSs. Upon filtering for accessible promoter intervals with DHSs, features 108 

designed to capture the spatial distribution and information composition of CRMs were extracted 109 

from clusters identified by the IDBC algorithm from iPWM-detected TFBSs. Though not all direct 110 

targets regulated by multiple TFs share a common tissue-wide expression profile, this 111 

framework provides insight into the transcriptional program of genes with similar profiles by 112 

dissecting their cis-regulatory element organization and strengths. We identify genes with 113 

comparable tissue-wide expression profiles by application of Bray-Curtis similarity [17]. Using 114 

transcriptome data generated by CRISPR [15] and siRNA-based [13] TF knockdowns, we 115 

verified predicted direct TF targets whose promoters overlap tissue-specific ChIP-seq peaks, in 116 

contrast with correlation-based approaches [14].   117 

METHODS 118 
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To identify genes with similar tissue-wide expression patterns, we formally define gene 119 

expression profiles and pairwise similarity measures between profiles of different genes. A 120 

general machine learning framework relates features extracted from the organization of TFBSs 121 

in these genes to their tissue-wide expression patterns. True positives (TPs) and negatives 122 

(TNs) for predicting direct DE TF targets were validated using CRISPR- and siRNA-generated 123 

knockdown data (see below).  124 

Similarity between gene expression profiles 125 

The median RPKM (Reads Per Kilobase of transcript per Million mapped reads) of 56,238 126 

genes across 53 tissues were obtained from the Genotype-Tissue Expression (GTEx) project 127 

[18]. To capture the tissue-wide overall expression pattern of a gene instead of within a single 128 

tissue, the expression profile of a gene was defined as its median RPKM across the 53 tissues, 129 

which forms a vector of size 53 and does not distinguish between different isoforms whose 130 

expression patterns may significantly differ from each other. To obtain ground-truth genes that 131 

have similar expression profiles to a given gene, the Bray-Curtis Similarity (Equation 1) was 132 

used to compute the similarity value between the expression profiles of two genes, because it 133 

takes both the directions and lengths of the vectors into account while maintaining strict bounds 134 

of 0 and 1. 135 

𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝐸𝑃𝐴, 𝐸𝑃𝐵) = {
1,     𝑖𝑓 ∑ 𝐸𝑃𝑖

𝐴 = ∑ 𝐸𝑃𝑖
𝐵 = 053

𝑖=1
53
𝑖=1

1 −
∑ |𝐸𝑃𝑖

𝐴−𝐸𝑃𝑖
𝐵|53

𝑖=1

∑ (𝐸𝑃𝑖
𝐴+𝐸𝑃𝑖

𝐵)53
𝑖=1

,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (1) 136 

where 𝐸𝑃𝐴 and 𝐸𝑃𝐵 are respectively the expression profiles of genes 𝐴 and 𝐵, 𝐸𝑃𝑖
𝐴 and 𝐸𝑃𝑖

𝐵 are 137 

respectively the median RPKM of genes 𝐴 and 𝐵 in the 𝑖th tissue. If 𝐸𝑃𝐴 = 𝐸𝑃𝐵, then 138 

𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝐸𝑃𝐴, 𝐸𝑃𝐵) = 1. 139 

Prediction of genes with similar expression profiles 140 
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The framework for identifying genes that have similar expression profiles to a specific gene is 141 

shown in Figure 1A and 1B. All DHSs in 95 cell types generated by the ENCODE project [18; 142 

hg38 assembly] were intersected with known promoters [20], then 94 iPWMs exhibiting primary 143 

binding motifs for 82 TFs [3] were used to detect TFBSs in overlapping intervals. When 144 

detecting heterotypic TFBS clusters with the IDBC algorithm, a minimum threshold 0.1 ∗145 

𝑅𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 was set for Ri values of TFBSs, in order to remove weak binding sites that were likely 146 

to be false positive TFBSs.  147 

     The information density-related features derived from each TFBS cluster include: 1) The 148 

distance between this cluster and the transcription start site (TSS); 2) The length of this cluster; 149 

3) The information content of this cluster (i.e. the sum of Ri values of all TFBSs in this cluster); 4) 150 

The number of binding sites of each TF within this cluster; 5) The number of strong binding sites 151 

(Ri > Rsequence) of each TF within this cluster; 6) The sum of Ri values of binding sites of each TF 152 

within this cluster; 7) The sum of Ri values of strong binding sites (Ri > Rsequence) of each TF 153 

within this cluster. 154 

For a gene instance, each of Features 1-3 is defined as a vector whose size equals the 155 

number of clusters in the promoter; thus, the entire vector could be input into a classifier. If two 156 

instances contained different numbers of clusters, the maximum number of clusters among all 157 

instances was determined, and null clusters are added at the 5’ end of promoters with fewer 158 

clusters, enabling all instances to have the same cluster count. Machine learning classifiers in 159 

Weka [21] were implemented for training and testing.  160 

Prediction of differentially expressed direct targets of TFs 161 

Using gene expression in the CRISPR-based perturbations 162 

Dixit et al. performed CRISPR-based perturbation experiments using multiple guide RNAs for 163 

each of ten TFs in K562 cells, resulting in a regulatory matrix of coefficients that indicate the 164 
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effect of each guide RNA on each of 22,046 genes [15]. The coefficient of a guide RNA on a TF 165 

gene target is defined as the log10(fold change in gene expression level) [15]. Among these ten 166 

TFs, we have previously derived iPWMs exhibiting primary binding motifs for seven (EGR1, 167 

ELF1, ELK1, ETS1, GABPA, IRF1, YY1) [3]. Therefore, the framework for predicting direct TF 168 

targets in the K562 cell line (Figure 1A and 1C) was applied to these TFs. The criteria for 169 

defining a TP (i.e. a DE direct target), of a TF was:  170 

1) The fold change in the expression level of this gene for each guide RNA of the TF was > 171 

(or <) 1, consistent with the possibility that the gene was regulated by the TF, and  172 

2) The average fold change in the expression level of this gene for all guide RNAs of the TF 173 

was > threshold 𝜀 (or < 1 𝜀⁄ ), and  174 

3) The promoter interval (10 kb) upstream of a TSS of this gene overlaps a ChIP-seq peak of 175 

the TF in the K562 cell line.  176 

If the coefficients of all guide RNAs of the TF for a gene are zero, the gene was defined as a 177 

TN. As the threshold ε increases, the number of TPs strictly decreases; as ε decreases, we 178 

have increasingly lower confidence in the fact that the TPs were indeed differentially expressed 179 

because of the TF perturbation. To achieve a balance between sensitivity and specificity, we 180 

evaluated three different values (i.e. 1.01, 1.05 and 1.1) for ε. For each TF, all ENCODE ChIP-181 

seq peak datasets from the K562 cell line were merged to determine TPs. To make the 182 

numbers of TNs and TPs equal, the Bray-Curtis function was applied to compute the similarity 183 

values in the expression profile between all TNs and the TP with the largest average coefficient, 184 

then the TNs with the smallest values were selected (Figure 1C).  185 

Because TFs act upon different sets of target genes in different tissues [3], the iPWMs of 186 

EGR1, ELK1, ELF1, GABPA, IRF1, YY1 from the K562 cell line were used to detect binding 187 

sites; for ETS1, we used the only available iPWM from the GM12878 cell line [3]. Six features 188 
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were derived from each homotypic cluster (i.e. Features 3 and 6 converged to the same value, 189 

because only binding sites from a single TF were used). 190 

Using gene expression in the siRNA-based knockdown 191 

In the GM19238 cell line, 59 TFs were individually knocked down using siRNAs, and 192 

significant changes in the expression levels of 8,872 genes were indicated according to their 193 

corresponding P-values [13]. In these cases, the P-value of a gene for a TF is the probability of 194 

observing the change in the expression level of this gene under the null hypothesis of no 195 

differential expression after TF knockdown; thus the larger the change in the expression level, 196 

the smaller the P-value and the more likely this gene is differentially expressed. They also 197 

indicated whether the promoters of these genes display evidence of binding to TFs by 198 

intersecting with ChIP-seq peaks in the GM12838 cell line. Among these 59 TFs, we have 199 

previously derived accurate iPWMs exhibiting primary binding motifs for 11 (BATF, JUND, 200 

NFE2L1, PAX5, POU2F2, RELA, RXRA, SP1, TCF12, USF1, YY1) [3]. Therefore, the 201 

framework for predicting direct TF targets in the GM19238 cell line (Figure 1A and 1D) was 202 

applied to these 11 TFs. 203 

We defined a TP (i.e. a DE direct target) for a TF, if the P-value of this gene for the TF was ≤ 204 

0.01, and the promoter interval (10kb) upstream of a TSS of this gene overlapped a ChIP-seq 205 

peak of the TF in the GM12878 cell line. A TN for a TF exhibited the following properties: a P-206 

value > 0.01 for the TF, and this gene was annotated to exhibit a single promoter and one 207 

constitutive transcript. Because different transcripts can display different tissue-specific 208 

expression [22], the use of genes with one single transcript guaranteed that the analyzed 209 

promoters functionally induce their expression in the GM12878 cell line. TPs and TNs were 210 

ranked according to their Bray-Curtis similarity values prior to being separated into training and 211 

test sets (Figure 1D). 212 
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The DHSs in the GM19238 cell line mapped from the hg19 genome assembly were first 213 

remapped to the hg38 assembly using liftOver (available at genome.ucsc.edu) [23]. Aside from 214 

RELA and NFE2L1, the iPWMs of TFs from the GM12878 cell line were used to detect binding 215 

sites. For RELA, the iPWM from the GM19099 cell line was used; for NFE2L1, the only 216 

available iPWM was derived from K562 cells and was applied. Although the knockdown was 217 

performed in GM19238, GM12878 and GM19099 are also lymphoblastic cell lines, with 218 

GM19099 and GM19238 both being derived from Yorubans. For this analysis, the iPWMs 219 

derived in GM12878 and GM19099 were more appropriate than the iPWM from K562, since 220 

GM12878 and GM19099 are of the same tissue type and are thus more likely comparable to 221 

GM19238 than to K562. 222 

Mutation analyses on promoters of differentially expressed direct targets 223 

To better understand the significance of individual binding sites for information-dense 224 

clusters and the regulatory state of direct targets, we evaluated the effects of sequence changes 225 

that altered the Ri values of these sites on cluster formation and whether a gene was predicted 226 

to be a TF target. Mutations were sequentially introduced into the strongest binding sites in 227 

TFBS clusters of the EGR1 target gene, MCM7, to determine the threshold for cluster formation 228 

after disappearing clusters disabled induction of MCM7 expression. For one target gene of each 229 

TF from the CRISPR-generated perturbation data, effects of naturally occurring TFBS variants 230 

present in dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) [24] were also evaluated to 231 

explore aspects of TFBS organization that enabled both clusters and promoter activity to be 232 

resilient to binding site mutations. This was done by analyzing whether the occurrence of 233 

individual or multiple single nucleotide polymorphisms (SNPs) lead to the loss of binding sites 234 

and the clusters that contain them, and result in changes in the predictions of these targets.  235 

RESULTS 236 
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Similarity between gene expression profiles 237 

To confirm that the Bray-Curtis Similarity can indeed effectively measure how akin the 238 

expression profiles of two genes are to each other, it was applied to compute the similarity 239 

values between the expression profiles of the glucocorticoid receptor (GR or NR3C1) gene and 240 

all other 56,237 genes. NR3C1 is an extensively characterized TF with many known direct 241 

target genes [22]. As a constitutively expressed TF activated by glucocorticoid ligands, it can 242 

mediate the up-regulation of anti-inflammatory genes by binding of homodimers to 243 

glucocorticoid response elements and down-regulation of proinflammatory genes by complexing 244 

with other activating TFs (e.g. NFKB and AP1) and eliminating their ability to bind targets [22]. 245 

NR3C1 can bind its own promoter forming an auto-regulatory loop, which also contains 246 

functional binding sites of 11 other TFs (e.g. SP1, YY1, IRF1, NFKB) whose iPWMs have been 247 

developed and/or mutual interactions have been described in Lu et al. [3,22]. However, the 248 

expression profile of NR3C1 integrates all different splicing and translational isoforms (e.g. 249 

GRα-A to GRα-D, GRβ, GRγ, GRδ), whereas these isoforms have tissue-specific expression 250 

patterns (e.g. levels of the GRα-C isoforms are significantly higher in the pancreas and colon, 251 

whereas levels of GRα-D are highest in spleen and lungs) [22]. SLC25A32 and TANK have the 252 

greatest similarity values to NR3C1 (0.880 and 0.877 respectively), which is evident intuitively 253 

based on their overall similar expression patterns across the 53 tissues (Figure 2).  254 

Prediction of genes with similar expression profiles 255 

The framework for predicting genes with similar expression profiles was based on promoter 256 

scans with each TFBS, followed by the derivation of the spatial density- and information density-257 

related features from clusters in each promoter for genes with an NR3C1-like expression pattern 258 

(as shown in Figure 1A and 1B).  We investigated two versions of this framework, depending on 259 

whether promoter sequences were first intersected with DHSs. Under both scenarios, all 260 

classifiers (Naïve Bayes, two types of Decision trees and three types of Support vector 261 
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machines (SVM)) were applied to both the training and test sets, successfully distinguishing 262 

similar from dissimilar genes in terms of expression profiles (i.e. accuracy, sensitivity and 263 

specificity all > 0.5) (Table 1, Additional file 5). We found, however, that generally all TFBSs in a 264 

DHS formed a binding site cluster, and the performance of all classifiers were significantly 265 

improved by inclusion of DHS information (i.e. accuracy, sensitivity and specificity were all 266 

increased) (Table 1, Additional file 5). The SVM classifier with the RBF kernel and the Random 267 

Forest classifier were the only two classifiers with accuracies exceeding 0.97, and each 268 

performed equally well on both the training and test sets (Table 1). 269 

Prediction of differentially expressed direct TF targets  270 

Between the two classifiers with the best performance in distinguishing genes with similar 271 

expression profiles to NR3C1 from others (i.e. SVM with RBF kernel and Random Forest), we 272 

used a Random Forest (RF) classifier to predict direct TF targets respectively based on the 273 

CRISPR- [15] and siRNA-generated [13] perturbation data, because the SVM classifier with the 274 

RBF kernel did not perform as well (Additional file 5). 275 

After eliminating TFBSs in inaccessible promoter intervals, i.e. those excluded from tissue-276 

specific DHSs, the RF classifier predicted direct targets with greater accuracy and specificity 277 

(Table 2 and 3, Additional file 5). Specifically, predictions based on CRISPR-generated 278 

knockdown data for TFs: EGR1, ELK1, ELF1, ETS1, GABPA, and IRF1 were more accurate 279 

than for YY1, which itself represses or activates a wide range of promoters by binding to sites 280 

overlapping the TSS (Table 2, Additional file 5). Accordingly, the perturbation data indicated that 281 

YY1 has ~3-23 times more targets in the K562 cell line than the other TFs (ε = 1.05), and its 282 

binding has a more significant impact on the expression levels of target genes (for YY1, the ratio 283 

of the target counts at ε = 1.1 vs ε = 1.01 was 0.328, which significantly exceeded those of the 284 

other TFs (0.019-0.081); Additional file 3). This is concordant with our previous finding that YY1 285 

extensively interacts with 11 cofactors (e.g. DNA-binding IRF9 and TEAD2; non-DNA-binding 286 
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DDX20 and PYGO2) in K562 cells, consistent with a central role in specifying erythroid-specific 287 

lineage development [3].   288 

Despite a high accuracy of target recognition, sensitivity was consistently higher than 289 

specificity (Table 2, Additional file 5), implying that the classifier more effectively identified direct 290 

targets compared to non-targets. This is attributable to the fact that the promoters of false 291 

positive target genes also contain accessible, but non-functional TFBSs. In vivo co-regulation 292 

mediated by interacting cofactors, which was excluded by the classifier, assisted in 293 

distinguishing these non-functional sites that do not significantly affect gene expression [3,13].   294 

As the threshold 𝜀 increased, the accuracy of the classifier monotonically increased on the 295 

training sets of all the TFs (Figure 3) as expected. For a gene to be defined as a DE target of a 296 

TF, the average fold change in its expression level for all guide RNAs that downregulated the 297 

TF were required to reach the minimum threshold 𝜀. Upon TF knockdown, higher 𝜀 is inversely 298 

correlated with the number of target genes, but positively correlated with larger fold changes in 299 

their corresponding expression levels. In general, more significantly DE genes have been 300 

associated with a higher number of TFBSs in their promoters [13]. Thus, at greater 𝜀, there are 301 

larger differences in the values of machine learning features derived from TFBS clusters 302 

between direct targets and non-targets (Additional File 1). Note that this inference holds valid 303 

only when taking all direct targets and non-targets of a TF into account; it may not be true for a 304 

specific pair of genes (i.e. the promoter of a gene that is not a DE target may contain a greater 305 

number of accessible, but non-functional TFBSs) (Additional File 1). We noted this trend on the 306 

test sets of only ELF1 and IRF1 (Figure 3); for the other five TFs (EGR1, ELK1, ETS1, GABPA, 307 

YY1), differences in the clustered TFBS counts between targets and non-targets did not 308 

necessary increase with larger values of 𝜀, since the test set consists of both targets and non-309 

targets in equal proportions (Additional File 1). However, the classifier performed well in each 310 
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instance, because the count differences were still sufficiently large to discriminate between 311 

targets and non-targets (Figure 3). 312 

With the siRNA-generated knockdown data, the performance of the RF classifier was 313 

compared to an approach inferring DE targets by correlating TF binding with gene expression 314 

levels across ten cell types [14]. In this correlation-based approach, three measures (i.e. the 315 

absolute Pearson correlation coefficient (PC), the absolute Spearman correlation coefficient 316 

(SC), and the absolute combined angle ratio statistic (CARS)), whose performance was 317 

evaluated with precision-recall curves, were alternatively used to compute a correlation score 318 

between the number of ChIP-seq peaks overlapping the promoter and gene expression values. 319 

Genes predicted to be DE targets had scores above the threshold resulting in a 1.5-fold 320 

increase compared to the background precision. For example, in the case of the TF YY1, which 321 

was analyzed by both approaches, the performance of the RF classifier on the training set was 322 

0.66 (precision) and 0.456 (recall), and the test set was 0.672 and 0.396 (Table 3). This 323 

classifier outperformed all three correlation measures (PC: 0.467 and 0.003; SC: 0.467 and 324 

0.006; CARS: 0.467 and 0.003), even though the correlation approach used a less stringent P-325 

value threshold (0.05) for defining differential expression of likely non-direct targets, and 326 

intersected ChIP-seq peaks over shorter 5kb promoter intervals upstream of the TSS. 327 

Intersection of genes with similar expression profiles and direct targets 328 

To determine how many direct targets have similar tissue-wide expression profiles, we 329 

intersected the set of targets with the set of 500 genes with the most similar expression profiles 330 

for each TF (Table 4, Additional file 6). The TFs PAX5 and POU2F2 are primarily expressed in 331 

B cells, and their respective targets IL21R and CD86 are also B cell-specific, which accounts for 332 

the high similarity in the expression profile between them. There are respectively 21 and 7 333 

nuclear mitochondrial genes (e.g. MRPL9 and MRPS10, which are subunits of mitochondrial 334 

ribosomes) in the intersections for YY1 in the K562 and GM19238 cell lines [25]. Previous 335 
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studies reported that YY1 upregulates a large number of mitochondrial genes by complexing 336 

with PGC-1α in C2C12 cells [26], and genes involved in the mitochondrial respiratory chain in 337 

K562 cells [15], which is consistent with the idea that YY1 may broadly regulate mitochondrial 338 

function (within all 53 tissues in addition to the erythrocyte, lymphocyte and skeletal muscle cell 339 

lines). 340 

Between 0.4%-25% of genes with similar expression profiles to the TFs are actually direct 341 

targets (Table 4); the majority are non-targets whose promoters contain non-functional binding 342 

sites that are distinguished from targets by their lack of coregulation by corresponding cofactors. 343 

For YY1 and EGR1, we validated this hypothesis by contrasting the flanking cofactor binding 344 

site distributions and strengths in the promoters of the most similarly expressed target genes 345 

(YY1: MRPL9, BAZ1B; EGR1: CANX, NPM1) and non-target genes (YY1: ADNP, RNF25; 346 

EGR1: AC142293.3, AP000705.7). Strong and intermediate recognition sites for TFs: SP1, 347 

KLF1, CEBPB formed heterotypic clusters with adjacent YY1 sites; as well TFBSs of SP1, KLF1, 348 

and NFY were frequently present adjacent to EGR1 binding sites. These patterns contrasted 349 

with the enrichment of CTCF and ETS binding sites in gene promoters of YY1 and EGR1 non-350 

targets (Additional file 7). Previous studies have reported that KLF1 is essential for terminal 351 

erythroid differentiation and maturation [27], direct physical interactions between YY1 and the 352 

constitutive activator SP1 synergistically induce transcription [28], the activating CEBPB 353 

promotes differentiation and suppresses proliferation of K562 cells by binding the promoter of 354 

the G-CSFR gene encoding a hematopoietin receptor [29], EGR1 and SP1 synergistically 355 

cooperate at adjacent non-overlapping sites on EGR1 promoter but compete binding at 356 

overlapping sites [30]; whereas CTCF functions as an insulator blocking the effects of cis-acting 357 

elements and preventing gene activation [31], and ETV6, a member of the ETS family, is a 358 

transcriptional repressor required for bone marrow hematopoiesis and associated with leukemia 359 

development [32]. 360 
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Mutation analyses on promoters of direct targets  361 

Because the promoters of most direct targets contain multiple binding site clusters, we 362 

anticipate that this enables these genes’ expression to be naturally robust against binding site 363 

mutations; in other words, the other clusters can compensate for the loss of a cluster destroyed 364 

by mutations in binding sites, so that the mutated promoters are still capable of effectively 365 

inducing gene transcription upon TF binding. First, we validated this hypothesis by examining 366 

whether introducing artificial variants into binding sites in the promoter of the target gene MCM7 367 

in the test set of EGR1 changes the classifier output (Figure 4). Specifically, in the K562 cell line, 368 

MCM7 is upregulated by EGR1. Knockdown of MCM7 has an anti-proliferative and pro-369 

apoptotic effect on K562 cells [33] and the loss of EGR1 increases leukemia initiating cells [34], 370 

which suggests that EGR1 may act as a tumor suppressor in K562 cells through the MCM7 371 

pathway. 372 

First, the strongest binding site (at position chr7:100103347 [hg38], - strand, Ri = 12.0 bits) in 373 

the promoter was eliminated by a G->A mutation, resulting in the disappearance of Cluster 1, 374 

which consists of two sites (the other site at chr7:100103339, -, 4.3 bits). EGR1 was still 375 

predicted to compensate for this mutation, due to the presence of the other two clusters 376 

comprising weaker binding sites of intermediate strength (chr7:100102252, +, 7.0 bits; 377 

chr7:100102244, +, 1.3 bits; chr7:100101980, +, 8.9 bits; chr7:100101977, +, 2.2 bits; 378 

chr7:100101984, +, 1.9 bits), enabling the promoter to maintain capability of inducing MCM7 379 

expression (Figure 4). These adjacent clustered sites, which may not be strong enough to bind 380 

TFs and individually activate transcription, can stabilize each other’s binding [2]. The weaker 381 

sites flanking a strong binding site in a cluster can direct the TF molecule to the strong site and 382 

extend the period of the molecule physically associating with the strong site, which is termed, 383 

the funnel effect [2]. Further, Clusters 2 and Cluster 3 were respectively removed by G->T and 384 

C->G mutations abolishing the strongest site in either cluster, which altered the prediction, that 385 
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is, EGR1 lost the capability to induce MCM7 transcription (Figure 4). The remaining four sparse 386 

weak sites do not form a cluster and cannot completely supplant the disrupted strong sites. 387 

Further, we examined the impacts of known natural SNPs on binding site strengths, clusters 388 

and the regulatory state of the promoter for a direct target of each of the seven TFs from the 389 

CRISPR-generated perturbation data (Table 5). Often a single SNP (e.g. rs996639427 of EGR1) 390 

can affect the strengths of multiple binding sites (Table 5). Apart from SNPs that are predicted 391 

to abolish binding (Figure 4), leaky variants that merely weaken TF binding are common (Table 392 

5). Binding stabilization between adjacent sites and the funnel effect enable the CRMs 393 

comprised of information-dense clusters to be robust to mutations in individual binding sites. In 394 

this way, neither mutations that abolish TFBSs nor leaky SNPs in flanking weak sites can 395 

destroy functional clusters (e.g. rs1030185383 and rs5874306 of IRF1), whereas SNPs with 396 

large reductions in Ri  values of central strong sites are more likely to abolish clusters (e.g. 397 

rs865922947, rs946037930, rs917218063 and rs928017336 of YY1) (Table 5). More generally, 398 

the presence of multiple clusters enables promoters to be effectively resilient to the effects 399 

binding site mutations; only the complete abolishment of all clusters resulting from the 400 

simultaneous occurrence of multiple SNPs can transform the promoter to be unresponsive to TF 401 

binding to residual weak sites (e.g. rs997328042, rs1020720126 and rs185306857 of GABPA) 402 

(Table 5). Furthermore, a relatively small number of SNPs that strengthen TF binding and 403 

eventually amplify the regulatory effect of the TF on the gene expression level are also present 404 

(e.g. rs887888062 of EGR1 and rs751263172 of ELF1) (Table 5), suggesting that, in addition to 405 

deleterious mutations, benign variants may also be found in promoters, consistent with the 406 

expectations of neutral theory [35].  407 

DISCUSSION 408 

In this study, the Bray-Curtis Similarity function was initially shown (for the NR3C1 gene) to 409 

measure the relatedness of overall expression patterns between genes across a diverse set of 410 
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tissues. The resulting machine learning framework distinguished similar from dissimilar genes 411 

based on the distribution, strengths and compositions of TFBS clusters in accessible promoters, 412 

which can substantially account for the corresponding gene expression patterns. Using 413 

knockdown data as the gold standard, the combinatorial use of TF binding profiles and 414 

chromatin accessibility was also demonstrated to be predictive of DE direct TF targets. A 415 

binding site comparison confirmed that coregulatory cofactors are responsible for distinguishing 416 

between functional sites in targets and non-functional ones in non-targets. Furthermore, 417 

mutation analyses on binding sites of targets demonstrated that the existence of both multiple 418 

TFBSs in a cluster and multiple information-dense clusters in a promoter enables both the 419 

cluster and the promoter to be resilient to binding site mutations.  420 

The Random Forest classifier improved after intersecting promoters with DHSs in both 421 

prediction of genes with similar expression profiles to NR3C1 and prediction of direct TF targets 422 

(Table 1, 2 and 3, Additional file 5). This intersection eliminated noisy binding sites that are 423 

inaccessible to TF proteins in promoters; specifically, it widened discrepancies in feature vectors 424 

between TPs and TNs. If the 10kb promoter of a gene instance does not overlap DHSs, its 425 

feature vector will only consist of 0; the percentages of TNs whose promoters do not overlap 426 

DHSs considerably exceeded those of TPs (Additional file 8), which led to an excess of TN 427 

feature vectors containing only 0 after intersection. This explains why these TNs are not 428 

functional targets of the TFs in the K562 and GM19238 cell lines, because their entire 429 

promoters are not open to TF molecules; other regulatory regions besides the proximal 430 

promoters (e.g. distal enhancers) still enable the TFs to effectively control the expression of the 431 

TPs with inaccessible promoters. 432 

The relatively poor performance of the classifier on YY1 (Table 2) is attributable to its smaller 433 

percentage of TNs with inaccessible promoters (Additional file 8). Additionally, the Random 434 

Forest classifier was more predictive of functional TF binding on the CRISPR-generated 435 
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knockdown data than the siRNA-generated ones (Table 2 and 3). This larger discrepancy in 436 

feature vectors between TPs and TNs from CRISPR-based perturbations is also attributable to 437 

the greater differences in the percentages between TPs and TNs with inaccessible promoters 438 

(Additional file 8). Among the 22,046 genes whose expression levels were measured in the 439 

CRISPR-based perturbations, most of the TNs with inaccessible promoters merely have one 440 

transcript and specific functions (e.g. VENTXP1 for the TF, EGR1), whereas many such TNs 441 

were excluded from the 8,872 genes whose knockdown data were generated by siRNA 442 

inactivation.  443 

Our mutation analyses revealed that some deleterious TFBS mutations could be 444 

compensated for by other information-dense clusters in a promoter; thus predicting the effects 445 

of mutations in individual binding sites would not be sufficient to interpretation of downstream 446 

effects. Though compensatory clusters may maintain gene expression, the promoter will provide 447 

lower levels of activity than the wild-type promoter could, which is a recipe for achieving natural 448 

phenotypic diversity. Few published studies in molecular diagnostics have specifically examined 449 

the effects of naturally occurring variants within clustered TFBSs; thus IDBC-based machine 450 

learning provided an alternative computational approach to predict deleterious mutations that 451 

actually impact (i.e. repress or abolish) transcription of target genes and result in abnormal 452 

phenotypes, and to simultaneously minimize false positive calls of TFBS mutations that 453 

individually have little or no impact.   454 

Apart from these TFs, the Bray-Curtis Similarity can be directly applied to identify the ground-455 

truth genes with overall similar tissue-wide expression patterns to any other gene whose 456 

expression profile is known. Further studies could investigate the biological significance 457 

underlying the phenomenon that all these genes share a common expression pattern, including 458 

the similarity between other regulatory regions besides proximal promoters in terms of TFBSs 459 

and epigenetic markers. This machine learning framework can also be applied to predict direct 460 
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DE targets for other TFs and in other cell lines, depending on the availability of corresponding 461 

knockdown data.  462 

There are a number of limitations of our approach. The Bray-Curtis function seems unable to 463 

accurately measure the similarity between gene expression profiles of a ubiquitously expressed 464 

gene (e.g. NR3C1) and a tissue-specific gene (e.g. stomach-specific PGA3), which exhibit quite 465 

different tissue-wide expression patterns (i.e. 𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝑁𝑅3𝐶1, 𝑃𝐺𝐴3) = 0.007). Intuitively, 466 

in terms of expression patterns PGA3 is more similar to a gene (e.g. MIR23A) without any 467 

detectable mRNA in any of the 53 tissues analyzed than NR3C1; however, the Bray-Curtis 468 

similarity values indicate that both PGA3 and NR3C1 bear no similarity to MIR23A (i.e. 469 

𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝑁𝑅3𝐶1, 𝑀𝐼𝑅23𝐴) = 𝑠𝑖𝑚𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠(𝑃𝐺𝐴3, 𝑀𝐼𝑅23𝐴) = 0). Another possible 470 

limitation in classifier performance in the prediction of genes with similar tissue-wide expression 471 

profiles is that only binding sites of 82 TFs were analyzed due to a lack of available iPWMs for 472 

other TFs, given that 2000-3000 sequence-specific DNA-binding TFs are estimated to be 473 

encoded in the human genome [36]. For example, four TFs (CREB, MYB, NF1, GRF1) were 474 

previously reported to bind the promoter of the NR3C1 gene to activate or repress its 475 

expression, however their iPWMs exhibiting known primary motifs could not be successfully 476 

derived from ChIP-seq data [3,22]. Regarding the CRISPR-generated knockdown data used 477 

here, TPs were inferred to be direct targets by intersecting promoters with their corresponding 478 

ChIP-seq peaks, which may not be completely accurate, due to the presence of noise peaks 479 

that do not contain true TFBSs [3,37]. In instances where small fold changes in the expression 480 

levels of DE targets were evident, these peaks could arise from compromised efficiency of 481 

knockdowns as a result of suboptimal guide RNAs or the limitations of perturbing only a single 482 

allele of the TF. Finally, the framework developed here only takes into account the 10kb interval 483 

proximal to the TSS, and would not therefore capture long range enhancer effects beyond this 484 
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distance; by contrast, correlation based approaches have successfully incorporated multiple 485 

definitions of promoter length [14]. 486 

CONCLUSIONS 487 

The Bray-Curtis similarity measure is able to effectively identify genes with similar tissue-488 

wide expression profiles. By analysis of promoter information theory-based TF binding profiles 489 

that captured the spatial distribution and information contents of TFBS clusters, ChIP-seq and 490 

chromatin accessibility data, we described a machine learning framework that distinguished 491 

tissue-wide expression profiles of similar vs dissimilar genes and identified direct DE targets of 492 

TFs. Functional binding sites in target genes that significantly alter expression levels upon direct 493 

binding are also distinguished by TF-cofactor coregulation from non-functional sites in non-494 

targets. Finally, depending on how multiple TFBSs are organized in information-dense clusters 495 

in target gene promoters, sequence variations in these binding sites may be protective, i.e. 496 

resilient to dysregulation or, if deleterious, abrogate their normal transcriptional programs. 497 

LIST OF ABBREVIATIONS 498 

TF: transcription factor, TFBS: transcription factor binding site, CRM: cis-regulatory modules, 499 

iPWM: information theory-based position weight matrix, IDBC: information density-based 500 

clustering, ChIP-seq: chromatin immunoprecipitation with massively parallel DNA sequencing, 501 

HM: histone modification, mRNA: messenger RNA, siRNA: small interfering RNA, CRISPR: 502 

clustered regularly interspaced short palindromic repeats, DHS: deoxyribonuclease I 503 

hypersensitive region, TP: true positive, TN: true negative, RPKM: reads per kilobase of 504 

transcript per million mapped reads, GTEx: genotype-tissue expression, ENCODE: 505 

encyclopedia of DNA elements, TSS: transcription start site, SVM: support vector machine, RBF: 506 

radial basis function, PC: absolute Pearson correlation coefficient, SC: the absolute Spearman 507 
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correlation coefficient, CARS: the absolute combined angle ratio statistic, SNP: single 508 

nucleotide polymorphism. 509 
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 648 

FIGURE LEGENDS 649 

Figure 1. General framework for predicting genes with similar tissue-wide expression 650 

profiles and DE direct TF targets 651 

A) An overview of the machine learning framework. The steps enclosed in the dashed 652 

rectangle and for forming training and test sets vary across prediction of genes with similar 653 

expression profiles and DE direct TF targets. The step with a dash-dotted border that intersects 654 

promoters with DHSs is a variant of the primary approach that provided more accurate results. 655 

In the IDBC algorithm (Additional file 1), the parameter I is the minimum threshold on the total 656 

information contents of TFBS clusters. In prediction of genes with similar expression profiles, 657 

the minimum value was 939, which was the sum of mean information contents (Rsequence values) 658 

of all 94 iPWMs; in prediction of direct targets, this value was the Rsequence value of the single 659 

iPWM used to detect TFBSs in each promoter. The parameter d is the radius of initial clusters in 660 

base pairs, whose value, 25, was determined empirically. Eight types of three different 661 

classifiers were evaluated with statistics (accuracy, sensitivity and specificity) to measure the 662 

classifier performance (Additional file 1). B) Formation of the training and test sets for identifying 663 

genes with similar expression profiles to a given gene (Additional file 2). C) Formation of the 664 

training and test sets for predicting direct targets of seven TFs using the CRISPR-generated 665 

perturbation data in K562 cells (Additional file 3). D) Formation of the training and test sets for 666 

predicting direct targets of 11 TFs using the siRNA-generated knockdown data in GM19238 667 

cells (Additional file 4). When genes with single transcripts were more than the TPs, those with 668 

the largest P-values were selected as TNs (null hypothesis of differential expression cannot be 669 

rejected); when genes with single transcripts were fewer than the TPs, those genes with two 670 

transcripts and the largest P-values were also selected. This step was iterated until the number 671 

of TNs equaled that of TPs. 672 
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Figure 2. Expression profiles of NR3C1, SLC25A32 and TANK 673 

Visualization of the expression values (in RPKM) of these genes across 53 tissues from 674 

GTEx. For each gene, the colored rectangle belonging to each tissue indicates the valid RPKM 675 

of all samples in the tissue, the black horizontal bar in the rectangle indicates the median RPKM, 676 

the hollow circles indicate the RPKM of the samples considered as outliers, and the grey vertical 677 

bar indicates the sampling error. By comparing the pictures, the overall expression patterns of 678 

the three genes across the 53 tissues resemble each other (e.g. all three genes exhibit the 679 

highest expression levels in lymphocytes and the lowest levels in brain tissues). 680 

Figure 3. Accuracy of the Random Forest classifier when using three different values 681 

for 𝜺  682 

A) The accuracy of the classifier on the training sets of the TFs based on 10-fold cross 683 

validation. Binding site clusters were derived intersecting promoters with DHSs, for different 684 

minimum threshold  values (i.e. 1.01, 1.05 and 1.1) corresponding to the average fold change 685 

in gene expression levels under all guide RNAs of the TF. B) The accuracy on the test sets. As 686 

𝜀 increased, accuracy on the training sets also increased. 687 

Figure 4. Mutation analyses on the target MCM7 in the test set of EGR1  688 

This figure depicts the effect of a mutation in each EGR1 binding site cluster of the MCM7 689 

promoter on the expression level of MCM7, which is a target of the TF EGR1. The strongest 690 

binding site in each cluster were abolished by a single nucleotide variant. Upon loss of all three 691 

clusters, only weak binding sites remained and EGR1 was predicted to no longer be able to 692 

effectively regulate MCM7 expression. Multiple clusters in the promoters of TF targets confers 693 

robustness against mutations within individual binding sites that define these clusters.  694 
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TABLES 695 

Table 1. Performance of machine learning classifiers for predicting genes with similar 696 

expression profiles to NR3C1 697 

Classifier 

After intersecting promoters with DHSs 

Training set§ Test set 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Naïve Bayes 0.964 0.992 0.936 0.956 0.968 0.944 

Decision 
tree 

J48 tree 0.960 0.960 0.960 0.970 0.952 0.988 

Random tree 0.936 0.940 0.932 0.936 0.912 0.960 

Random forest† 0.972 0.976 0.968 0.976 0.964 0.988 

SVM 

RBF kernel† 0.972 0.976 0.968 0.976 0.964 0.988 

Polynomial kernel 
of exponent 1 

0.964 0.960 0.968 0.968 0.944 0.992 

Polynomial kernel 
of exponent 2 

0.976 0.968 0.984 0.964 0.936 0.992 

Polynomial kernel 
of exponent 3 

0.960 0.932 0.988 0.958 0.920 0.996 

† The two best-performing classifiers were bolded. 698 

§ The results on the training set was obtained using 10-fold cross validation. 699 

  700 
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Table 2. The Random Forest classifier performance for predicting direct TF targets using 701 

the CRISPR-generated data  702 

TF† 

After intersecting promoters with DHSs 

Training set§ Test set 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

EGR1 0.879 0.943 0.816 0.845 0.954 0.736 

ELF1 0.846 0.923 0.769 0.863 0.900 0.825 

ELK1 0.862 0.897 0.828 0.793 0.948 0.638 

ETS1 0.810 0.912 0.708 0.779 0.899 0.659 

GABPA 0.819 0.932 0.706 0.770 0.94 0.600 

IRF1 0.792 0.860 0.725 0.735 0.860 0.610 

YY1 0.595 0.559 0.631 0.587 0.535 0.638 
† The results for all seven TFs were obtained when setting 𝜀 to 1.05, and the transcriptome data 703 

generated by CRISPR-based TF knockdowns were obtained from Dixit et al [15]. 704 

§ The results on the training sets was obtained using 10-fold cross validation. 705 

  706 
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Table 3. The Random Forest classifier performance for predicting direct TF targets using 707 

the siRNA-generated data   708 

TF† 

After intersecting promoters with DHSs 

Training set§ Test set 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

BATF 0.625 0.646 0.604 0.706 0.649 0.763 

JUND 0.625 0.646 0.604 0.682 0.682 0.682 

NFE2L1 0.633 0.533 0.733 0.75 0.667 0.833 

PAX5 0.575 0.614 0.537 0.627 0.563 0.691 

POU2F2 0.725 0.818 0.633 0.651 0.796 0.505 

RELA 0.591 0.619 0.563 0.690 0.611 0.770 

RXRA 0.731 0.813 0.648 0.663 0.793 0.533 

SP1 0.561 0.571 0.551 0.579 0.539 0.620 

TCF12 0.564 0.638 0.491 0.684 0.597 0.770 

USF1 0.737 0.753 0.721 0.723 0.71 0.735 

YY1 0.611 0.456 0.765 0.601 0.396 0.807 
† The transcriptome data generated by siRNA-based TF knockdowns were obtained from 709 

Cusanovich et al [13]. 710 

§ The results on the training sets was obtained using 10-fold cross validation. 711 

  712 
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Table 4. Intersection of direct targets and 500 genes with the most similar expression 713 
profiles 714 

TF Cell line Number of targets Size of intersection  Targets among the most similar 10 genes§ 

EGR1 

K562 

174 11 None 

ELF1 79 5 None 

ELK1 116 4 GNL1(8th) 

ETS1 275 14 None 

GABPA 530 24 TAF1(1st) 

IRF1 472 11 None 

YY1 
1797 125 

MRPL9(2nd), BAZ1B(6th), ENY2(7th), 

NUB1(8th), USP1(9th), HNRNPR(10th) 

GM19238 

1066 61 MED4(1st), SURF6(3rd), BAZ1B(6th) 

BATF 193 4 MB21D1(4th), C16orf87(9th) 

JUND 44 2 None 

NFE2L1 60 3 None 

RELA 252 22 HMG20B(9th) 

RXRA 183 7 None 

SP1 1630 96 ACLY(1st), SEC22B(7th), GPX1P1(10th) 

TCF12 669 19 None 

USF1 309 20 None 

PAX5 938 76 IL21R(9th) 

POU2F2 550 21 CD86(3rd) 

§ The rank of each target in the list of similar genes in the descending order of Bray-Curtis 715 

similarity values is shown in the brackets immediately following the target.  716 
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Table 5. Mutation analyses on promoters of direct targets 717 

TF Target 
Normal 
cluster 

Normal allele§ SNP ID§ Variant allele§ 
Variant 
cluster‡ 

Classifier output 

Variant† Wild-type 

EGR1  
(Rsequence = 

12.2899 bits) 
EID2B 

Cluster 1 
of 2 

GAGGGGGCATC 
(chr19:39540286, -, 

7.22 bits) 

rs538610162 
(chr19:39540296C>G) 

CAGGGGGCATC 
(chr19:39540286, -

, 4.84 bits) 
Abolished √ 

× 

√ 

rs759233998 
(chr19:39540294C>T) 

GAAGGGGCATC 
(chr19:39540286, -

, 0.06 bit) 
Abolished √ 

rs974735901 
(chr19:39540288T>A) 

GAGGGGGCTTC 
(chr19:39540286, -

, 6.90 bits) 

Cluster 1 
of 2 

√ 

rs978230260 
(chr19:39540287A>T) 

GAGGGGGCAAC 
(chr19:39540286, -

, 5.31 bits) 
Abolished √ 

Cluster 2 
of 2 

GCGTGCGTGGG 
(chr19:39540162, 

+, 1.59 bits) 

rs764734511 
(chr19:39540162G>A) 
(chr19:39540162G>C) 

ACGTGCGTGGG 
(chr19:39540162, 

+, -0.72 bit) 

Cluster 2 
of 2 

√ 

CCGTGCGTGGG 
(chr19:39540162, 

+, -0.79 bit) 

Cluster 2 
of 2 

√ 

rs996639427 
(chr19:39540170G>C) 

GCGTGCGTCGG 
(chr19:39540162, 

+, -5.21 bits) 
Abolished √ 

GCGTGGGCGCT 
(chr19:39540166, 

+, 9.72 bits) 

GCGTCGGCGCT 
(chr19:39540165, 

+, -0.85 bit) 

rs1027751538 
(chr19:39540174G>A) 

GCGTGGGCACT 
(chr19:39540166, 

+, 5.16 bits) 
Abolished √ 

rs887888062 
(chr19:39540176T>A) 

GCGTGGGCGCA 
(chr19:39540166, 

+, 10.94 bits) 

Cluster 2 
of 2 

√ 
 

ELF1 
(Rsequence = 

11.2057 bits) 

HIST1H4
H 

Cluster 1 
of 2 

GCGGAAGCGTG 
(chr6:26286540,  

+, 9.92 bits) 

rs760968937 
(chr6:26286547C>T) 
(chr6:26286547C>A) 

GCGGAAGTGTG 
(chr6:26286540,  

+, 10.71 bits) 

Cluster 1 
of 2 

√ √ 

√ 

GCGGAAGAGTG 
(chr6:26286540,  

+, 8.84 bits) 

Cluster 1 
of 2 

√ 

× 

rs1000196206 
(chr6:26286542G>C) 

GCCGAAGCGTG 
(chr6:26286540,  

+, -6.26 bits) 
Abolished √ 

rs144759258 
(chr6:26286543G>A) 

GCGAAAGCGTG 
(chr6:26286540,  

+, -3.60 bits) 
Abolished √ 

rs966435996 
(chr6:26286544A>G) 

GCGGGAGCGTG 
(chr6:26286540,  

+, 5.28 bits) 
Abolished √ 

rs950986427 
(chr6:26286548G>A) 

GCGGAAGCATG 
(chr6:26286540,  

Cluster 1 
of 2 

√ 
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+, 8.28 bits) 

Cluster 2 
of 2  

CAGGAGATGCG 
(chr6:26286473,  

-, 6.98 bits) 

rs373649904 
(chr6:26286483G>A) 

TAGGAGATGCG 
(chr6:26286473,  

-, 0.61 bit) 
Abolished √ 

rs926919149 
(chr6:26286480C>T) 

CAGAAGATGCG 
(chr6:26286473, 

 -, -6.53 bits) 
Abolished √ 

rs751263172 
(chr6:26286479T>G) 

CAGGCGATGCG 
(chr6:26286473,  

-, 1.24 bits) 
Abolished √ 

rs369076253 
(chr6:26286473C>G) 

CAGGAGATGCC 
(chr6:26286473,  

-, 6.92 bits) 

Cluster 2 
of 2 

√ 

rs751263172 
(chr6:1044474314C>T) 

CAGGAAATGCG 
(chr6:26286473,  

-, 11.43 bits) 

Cluster 2 
of 2 

√ √ 

ELK1 
(Rsequence = 

11.9041 bits) 
G0S2 

Cluster 1 
of 2 

CAGGGAAGACC 
(chr1:209667959, -, 

1.92 bits) 

rs146048477 
(chr1:209667961T>A) 

CAGGGAAGTCC 
(chr1:209667959, -

, 2.24 bits) 

Cluster 1 
of 2 

√ √ 

√ 

rs887606802 
(chr1:209667968T>C) 

CGGGGAAGACC 
(chr1:209667959, -

, -3.35 bits) 

Cluster 1 
of 2 

√ 

× 

rs1021034916 
(chr1:209667967C>T) 

CAAGGAAGACC 
(chr1:209667959, -

, -3.57 bits) 

Cluster 1 
of 2 

√ 

GAGGAAATGAG 
(chr1:209667969, 

+, 8.14 bits) 

rs941962117 
(chr1:209667974A>G) 

GAGGAGATGAG 
(chr1:209667969, 

+, 4.11 bits) 
Abolished √ 

Cluster 2 
of 2 

CTGGAAGAGCA 
(chr1:209673544, 

-, 5.91 bits) 

rs896117033 
(chr1:209673545G>A) 

CTGGAAGAGTA 
(chr1:209673544, 

-, 3.95 bits) 

Cluster 2 
of 2 

√ 

rs971962577 
(chr1:209673546C>T) 

CTGGAAGAACA 
(chr1:209673544, 

-, 3.49 bits) 

Cluster 2 
of 2 

√ 

rs1011969709 
(chr1:209673554G>C) 

GTGGAAGAGCA 
(chr1:209673544, 

-, 3.92 bits) 
Abolished √ 

CCAGAAGTCAA 
(chr1:209673551, 

+, 7.44 bits) 

CCACAAGTCAA 
(chr1:209673551, 

+, -5.50 bits) 

rs1023312090 
(chr1:209673561A>G) 

CCAGAAGTCAG 
(chr1:209673551, 

+, 8.40 bits) 

Cluster 2 
of 2 

√ √ 

ETS1 
(Rsequence = 

10.0788 bits) 
TTC19 

Cluster 1 
of 1 

GCAGGGAAAGG 
(chr17:16022293, 

+, 7.92 bits) 

rs1022234223 
(chr17:16022296G>C) 

GCACGGAAAGG 
(chr17:16022293, 

+, -4.98 bits) 
Abolished × × 

√ 

rs968299415 
(chr17:16022301A>T) 

GCAGGGAATGG 
(chr17:16022293, 

+, 10.01 bits) 

Cluster 1 
of 1 

√ √ 

GABPA 
(Rsequence = 

PLEKHB2 
Cluster 1 

of 1 
ACAGGAAAGGG 

(chr2:131112770, 
rs997328042 

(chr2:131112771C>T) 
ATAGGAAAGGG 

(chr2:131112770, 
Abolished × × √ 
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10.8567 bits) +, 10.36 bits) +, -3.68 bits) 

rs1020720126 
(chr2:131112773G>C) 

ACACGAAAGGG 
(chr2:131112770, 

+, -4.16 bits) 
Abolished × 

TCTGGAAACTA 
(chr2:131112760, 

+, 1.53 bits) 

rs185306857 
(chr2:131112761C>A) 

TATGGAAACTA 
(chr2:131112760, 

+, -2.86 bits) 

Cluster 1 
of 1 

√ 

rs772728699 
(chr2:131112762T>A) 

TCAGGAAACTA 
(chr2:131112760, 

+, 5.23 bits) 

Cluster 1 
of 1 

√  

rs965753671 
(chr2:131112769T>C) 

TCTGGAAACCA 
(chr2:131112760, 

+, 2.13 bits) 

Cluster 1 
of 1 

√  

IRF1 
(Rsequence = 

13.5544 bits) 
SMIM13 

Cluster 1 
of 1 

GAGAATGAAAGCA 
(chr6:11093663, 

+, 12.56 bits) 

rs950528541 
(chr6:11093663G>C) 

CAGAATGAAAGCA 
(chr6:11093663, 

+, 8.97 bits) 

Cluster 1 
of 1 

√ 

× 

√ 

rs886259573 
(chr6:11093664A>G) 

GGGAATGAAAGCA 
(chr6:11093663, 

+, 9.65 bits) 

Cluster 1 
of 1 

√ 

rs982931728 
(chr6:11093666A>G) 

GAGGATGAAAGCA 
(chr6:11093663, 

+, 8.09 bits) 

Cluster 1 
of 1 

√ 

rs1020218811 
(chr6:11093668T>G) 

GAGAAGGAAAGCA 
(chr6:11093663, 

+, 9.36 bits) 

Cluster 1 
of 1 

√ 

rs570723026 
(chr6:11093672A>G) 

GAGAATGAAGGCA 
 (chr6:11093663, 

+, 8.01 bits) 

Cluster 1 
of 1 

√ 

rs1004825794 
(chr6:11093675A>C) 
(chr6:11093675A>T) 

GAGAATGAAAGCC 
(chr6:11093663, 

+, 10.47 bits) 

Cluster 1 
of 1 

√ 

GAGAATGAAAGCA 
(chr6:11093663, 

+, 10.42 bits) 

Cluster 1 
of 1 

√ 

AAGACCAAAGGCA 
(chr6:11093641, 

+, 2.43 bits) 

rs1030185383 
(chr6:11093649A>C) 

AAGACCAACGGCA 
(chr6:11093641, 

+, -3.39 bits) 

Cluster 1 
of 1 

√ 

rs5874306 
(chr6:11093650delG) 

AAGACCAAAGCAG 
(chr6:11093641, 

+, 0.90 bit) 

Cluster 1 
of 1 

√ 

rs558896490 
(chr6:11093643G>A) 

AAAACCAAAGGCA 
(chr6:11093641, 

+, 7.06 bits) 

Cluster 1 
of 1 

√ √ 

YY1 
(Rsequence = 

12.8554 bits) 
CKLF 

Cluster 1 
of 1 

GCGGCCATCGGC 
(chr16:66549785, 

-, 10.06 bits) 

rs865922947 
(chr16:66549791G>A) 

CCGGCCATCGGC 
(chr16:66549785, 

-, 6.80 bits) 
Cluster 1 √ 

× √ 
rs946037930 

(chr16:66549794C>A) 

GCTGCCATCGGC 
(chr16:66549785, 

-, 8.02 bits) 
Cluster 1 √ 

rs917218063 
(chr16:66549793C>T) 

GCGACCATCGGC 
(chr16:66549785, 

-, 5.41 bits) 
Abolished × 
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rs928017336 
(chr16:66549791G>A) 

GCGGCTATCGGC 
(chr16:66549785, 

-, -3.62 bits) 
Abolished × 

GCCGCCCCCGTC (chr16:66549792, +, 1.34 bits)   
§ All coordinates are based on the hg38 genome assembly. A bold italic letter in a binding site 718 

sequence indicates the base where a SNP occurs. The SNPs strengthening binding sites and 719 

corresponding variant binding site sequences are underlined. 720 

‡ The impact on whether the occurrence of a single SNP resulted in the disappearance of the 721 

cluster containing it is shown.  722 

† After a single SNP occurred or multiple SNPs simultaneously occurred, the classifier produced 723 

a new prediction on whether the TF is still capable of significantly affecting gene expression via 724 

the variant promoter. 725 
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