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Abstract 

Working memory is our ability to temporarily hold information as needed for complex 

cognitive operations. Models of working memory distinguish two separate processes: (i) a 

selection rule that identifies the content to be recalled and (ii) the maintenance of the content. 

We aimed to characterize the spatiotemporal neural dynamics underlying these two 

components. Healthy participants performed a visual working memory task during 

magnetoencephalography (MEG) recording. Multivariate Pattern Analysis (MVPA) and source 

analyses identified two distinct types of working memory neural processes underlying selection 

and maintenance of the content. The selection rule is specifically decoded from sustained low-

frequency (<20Hz) neural activity within a cortical network that includes the ventrolateral 

prefrontal cortex. By contrast, working memory content is transiently reactivated over a 

distributed and occipito-temporal network that differs from that encoding the sensory stimulus. 

These results reveal different neural mechanisms that select and maintain information in 

memory and could account for previous paradoxical reports of persistent and dynamic neural 

correlates of working memory. 
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Introduction 

Working memory enables the brief holding of information (Baddeley, 2010; Baddeley and 

Hitch, 1974) and is crucial for a wide range of cognitive tasks in everyday life (Klingberg, 

2010). For example, while driving a car, previous visual input providing important contextual 

information must be maintained for several seconds in order to act appropriately. The same 

mechanism applies when conversing with a friend, watching a movie or learning a motor skill. 

Despite the central role of working memory in complex behaviors, how the brain selects and 

maintains memory content remains actively debated (Christophel et al., 2017).  

 

Lesion studies have pointed to the prefrontal cortex as a crucial brain region mediating working 

memory (Bauer and Fuster, 1976; Jacobsen, 1935; Petrides, 2005). For example, it has been 

proposed that working memory engages a fronto-parietal neural network similar to that 

identified during selective attention (Pollmann and von Cramon, 2000). Consistently, results 

from intracranial recordings in monkeys and neuroimaging studies in humans have shown that 

persistent neural activity within prefrontal regions supports working memory (Courtney et al., 

1998; Funahashi et al., 1989; Fuster and Alexander, 1971; Goldman-Rakic, 1995).  

 

On the other hand, maintenance of information during working memory appears to engage 

different brain regions depending on the type of information (Christophel et al., 2012; Ester et 

al., 2015; Han et al., 2013; Harrison and Tong, 2009; Lee and Baker, 2016). For example, 

maintenance of visual orientation information engages early visual areas (Riggall and Postle, 

2012), while the maintenance of single auditory tones engages the auditory cortex (Kumar et 

al., 2016). Importantly, such maintenance may not require persistent neural activity (Stokes, 

2015). Electrophysiological findings showed that this working memory process depends on 

highly specific neural temporal dynamics (Fuentemilla et al., 2010; Lundqvist et al., 2016; 

Stokes et al., 2013).  

 

While early work proposed that neurons in the lateral prefrontal cortex store working memory 

information (Funahashi and Kubota, 1994; Fuster and Alexander, 1971), recent evidence 

suggested that prefrontal cortex activity exerts top-down influences on sensory regions, 

reflecting the selection of information for goal-directed behavior (Curtis and D’Esposito, 2003; 

Riggall and Postle, 2012; Warden and Miller, 2010). In this framework, working memory 

depends on two processes: (i) a selection rule that identifies the relevant content to be recalled 

and (ii) the maintenance of this content for future processing (Vogel et al., 2005). Accordingly, 
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during a working memory task, a retrospective cue instructing the participant to select one 

specific memory content increases working memory performance for that item (Griffin and 

Nobre, 2003; Murray et al., 2013). Yet, most studies do not dissociate the neural responses to 

the selection from those of the maintenance component and only investigate the spatial 

localization of working memory content (Christophel et al., 2017).  

Figure 1: Visual working memory task. A fixation dot appears in the center of the screen and the 
participant is instructed to fixate this dot. After 400 ± 50ms, the stimulus appears for 100 ms and is 
composed of four possible different visual attributes: left and right spatial frequency (each chosen 
among five possible: 1, 1.5, 2.25, 3.375 or 5.06 cycles/degree) and left and right orientation (each chosen 
among five possible: -72, -36, 0, 36, 73 in degree, 0 being the vertical). After a delay of 800 ± 50ms, the 
cue appears for 100ms and indicates which visual attribute of the stimulus the participant has to compare 
with the upcoming probe. A left or right solid line cue indicates respectively the left or right orientation 
and a left or right dotted line indicates respectively the left or right spatial frequency of the stimulus. 
After a 1500 ± 50ms delay, the probe appears and the participant is required to answer with one of two 
fingers whether the cued stimulus attribute is the same or different than the corresponding probe 
attribute. The probe displays only one orientation and one spatial frequency. In the trial depicted in the 
figure, the solid line cue pointing to the left instructs the participant to compare the orientation on the 
left side of the stimulus with the orientation in the probe (the correct answer in this case is “different”). 
We refer to the time between the stimulus and the cue as the stimulus epoch, the time between the cue 
and the probe as the cue epoch and the time after the probe as the probe epoch. 
 

 

Here, we investigated the neural mechanisms that allow our brain to select, transform and 

maintain a sensory stimulus during a working memory task. We addressed this question by 

designing a working memory task that enabled the dissociation of the neural mechanisms 

underlying selection rule from those underlying maintenance of the memory content. 

400 ± 50 ms

S"mulus		
100 ms

800 ± 50 ms

Cue
100 ms

1500 ± 50 ms

Probe
Un4l response (same or different)

…	Le%	Orienta,on	

…	Right	Orienta,on	

…	Le%	Spa,al	Frequency	

…	Right	Spa,al	Frequency	

Cue	 Rule:	Maintain	…	 Content	to	be	
compared	
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Multivariate pattern analysis (MVPA) of time-resolved brain MEG activity identified two 

distinct neural mechanisms underlying these two working memory components: the selection 

process is encoded in a stable low-frequency neural activity within a network that includes the 

ventrolateral prefrontal cortex while the memory content is transiently reactivated over a 

distributed and posterior network different from that encoding the sensory stimulus.  

 

Results 

We recorded MEG in 23 participants while they performed a working memory task. Each trial 

started with the visual presentation of a four-dimensional stimulus with two distinct visual 

gratings (left and right) that varied in line orientation and spatial frequency. A small 

retrospective visual cue presented ~900ms after the stimulus onset indicated the visual attribute 

to be retained for a subsequent probe. Specifically, a small line indicated the side (left or right) 

and the feature (orientation or spatial frequency) of the stimulus to be remembered. Finally, 

participants indicated whether the cued attribute matched the corresponding attribute of a visual 

probe presented ~1500ms after the cue onset (Fig 1). To isolate the neural representation 

encoding the selection rule and the memory content, we applied MVPA to decode the four 

visual attributes of the stimulus (orientation and spatial frequency of each visual grating), the 

selection rules (spatial and feature rule) and the memory content during the stimulus epoch (-

0.2 s to 0.9 s around stimulus onset), the cue epoch (-0.2 s to 1.5 s around the cue onset) and 

the probe epoch (-0.2 s to 0.4 s around the probe onset; Fig 2). 

 

Parallel and transient encoding of four visual attributes  

Left and right spatial frequencies could be decoded from 33 ms and 25 ms after stimulus onset 

respectively (cluster level, p<0.05 corrected). The decoding performance peaked around 50ms 

and rapidly decreased afterwards but remained above chance throughout most of the stimulus 

epoch. Mean spatial frequency decoding performance over the stimulus epoch was significantly 

above chance (both p<0.001). By contrast, these visual attributes could not be decoded during 

the cue or the probe epochs. Similar results were observed for the decoding of the left and right 

orientation. Specifically, orientation decoding started approximately 46 ms after stimulus onset, 

peaked around 100 ms and remained above chance throughout most of the stimulus epoch. 

Mean orientation decoding performance was significantly above chance during the stimulus 

epoch (both p < 0.001). Very weak but still significant decoding was also observed during the 

cue (right orientation: p < 001, left orientation: p < 0.01) and the probe epochs (both p < 0.01) 
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(Fig 2A). Similar decoding results were observed in the time-frequency domain with significant 

decoding clusters during the first 400 ms after the stimulus onset (Fig 2B).  

Figure 2: Neural dynamics of visual perception, selection rule and memory content in evoked and 
time-frequency domains. A. Time course of MEG decoding performance. The x-axis corresponds to 
the time relative to each event (stimulus, cue and probe, see top) and the y-axis corresponds to the 
decoding performance for the stimulus attributes, the selection rule, the memory content and the probe 
attributes. Vertical gray bars indicate the visual presentation of each image (stimulus, cue and probe). 
Color filled areas depict significant temporal clusters of decoding performance (cluster-level, p<0.05 
corrected). Variance (thickness of the line) is shown as standard error of the mean (SEM) across 
participants. Note the successful decoding of the four visual attributes of the stimulus, the spatial and 
feature rule, the memory content (cued - uncued) for both spatial frequency and orientation and for the 
two attributes of the probe. The asterisks indicate the significance of the mean decoding performance 
over the entire corresponding epoch (***, **, * indicate respectively p < 0.001, p < 0.01 and p < 0.05). 
B. Decoding performance in the time-frequency domain. The x-axis corresponds to the time relative to 
each event (stimulus, cue and probe, see top) and the y-axis depicts the frequency of MEG activity 
(between 2-60Hz). Significant clusters of decoding performance are contoured with a dotted line. Note 
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the successful decoding in the time-frequency domain of the four visual attributes of the stimulus, both 
the spatial and the feature rule and the two attributes of the probe but not the memory content. 
 
 

To estimate the brain sources underlying these decoders, the MEG signal was reconstructed in 

the source space at a single trial level and the same decoding analyses were performed on the 

source signal. The weights of the estimators were transformed into interpretable patterns of 

activity (Haufe et al., 2014). The source pattern of activity indicated that the calcarine, the 

cuneus and lateral occipital regions encoded this information (Fig 3A). Overall, our decoding 

results during visual perception confirmed that multiple visual attributes are simultaneously 

encoded in the early neural response for several hundred milliseconds, but rapidly become 

undetectable after about one second (Fig 2A).  

 
 
 
 
 
 
Figure 3: Spatial source representation of stimuli, 
selection rule and memory content.   A. Encoding of 
visual attributes during the stimulus epoch. The calcarine 
cortex, the cuneus and lateral occipital regions encoded 
the visual attributes of the stimulus during the stimulus 
epoch. B. Selection rule during the cue epoch. A large 
cortical network including the ventrolateral prefrontal 
regions encoded the selection rule. C. Memory content 
during the cue epoch. The neural representation of 
memory content involves an occipitotemporal brain 
network. 
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The selection rule is encoded in stable oscillatory activity involving the ventrolateral 

prefrontal cortex. 

The cue side (spatial rule) and the cue type (feature rule) could be decoded shortly after the cue 

presentation and during the entire cue and probe epochs (Fig 2A and Fig 4). The cue side and 

cue type were decoded respectively 58ms and 75ms after cue onset (cluster level, p<0.05 

corrected) and the decoding performance remained above chance throughout the cue and probe 

epochs (Fig 2A). To ensure that these decoded patterns of brain activity corresponded to the 

selection rule and not to the sensory features of the cue, we decoded the same visual cue in a 

one-back control task. In the initial 200 ms following cue onset, decoding performance of cue 

side and type were comparable in both tasks (with and without associated selection rule). 

Subsequently, decoding was significantly higher in the working memory condition than in the 

control one-back task (Fig4, left panel). Overall these decoding results demonstrate that the 

sustained activity encoding the cue is specific to the selection rule.  

Figure 4: The selection rule is encoded in a persistent and stable pattern of low-frequency brain 
activity. Neural temporal dynamics of rule selection in evoked and time-frequency domains.  On the 
left, time course (x-axis) of decoding performance (y-axis) during the cue epoch for the cue side (top) 

Time Course Decoding Time Generalization Time-Frequency

Cue Side (Spatial Rule)

Cue Type (Feature Rule)
Time Course Decoding Time Generalization Time-Frequency
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and the cue type (bottom) during the working memory task (blue) when the cue is associated with the 
selection rule and the control one-back task (gray) when it is not. Note that decoding performance was 
significantly higher in the working memory task than in the control one-back task. The time 
generalization matrices (middle panels), in which each estimator trained on time t was tested on its ability 
to predict the variable at time t’, identified stable neural representations for both spatial and feature rules. 
The right panel shows the decoding in the time frequency domain. Note that both rules are maintained 
within low frequency bands alpha (~10Hz) and delta (~3Hz) activity. 
 
 
To test the dynamics of the neural representation of the rule, each estimator trained on time t 

was tested on its ability to predict the variable of interest at time t’ (King and Dehaene, 2014). 

This temporal generalization analysis showed very stable neural representations for both spatial 

and feature rules (Fig 4, middle panel).  

 

To investigate the oscillatory component of the selection rule, we computed the time-frequency 

decomposition at the single trial level and applied MVPA on the power in each frequency band. 

The cue side and the cue type during the working memory task could be decoded in the alpha 

(~10hz) and delta (~3Hz) bands peaking after the cue onset and until the end of the cue epoch 

(p<0.05 corrected). In the control one-back task, the cue side could be decoded in the frequency 

domain only for a short period after the cue onset and the cue type could not be decoded at all 

(Fig 4, right panel). 

 

Finally, the same decoding analyses were also performed on the source signal (Supp Fig 2). 

Both spatial and feature rules were encoded in a large network involving the ventral prefrontal, 

parietal and occipital cortices (Fig 3B). Specifically, the activity pattern for the spatial rule 

involved bilateral orbitofrontal regions, bilateral insula, bilateral inferior parietal lobules, right 

superior parietal and temporo-parietal junction and bilateral occipital regions and fusiform 

areas. The activity pattern for the feature rule involved the right orbitofrontal region, inferior 

frontal gyrus and insula, bilateral peri-central regions, the right superior parietal lobule, bilateral 

middle temporal regions and bilateral occipital regions including the fusiform area. Overall, our 

decoding and source results showed that the selection rules (both spatial and feature rule) are 

associated with sustained oscillatory neural activity and involve ventrolateral prefrontal cortex. 

 

The memory content is transformed and encoded in transient neural activity in a distributed 

posterior network. 

Decoding performance for the memory content (cued orientation and cued spatial frequency) 

started around 500 ms after the cue onset (p<0.05 corrected) and remained above chance 
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throughout the cue epoch. The mean decoding performance was significantly above chance 

during the cue epoch both for the cued orientation (p<0.001) and cued spatial frequency 

(p<0.01; Fig 5A). The working memory content could not be decoded in the time frequency 

domain (Fig2B). Temporal generalization analyses showed a partially stable representation 

over time for both items (Fig 5A). By contrast, the un-cued orientation or the un-cued spatial 

frequency could not be decoded (Fig 5B).  

 
Figure 5: The memory content is transiently reactivated 500 ms after the cue. 
A. Time course of decoding performance (y-axis) during the cue epoch for the cued orientation (5 
possible orientations) and the cued spatial frequency (5 possible spatial frequencies) during the working 
memory task and their corresponding time generalization analysis. B. Same analysis for the uncued 
orientation and spatial frequency. Note that decoding performance was significant for the cued but not 
uncued orientation and spatial frequency. Additionally, decoding was significantly higher for the cued 
than the uncued item (see Fig 2 for this difference). In the time-frequency domain, MVPA did not 
decode any significant clusters for the memory content (not shown here, see Fig 2). 
 
 
The source pattern of activity representing memory content (either orientation or spatial 

frequency) showed a distributed and posterior network involving bilateral occipital regions, 

bilateral inferior temporal and temporo-parietal junctions, bilateral posterior temporal regions 

and left premotor areas (Fig 3C). To test if the neural representation of the memory content was 

similar to that of visual encoding, we tested the generalization across condition. Specifically, 

we trained the decoders on the visual attributes during perception of the stimulus and tested 

their ability to decode the memory content, and, conversely, we trained the estimators on the 

memory content and tested their ability to decode visual attributes during visual encoding. 

These cross-condition decoding analyses revealed no above chance decoding (Fig 6 and Supp 

A Cued Orientation Cued Spatial Frequency 

Time Course Decoding Time Generalization 

Time Generalization 
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Time Generalization 
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Fig 5) demonstrating that the neural representation of the memory content differs from the 

representation of the same attribute during sensory encoding (for full temporal generalization 

of these cross-condition decoding, see Supp Fig 5). 

 

Discussion 

We used time-resolved MVPA analysis of MEG data to investigate how the brain selects and 

maintains information in working memory. The time-course, time-frequency and source-space 

features emerging from our decoding analyses showed different spatiotemporal neural 

dynamics for the selection and for the maintenance of information in working memory. In each 

trial, the task involved visual encoding of four visual attributes, a retrospective cue indicating 

one of these visual attributes and finally a probe to match with the cued item. We report that 

the visual attributes of the stimulus were simultaneously encoded in visual brain regions over a 

period lasting approximately one second after the stimulus onset and then became undetectable 

or barely detectable. Thus, we showed that MEG signal was rich and spatially selective enough 

to simultaneously decode the four different visual attributes (Fig 2), extending previous 

findings (Cichy et al., 2015; Stokes et al., 2015). The selection rule was encoded in sustained 

frequency-specific neural activity in a network that includes the lateral prefrontal cortex. Then, 

the representation of the memory content was transformed into a transient activity pattern, 

qualitatively different from its neural representation during initial visual encoding, within a 

distributed posterior network.  

 

Working memory selection 

The experimental paradigm allowed us to identify the representation of two different selection 

rules, a spatial one indicated by the cue side and a feature one indicated by the cue type. Both 

rules share similar spatiotemporal neural properties: a very stable neural representation 

demonstrated by the time generalization (Fig 4), a low-frequency oscillatory mechanism 

demonstrated by the time-frequency decoding (Fig 2 and 4) and the involvement of the 

ventrolateral prefrontal and occipito-parietal regions (Fig 3). Our time generalization results 

are consistent with those obtained using MVPA on intracranial recordings in primates during 

the period where monkeys needed to maintain a rule (Stokes et al., 2013). In a biological system, 

a stable representation over time is likely to be more easily readable by a third party (another 

brain region) than a constantly changing representation that would require continuous shifting 

of readout algorithms (Murray et al., 2017). The brain oscillatory signature of the spatial and 

feature rules identified here are reminiscent of the neural signatures of spatial attention, which 
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engage alpha (Sauseng et al., 2005; Worden et al., 2000) and beta or low-gamma (Buschman 

and Miller, 2007; Phillips and Takeda, 2009) brain oscillatory activity. It is also in line with 

reported oscillatory synchronization of local field potentials representing the rule in monkeys 

(Buschman et al., 2012). The involvement of the ventrolateral frontal cortex is not surprising 

given its recognized role mediating top-down influences (Sreenivasan et al., 2014) and its 

contribution to rule representation (Reverberi et al., 2012; Woolgar et al., 2011) and active 

selection (Petrides, 1996). 
 

Figure 6: Different neural representations 
of memory and perceptual content. 
A. Average decoding performance when 
estimators are trained on the stimulus 
attributes (orientation or spatial frequency) 
during the stimulus epoch and either tested 
during the same epoch or tested on the 
corresponding memory content during the 
cue epochs. Note that an estimator trained to 
decode a visual feature during perception 
cannot decode the corresponding memory 
content during the cue epoch. B. Average 
decoding performance when estimators are 
trained on the memory content (orientation 
or spatial frequency) during the cue epoch 
and either tested during the same epoch or 
tested on the corresponding stimulus 
attribute during the stimulus epochs. Note 
that an estimator trained to decode a memory 
content during the cue epoch cannot decode 
the corresponding stimulus feature during 
perception (see Supp Fig 5 for full time 
generalization). 

 
 
Working memory maintenance 

Subtle visual differences in the spatial frequency and line orientation of the memory content 

were decoded a few hundred milliseconds after the cue onset (Fig 4). The time generalization 

suggests that the memory content had a more stable neural representation than the initial visual 

encoding, even if this result must be interpreted cautiously as a jitter across trials in the 

reactivation of the memory content could lead to a generalization pattern similar to the one we 

observe here (Vidaurre et al., 2018). Functional MRI studies using MVPA have shown that the 

memory content can be decoded from a wide range of brain regions, including occipital 

(Harrison and Tong, 2009; Serences et al., 2009), parietal (Christophel et al., 2012), temporal 

(Han et al., 2013) and frontal (Ester et al., 2015) areas. These findings suggested that the brain 
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regions maintaining the memory content depend on its specific feature, e.g., orientation in early 

visual areas, motion in extrastriate cortex including area MT+ , or single tones in auditory cortex 

(Emrich et al., 2013; Kumar et al., 2016; Riggall and Postle, 2012). It has also been shown that 

the level of abstractness influence the spatial localization of the memory content, with low-

level sensory features being encoded in sensory areas and more abstract representations in 

anterior frontal regions (Christophel et al., 2017; Lee et al., 2013). Thus, it has been proposed 

that the system maintaining the information in working memory may be the same as the one 

involved in the encoding of this information (D’Esposito and Postle, 2015). Our source results 

indicate that the memory content is maintained in a distributed network involving posterior 

brain regions that include sensory visual areas (Fig 3). However, our results also show that the 

neural representations of the same content during perception and memory delay are 

qualitatively different, as demonstrated by the lack of generalization across conditions (Fig 6). 

Differentiated representations of memory and visual perception is likely to result in more stable 

and resistant-to-interference memory content than if they were sharing the same neural 

substrate (Makovski et al., 2008). Altogether, these findings are consistent with the view that, 

once the brain knows the rule to apply, it reformats the cued visual representation for a later use 

at the time of the probe (Myers et al., 2017). 

 

Decoding of the stimulus visual attributes fell back to chance level about 900 ms after the 

stimulus onset and reappeared following a silent neural activity period about 500ms after the 

cue. It is possible that short-term changes in synaptic weights in the absence of persistent neural 

activity are enough to underlie the maintenance of information in working memory (Lewis-

Peacock et al., 2012; Stokes et al., 2013), resulting in “activity-silent” neural states (Stokes, 

2015). Interestingly, such states could theoretically be reactivated by probing the brain with a 

light flash (Wolff et al., 2017) or TMS pulse (Rose et al., 2016), as a result of a matched filter 

mechanism (Sugase-Miyamoto et al., 2008). However, it should be kept in mind that the 

absence of MVPA decoding does not prove the absence of content-specific neural activity, and 

thus we cannot rule out the possibility that this activity silent period simply reflects the MVPA 

limitation to decode low-level neural activity. Also, we noted a boost in the decoding 

performance of the spatial and feature rules after the probe onset (Fig 2), demonstrating that 

the rule is reactivated by the new visual input.  
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Persistent and dynamic nature of working memory 

Neurophysiological experiments in primates have identified neurons that remain active during 

the memory delay in prefrontal (Funahashi et al., 1989; Fuster and Alexander, 1971) and other 

cortical and subcortical regions (Chelazzi et al., 1998; Pasternak and Greenlee, 2005). This led 

to the view that working memory information is represented in persistent activity in a brain 

network that includes the prefrontal cortex (Riley and Constantinidis, 2016). More recently, the 

use of multivariate approaches demonstrated that the content maintained in working memory 

does not require stable persistent activity (Wolff et al., 2017), but is encoded in dynamic neural 

patterns and “activity-silent” states (Meyers et al., 2008; Stokes, 2015). Our results suggest that 

previously described persistent and dynamic patterns of neural activity may be reflective of two 

different working memory processes. First, a very stable persistent activity involving the 

ventrolateral prefrontal cortex is associated with the selection process that prioritizes or 

reactivates a specific sensory content (Fig 4). Then, the sensory content is transiently 

reactivated upon presentation of the cue (Fig 5), consistent with the dynamic population coding 

identified in primate studies (Meyers et al., 2008; Stokes, 2015). 

 

Conclusions 

Our study identified spatiotemporal neural dynamics of the selection and maintenance of a 

working memory content as it gets manipulated. Evidence is presented in favor of a role for the 

ventrolateral prefrontal cortex in the selection rather than the maintenance of working memory 

content, through a stable and frequency-specific neural representation. The neural 

representation of working memory content was transformed from the initial visual encoding 

into a different and transiently reactivated memory representation in a posterior brain network. 

These results may help reconcile different views on the persistent and dynamic features of 

spatiotemporal neural representations of working memory. 
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Materials and Methods 

Resource sharing 

All preprocessing and MEG analysis pipeline are available at 

https://github.com/romquentin/decod_WM_Selection_and_maintenance and raw MEG will be 

available soon at https://www.mcgill.ca/bic/resources/omega. Further information and requests 

for resources should be directed to and will be fulfilled by the lead contact, Romain Quentin 

(romain.quentin@nih.gov). 
 

Participants and experimental sessions 

35 healthy volunteers participated in the study after providing informed consent.  They all had 

normal physical and neurological examinations and normal or corrected-to-normal vision. 

Participants who reached 75% correct responses during the working memory task in a screening 

session returned for one structural MRI and two magnetoencephalography (MEG) sessions (23 

participants: 17 women, 6 men, mean age = 26.6 ± 6.7). One participant moved out from the 

area and did only one MEG session. 

 

Visual Working Memory Task 

Visual stimuli were displayed using MATLAB (Mathworks, Natick, MA, USA) and the 

Psychophysics Toolbox (Psychtoolbox-3) (Brainard, 1997) running on a MacBook Pro laptop 

computer. During the MEG session, visual stimuli were back projected on a translucent screen 

in front of the participants. Each trial started with the fixation dot in the middle of the screen. 

Participants were instructed to focus on the fixation dot during the entire trial. After 400ms (± 

50ms jitter), two visual gratings, one in each half of the visual field, were simultaneously 

presented for 100ms (Fig 1). Each grating had one out of five possible spatial frequencies (1, 

1.5, 2.25, 3.375 or 5.06 cycles/degree) and one out of five possible orientations (-72, -36, 0, 36, 

73 in degree, 0 being the vertical). A visual cue, lasting 100ms, was presented 900 ms (± 50ms 

jitter) after the stimulus onset, indicating the side (spatial rule indicating left or right) and the 

feature (feature rule indicating orientation or spatial frequency) to be remembered. A probe was 

provided 1600ms (± 50ms jitter) after the cue onset, and participants had to match the cued item 

with the probe (similar or different) by responding with their right index and middle finger on 

a button box. The probe disappeared when the participants gave their response. The fixation 

dot turned green for a correct answer or red for an incorrect one during 100ms at the end of 

each trial. Eye movements were monitored across the trial with an eye-tracker (Eyelink 1000, 

SR Research, Mississauga, ON, Canada) to ensure correct central fixation. Fixation was 
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considered broken when participants’ gaze was recorded outside a circular spot with a 2.5 visual 

degree radius around the center of the fixation dot or if they blinked during the period from the 

stimulus onset to the probe onset. In that eventuality, participants received an alert message on 

the screen and the trial was shuffled with the rest of the remaining trials and repeated. Each 

session was composed of 400 trials with correct fixation interspersed with rest periods every 

block of 50 trials. A total of 800 trials with correct fixation were obtained from each participant 

during 2 MEG sessions (except one who came for only one MEG session, 400 trials). Group 

average behavioral performance during this task reached 83%. Participants were better at 

recalling the orientation than the spatial frequency trials (85 vs. 81%, p<0.001). No difference 

was found between performance in left and right cue trials (Supp Fig 1). 

 

One-back task 

In 22 MEG sessions, a one-back task (160 trials with correct fixation) was performed prior to 

the working memory task to control for the visual processing of the cue. During this task, one 

of the four cues used in the working memory task appeared every 1500ms and the participant 

had simply to press a button if two consecutive cues were similar. Eye movement monitoring 

was performed. If participants broke visual fixation, the trial was shuffled with the remaining 

trials and repeated. Group average behavioral performance during this task reached 89% of 

correct response. 

 

MRI acquisition and preprocessing 

Magnetic Resonance Imaging (MRI) data were acquired with a Siemens Skyra 3T scanner using 

a 32-channel coil. High-resolution (0.93 × 0.93 × 0.9 mm3) 3D magnetization prepared rapid 

gradient echo (MPRAGE) T1-weighted images were acquired (repetition time = 1900 ms; echo 

time = 2.13 ms; matrix size = 256 × 256 × 192). A stereotactic neuronavigation system 

(Brainsight, Rogue Research, Montreal, QC, Canada) was used before the MEG recordings to 

record MRI coordinates of the three head position coils placed on the nasion and pre-auricular 

points. These coil position coordinates were used to co-register the head with the MEG sensors 

for source reconstruction. Brain surfaces were reconstructed using the FreeSurfer software 

package (Dale et al., 1999; Fischl et al., 1999). A forward model was generated from the 

segmented and meshed MRI using Freesurfer (Fischl, 2012) and MNE-python (Gramfort et al., 

2013) and co-registered to the MRI coordinates with the head position coils. 
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MEG recordings 

Neuromagnetic activity was recorded with a sampling rate of 1,200 Hz on the NIH 275-channel 

CTF magnetoencephalography (MEG International Services, Ltd., Coquitlam, BC, Canada). 

The MEG apparatus was housed in a magnetically shielded room. During recording, 

participants were seated alone in the shielded MEG room and their head was centrally 

positioned within the sensor array. The head position was recorded before and after each block. 

If the difference between the two recordings exceeded 3mm, participants were asked to 

reposition their head to its original position while their real-time head position was displayed. 

Brain MEG activity was band-passed filtered in the range of 0.5 to 25 Hz and decimate by 10, 

resulting in a sampling frequency of 120Hz. MEG signal was epoched at  the onset of the 

stimulus (-0.2s, 0.9s), the onset of the cue (-0.2s, 1.5s) and the onset of the probe (-0.2, 0.4s). The 

two MEG sessions per participant were concatenated. The epoch data for the three events were 

all baselined between -0.2 and 0s according to the stimulus onset, except for the source analyses 

where the cue epoch was baselined between -0.2 and 0s according to the cue onset. A Digital-to-

Analog converter was used to record the eye tracker signal with the MEG acquisition system. 

 

MEG Multivariate Pattern Analysis (MVPA) 

Data was analyzed with multivariate linear modeling, following King et al’s preprocessing 

pipeline (King and Dehaene, 2014; King et al., 2016) and implemented in MNE-python 

(Gramfort et al., 2013). MVPA decoding aimed at predicting the value of a specific variable ! 

(for example the cued spatial frequency or line orientation) from the brain signal. The analysis 

consists of 1) fitting a linear estimator " to a training subset of # (#%&'()), 2) from this estimator, 

predicting an estimate (!+%,-%) of the variable (!%,-%) on a separate test subset (#%,-%)	and finally 

3) assessing the decoding score of this prediction as compared to the ground truth 

(/0123(!%,-% , !+%,-%)). In our analysis, MEG data (#) was whitened by using a standard scaler 

that z scored each channel at each time point across trials. An l2 linear model was then fitted to 

find the hyperplane (") that maximally predicts the variable of interest (!). All parameters were 

set to their default values as provided by the Scikit-Learn package (Pedregosa et al., 2011). A 

logistic regression has been used to decode categorical data (cue side or cue type) and a ridge 

regression to decode the spatial frequency. A combination of two ridge regressions was used to 

perform circular correlations to decode the orientation, fitted to predict sin(!) and	cos	(!). The 

predicted angle (!+) was estimated from the arctangent of the resulting sine and cosine: !+ =
;2<;=2(!+-(), !+?@-). Each estimator was fitted on each participant separately, across all MEG 



	 17	

sensors (or sources) and at a unique time sample (sampling frequency = 120Hz). The cross-

validation was performed using a 12-fold stratified folding, such that each estimator was trained 

on 11/12th of the trials (training set) and then generated a prediction on the remaining 1/12th trials 

(testing set). Ordinal effects (decoding of spatial frequency) were summarized with a Spearman 

Correlation R coefficient (range between -1 and 1 with chance = 0). Categorical effects (decoding 

of cue side and cue type) were summarized with the area under the curve (AUC) (range between 

0 and 1 with chance = 0.5). Circular decoding was summarized by computing the mean absolute 

difference between the predicted angle (!+) and the true angle (!) (range between 0 and π, chance 

= π/2). To facilitate visualizations, this “error” metric was transformed into an “accuracy” 

metric (range between –π/2 and π/2, chance = 0) (King et al., 2016). In addition, within each 

analysis, the temporal generalization was computed. Each estimator trained on time t was tested 

on its ability to predict a given trial at time t’, in order to estimate the similarity of the coding 

pattern at t and t’ and thus the stability of the neural representation. Results of this temporal 

generalization are presented in a 2D matrix with training time on the vertical axis and testing time 

on the horizontal axis. All decoding analyses were performed with the MNE-python (Gramfort 

et al., 2013) and Scikit-Learn packages (Pedregosa et al., 2011). To test the similarity between 

the neural representation during visual perception and working memory, estimators were either 

trained on stimulus decoding and test on the memory content or the inverse. Estimators were 

trained separately for trials with left and right cue. An estimator trained/tested on the left spatial 

frequency was trained/tested on the cued spatial frequency only when the cue indicated the left 

side of the stimulus and the same for the right. Results of this generalization across condition 

were then averaged between left and right for statistical test and visualization. This work utilized 

the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

 

MEG source reconstruction 

To estimate the time series in source space, the Linearly Constrained Minimum Variance 

(LCMV) beamformer method was computed on single trial data using MNE-python (Gramfort 

et al., 2013). The regularized noise covariance matrix was computed on a pre-stimulus period (-

0.3, 0s according to stimulus onset). The regularized data covariance was computed during a 

period starting 40ms after the event of interest (either stimulus, cue or probe onset) until the end 

of each epoch (respectively 900ms, 1500ms and 400ms). MVPA analysis was applied on this 

single trial source time series. To investigate the spatial distribution of brain regions contributing 

to the decoding performance, and because raw classifier weights are difficult to interpret, we 
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transformed these weights into patterns using the recently described method of Haufe et al 

(2014). For each analysis, these individual patterns were morphed and averaged on the surface-

based “fsaverage” template of Freesurfer (Fischl, 2012). Then, a principal component analysis 

was applied and the two first components were plotted on the inflated average brain. 

 

Statistical Analysis 

Each analysis was first performed within each subject separately using all meaningful trials, 

i.e., all trials were used to decode visual attributes of the stimulus or the probe, cue side and cue 

type, and trials with a cue indicating either the spatial frequency or the orientation were used to 

decode the specific memory content. Statistical analyses were based on second-level tests 

across participant and were performed on the temporal generalization or time frequency matrix 

of decoding performance with a non-parametric one sample t-test corrected for multiple 

comparisons with cluster-based permutations (Maris and Oostenveld, 2007), using the default 

parameters of the MNE-python spatio_temporal_cluster_1samp_test function. Color-filled 

areas on decoding performance curves or dashed contour on temporal generalization and time 

frequency matrices correspond to p-value < 0.05 resulting from this permutation test. To test 

the decoding performance on a large window, decoding performances were averaged across all 

time samples in each participant and epoch period starting from the event onset (either stimulus, 

cue or probe) and then tested at the group level with a one sample t-test against chance level 

(***, **, * indicate respectively p < 0.001, p < 0.01 and p < 0.05). 
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