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Abstract 12 

Whole transcriptome studies typically yield large amounts of data, with expression values for all genes 13 
or transcripts of the genome. The search for genes of interest in a particular study setting can thus be a 14 
daunting task, usually relying on automated computational methods. Moreover, most biological 15 
questions imply that such a search should be performed in a multivariate setting, to take into account 16 
the inter-genes relationships. 17 

Differential expression analysis commonly yields large lists of genes deemed significant, even after 18 
adjustment for multiple testing, making the subsequent study possibilities extensive. 19 

Here, we explore the use of supervised learning methods to rank large ensembles of genes defined by 20 
their expression values measured with RNA-Seq in a typical 2 classes sample set. First, we use one of 21 
the variable importance measures generated by the random forests classification algorithm as a metric 22 
to rank genes. Second, we define the EPS (extreme pseudo-samples) pipeline, making use of VAEs 23 
(Variational Autoencoders) and regressors to extract a ranking of genes while leveraging the feature 24 
space of both virtual and comparable samples. 25 

We show that, on 12 cancer RNA-Seq data sets ranging from 323 to 1210 samples, using either a 26 
random forests based gene selection method or the EPS pipeline outperforms differential expression 27 
analysis for 9 and 8 out of the 12 datasets respectively, in terms of identifying subsets of genes 28 
associated with survival. 29 

These results demonstrate the potential of supervised learning-based gene selection methods in RNA-30 
Seq studies and highlight the need to use such multivariate gene selection methods alongside the widely 31 
used differential expression analysis. 32 

 33 
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1 Introduction 34 

Transcriptomics studies making use of RNA-Seq usually produce large amounts of data, namely one 35 
expression value for each gene or transcript of each sample assessed [Wang2009, Mortazavi2008]. 36 

Searching for genes of interest or prioritizing genes in the context of case-control studies related to 37 
diseases or other experimental conditions constitutes an important task ascribed to RNA-Seq 38 
experiments [Trapnell2009, Garber2011, Love2014, Wenric2017]. 39 

Current methods often make use of differential expression analysis, to select genes of interest and 40 
assign them a p-value related to a statistical test assessing changes in expression between different 41 
conditions.  42 

Most commonly used software packages performing differential expression analysis make use of the 43 
negative binomial distribution to model read counts for each gene. This distribution, which is an 44 
extension of the Poisson distribution, has two parameters: the mean and the dispersion, which allows 45 
modeling of more general mean–variance relationships than Poisson. The dispersion parameter allows 46 
to take into account the biological variability arising in RNA-Seq data [Love2014, Huang2015]. 47 

However, even though software packages like DESeq2 model relationships between genes by 48 
assuming that genes of similar average expression have a similar dispersion, the statistical test 49 
conducted to assess significance is a univariate test performed independently for each gene. Albeit 50 
providing particularly useful and usually accurate information regarding disruptions of gene expression 51 
between conditions, these methods thus do not take into account the potential correlation and 52 
concordant or discordant effect between groups of genes. However, such gene-gene interactions are 53 
present in most tissues and conditions and they are known to play key roles in said conditions, with 54 
groups of genes which might have a significant effect as a group but not when each gene is considered 55 
independently [Kanehisa2000, Joshitope2005, Phillips2008, Vidal2011]. 56 

Here, we explore the use of multivariate classifiers to rank genes in a case-control RNA-Seq 57 
experiment. Namely, we’re using the permutation importance of the random forests classifier to rank 58 
genes, and a newly developed method (EPS) making use of Variational Autoencoders. 59 

Machine learning methods are progressively being applied to problems arising in genomics related 60 
fields and the idea of using importance measures generated by the random forests algorithm to extract 61 
a ranking of features has already been explored with several different data sets, although, to our 62 
knowledge, this has never been done with RNA-Seq data sets [Schrider2018, Freres2016, Yao2015, 63 
Duro2012, Anaissi2013]. 64 

Aside from random forests, we also introduce a technique called Extreme Pseudo-Sampling (EPS) 65 
allowing to create case and control pseudo-samples lying on the two extremes of the sample space. 66 
This method uses Variational Autoencoders (VAE) [Kingma2013] to create new pseudo-samples that 67 
are not present in the original datasets but closely imitate their statistical properties, in that they share 68 
the properties of independent and identically distributed samples from the same distribution as the real 69 
data.  70 

The idea of using autoencoders to classify and examine genomics datasets is not new [Tan2015]. 71 
However, VAEs differ from other autoencoders in that they can create a meaningful latent 72 
representation space where one can choose a new vector in the latent space and create a valid, 73 
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previously unseen sample in real space that closely follows the real samples (the aforementioned 74 
pseudo-samples).  75 

Additionally, although autoencoders have been used as an auxiliary tool in the classification of existing 76 
datasets, no attempt has been made to extract the knowledge learnt by the autoencoders in this process 77 
to trace the analysis and results back to the actual gene expression values and their relationships. Here, 78 
we suggest a way to make use of that information [Tan2015]. 79 

2 Materials and Methods 80 

2.1 Data sets 81 

Several data sets from the TCGA database have been selected to validate both methods 82 
[Weinstein2013].  83 

Only the data sets containing 30 healthy samples (denoted as “Solid Tissue Normal” in the TCGA 84 
database) or more have been selected. All read counts produced by HTSeq as well as the clinical data 85 
have been downloaded with the TCGABiolinks R/Bioconductor package [Colaprico2016]. 86 

The data sets selected are summarized in Table 1. 87 

 88 

 89 
Name Cancer type N (tumors) n (healthy) Median age Age range 

TCGA-BRCA Breast invasive carcinoma 1097 113 59.07 26-90 

TCGA-LUAD Lung adenocarcinoma 582 59 66.88 33-88 

TCGA-UCEC Uterine Corpus endometrial carcinoma 559 35 64.24 31-90 

TCGA-KIRC Kidney renal clear cell carcinoma 535 72 61.16 26-90 

TCGA-HNSC Head and neck squamous cell carcinoma 528 44 61.14 20-90 

TCGA-THCA Thyroid carcinoma 507 58 46.92 15-89 

TCGA-LUSC Lung squamous cell carcinoma 504 49 68.66 39-90 

TCGA-PRAD Prostate adenocarcinoma 498 52 61.99 42-78 

TCGA-COAD Colon adenocarcinoma 460 41 68.88 31-90 

TCGA-STAD Stomach adenocarcinoma 443 32 67.56 30-90 

TCGA-LIHC Liver hepatocellular carcinoma 377 50 61.53 16-88 

TCGA-KIRP Kidney renal papillary cell carcinoma 291 32 62.03 28-88 

 90 
Table 1. TCGA data sets used in this study. 91 

 92 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/282780doi: bioRxiv preprint 

https://doi.org/10.1101/282780
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supervised learning for RNA-Seq gene selection 

 
4 

2.2 Methodology 93 

For each data set, the methodology illustrated in Fig. 1 has been applied:  94 

• All samples are normalized with the DESeq2 software package [Love2014]. 95 

• The samples are split into a training set and a validation set. The training set contains all the 96 
healthy samples of the original data set (n) and the same number of tumor samples as healthy 97 
samples (n). The validation set contains the remaining tumor samples (N - n). 98 

• Differential expression analysis is performed on the training set with the DESeq2 software 99 
package, using default parameters and options. A ranking of genes, based on their adjusted p-100 
value relative to the differential expression test, is obtained.  101 

• A random forests classifier is built on the training set with the ranger R package, using 100000 102 
trees and a value for the 𝑚"#$  parameter of 236 (equal to the square root of the total number of 103 
features) [Wright2015]. A ranking of genes based on their permutation importance values is 104 
obtained (the permutation importance is computed by randomly permuting the values of the 105 
feature of interest and measuring the resulting increase in error). 106 

• The Extreme Pseudo-Sampling method (see 2.3) is applied on the training set(s) to extract a 107 
ranking of genes. 108 

• Let RF denote the random forests based gene ranking, DE the differential expression based 109 
gene ranking and EPS the extreme pseudo-samples based gene ranking. 𝑅𝐹' denotes the i-th 110 
gene of the random forests based gene ranking. Similarly, 𝐷𝐸' denotes the i-th gene of the 111 
differential expression based gene ranking and 𝐸𝑃𝑆' denotes the i-th gene of the extreme 112 
pseudo-samples based gene ranking. 113 

• For both rankings, 20 gene signatures are generated, including an incremental number of genes. 114 
Let 𝑠𝑖𝑔𝑅𝐹' denote the i-th gene signature based on the random forests ranking, 𝑠𝑖𝑔𝐷𝐸' denote 115 
the i-th gene signature based on the differential expression ranking and 𝑠𝑖𝑔𝐸𝑃𝑆' the i-th gene 116 
signature based on the extreme pseudo-samples ranking. The signatures are formally defined 117 
as:  118 

o 𝑠𝑖𝑔𝑅𝐹' = {𝑅𝐹1,… , 𝑅𝐹'},   for 𝑖 = 1, … , 20  119 

o 𝑠𝑖𝑔𝐷𝐸' = {𝐷𝐸1, … ,𝐷𝐸'},   for 𝑖 = 1, … , 20  120 

o 𝑠𝑖𝑔𝐸𝑃𝑆' = {𝐸𝑃𝑆1, … , 𝐸𝑃𝑆'},   for 𝑖 = 1, … , 20  121 

• For each signature, 122 

o A Cox proportional hazard model was built using all genes of the signature 123 

o The samples of the validation set were split into two groups (higher and lower survival), 124 
based on the median of the Cox proportional hazard model. 125 

o A log-rank test was performed to compare the survival of the two groups. 126 
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• For 𝑖 = 	 {1,… , 20}, the p-value of the log-rank tests obtained with 𝑠𝑖𝑔𝐷𝐸', 𝑠𝑖𝑔𝑅𝐹', 𝑠𝑖𝑔𝐸𝑃𝑆' 127 
are compared. 128 

 129 

For each data set, correlation coefficients have been computed between the expression values of the 130 
50% most expressed genes; a hierarchical clustering of the 50% most expressed genes was performed, 131 
to assess if multicollinearity played a role in the performance of the RF based method (multicollinearity 132 
denotes the presence of non-independent features such that the relationship between each of these 133 
features and the model output is influenced by the relationships between the non-independent features). 134 
A hierarchical clustering of all samples was also performed, with the 50% most expressed genes. 135 
Enrichment analysis was performed on gene lists from both methods.  136 

The correlation coefficient between each top-ranked gene from both list and the 50% most expressed 137 
genes has been computed for each data set. 138 

Globally, the correlation between the overall survival at 5 years of all cancer types, and the performance 139 
of the presented methods was computed. 140 

2.3 Extreme Pseudo-Sampling 141 

It is worth noting that, in most data sets considered in this study, the samples from both classes reside 142 
in a high dimensional space and are tightly coordinated together, such that a linear classifier cannot 143 
separate them at all. The low count of normal samples compared to the total sum of samples also 144 
contributes to the failure of linear classifiers; which tend to receive bias from such unbalance of class 145 
membership statistics.  146 

We decided to use a dimensionality reduction technique in order to both address the curse of 147 
dimensionality and find a representation in which these samples lay in a linearly-separable subspace.  148 

Autoencoders have shown to be able to create such latent representations better than their linear 149 
counterparts such as PCA [Tan2015, Danaee2016]. However, such representations do not provide us 150 
with useful, actionable knowledge about genes due mainly to their non-linear activation functions. 151 

Moreover, Normal Autoencoders are not generative, i.e. while it is possible to come up with useful 152 
latent representations for classification purposes, one cannot generate new samples similar to the real 153 
samples by slightly modifying their latent representation values and feeding the result into the decoder 154 
network.  155 

A new type of Autoencoder, called the Variational Autoencoder, however, can succeed in this task 156 
[Kingma2013]. VAEs are fundamentally different from other AEs in that they are generative models:  157 

Each point x in real space will be associated with distribution P(z|x). For the purpose of this 158 
methodology, we assumed this distribution to be normal. Getting latent representation z1 from sample 159 
x1, thus, would be equal to drawing a sample from distribution Ɲ(µ1, σ1), where µ1, σ1 are learned from 160 
the training data.  161 

The training VAE comprises 9 layers, having 30000, 15000, 10000, 2000, 500, 2000, 10000, 15000, 162 
30000 perceptrons respectively. The training process of these layers requires fine-tuning approximately 163 
5 billion parameters. Given that the performance of this fine-tuning process increases with the number 164 
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of samples, in addition to the training set extracted from the studied TCGA dataset, a random selection 165 
of samples from the 11 other training sets is used in the VAE training process.  166 

After the training step, each dataset Dc is transformed to its latent representation Lc. Said latent 167 
representation allows to linearly separate the normal samples from cancerous ones with almost 100% 168 
accuracy for both testing and training datasets. Considering the linear separator, let us denote the 169 
furthest populated areas on both sides of the separator, called Nc for the normal side of the linear 170 
separator and Cc for the cancerous side. If we consider a point zn in one of these areas, we know it has 171 
been randomly drawn from distribution Ɲ(µn, σn).  172 

While selecting zn is a random process, once a zn has been drawn from any of the distributions, 173 
reconstructing ẋn ≈ xn from zn is a deterministic process done by the decoder. However, every point in 174 
the close proximity of zn can be drawn from the same distribution. Due to the deterministic features of 175 
the decoder, each of these points would end up generating a different ẋn. Although different, every 176 
possible ẋn should resemble the original xn closely and should also follow the general statistical 177 
characteristics of all x’s in the dataset.  178 

We then drew 400 random points in areas Nc and Cc of the latent space Lc, on both sides of the linear 179 
separator and generated new “virtual” or “pseudo” samples of both cancerous and normal classes, a 180 
process that we call Extreme Pseudo Sampling (EPS). The amount of random points drawn (400) was 181 
chosen using cross validation on the training data. It was the smallest number of samples that ended up 182 
in a successful regression process.  183 

While real samples cannot be divided using a linear separator and suffer from unbalance of class 184 
member counts; we were able to generate new pseudo samples that can be divided linearly in real space 185 
due to their exaggerated cancerous/normal features. These samples also are of equal count. The later 186 
trait enables the dividing regression lines to be less biased towards a specific class. Thus, said 187 
regression lines maintain the same distance from both classes.  188 

Finally, since all sample features have been normalized in the process, weight coefficients in the line 189 
formula can be translated into importance factors for classifying extreme pseudo samples. The larger 190 
a coefficient, the more important its related feature is in determining class membership. Thereby, we 191 
are able to extract an importance ranking for all genes, in each data set.  192 

The R and Python scripts used to perform the aforementioned analyses are available online:  193 
https://github.com/stephwen/ML_RNA-Seq & https://github.com/roohy/Extreme-Pseudo-Sampler 194 

3 Results 195 

For each data set, 60 log-rank tests have been performed on the validation set, using gene signatures 196 
sigDEi, sigRFi, and sigEPSi with i = {1, 2, ..., 20} which contain from 1 to 20 genes out of the gene 197 
ranking derived from differential expression analysis, the gene ranking derived from the random forests 198 
classifier, and the gene ranking derived from the Extreme Pseudo-Sampling method respectively. The 199 
p-values of these tests have been compared two by two. 200 

Table 2 summarizes the results and shows the number of gene signatures where the random forests 201 
based gene ranking outperforms the differential expression based gene ranking and where the Extreme-202 
Pseudo Sampling method outperforms the differential expression based gene ranking. 203 

 204 
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Name Cancer type Random forests Extreme pseudo-
samples 

TCGA-BRCA Breast invasive carcinoma 5 19 

TCGA-LUAD Lung adenocarcinoma 14 14 

TCGA-UCEC Uterine Corpus endometrial carcinoma 16 9 

TCGA-KIRC Kidney renal clear cell carcinoma 13 10 

TCGA-HNSC Head and neck squamous cell carcinoma 14 15 

TCGA-THCA Thyroid carcinoma 15 15 

TCGA-LUSC Lung squamous cell carcinoma 5 0 

TCGA-PRAD Prostate adenocarcinoma 12 19 

TCGA-COAD Colon adenocarcinoma 11 18 

TCGA-STAD Stomach adenocarcinoma 13 19 

TCGA-LIHC Liver hepatocellular carcinoma 19 8 

TCGA-KIRP Kidney renal papillary cell carcinoma 10 19 

 205 

Table 2.  The random forests column denotes the number of random forests based signatures having 206 
a lower log-rank p-value than their corresponding differential expression based signatures. The 207 

extreme pseudo-samples column denotes the number of extreme pseudo-samples based signatures 208 
having a lower log-rank p-value than their corresponding differential expression based signatures. 209 
The 3 colors (green, yellow, red) refer to cases where the proposed methods have a higher number, 210 

the same number, and a lower number of best-performing gene signatures than DESeq2, 211 
respectively. 212 

 213 

For 9 out of the 12 data sets analyzed (lung adenocarcinoma, uterine corpus endometrial carcinoma, 214 
kidney renal clear cell carcinoma, head and neck squamous cell carcinoma, thyroid carcinoma, prostate 215 
adenocarcinoma, colon adenocarcinoma, stomach adenocarcinoma, liver hepatocellular carcinoma), 216 
the random forests based gene ranking outperforms the differential expression based gene ranking in 217 
terms of identifying subsets of genes associated with survival. For 8 out of the 12 datasets (breast 218 
invasive carcinoma, lung adenocarcinoma, head and neck squamous cell carcinoma, thyroid 219 
carcinoma, prostate adenocarcinoma, colon adenocarcinoma, stomach adenocarcinoma, kidney renal 220 
papillary cell carcinoma), the extreme pseudo-samples based gene ranking outperforms the differential 221 
expression based gene ranking. For one data set (kidney renal papillary cell carcinoma), both the 222 
DESEq2 and the random forests based gene rankings share the same number of best performing 223 
signatures. For one data set (kidney renal clear cell carcinoma), both the DESEq2 and the extreme 224 
pseudo-samples based gene rankings share the same number of best performing signatures. For 2 out 225 
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of the 12 data sets (breast invasive carcinoma, lung squamous cell carcinoma), the differential 226 
expression based gene ranking outperforms the random forests based gene ranking. For 3 out of the 12 227 
data sets (uterine corpus endometrial carcinoma, lung squamous cell carcinoma, liver hepatocellular 228 
carcinoma), the differential expression based gene ranking outperforms the extreme pseudo-samples 229 
based gene ranking. 230 

Figure 2 shows the log-rank p-values for the 3 different methods (DESeq2, random forests, extreme 231 
pseudo-samples) and their respective gene signatures ranging from 1 to 20 genes, for the 4 largest data 232 
sets (TCGA-BRCA, TCGA-LUAD, TCGA-UCEC, TCGA-KIRC). Similar figures for the 8 other data 233 
sets are available as supplementary data. The log-rank p-values for the 20 gene signatures related to 234 
the 3 rankings for each dataset and the genome wide ranking of genes based on the permutation 235 
importance computed by the random forests classifier and on the extreme pseudo-samples method can 236 
be found in Supplementary Table 1 and Supplementary Table 2 respectively. 237 

No significant difference in the average absolute correlation coefficient obtained between the 50% 238 
most expressed genes was found between the different cohorts whose DE based signatures performed 239 
better than the RF and EPS signatures and the cohorts whose RF or EPS based signatures performed 240 
better than the DE ones. No significant difference in terms of the number of clusters of samples 241 
obtained with a hierarchical clustering with the 50% most expressed genes when using a constant 242 
height cutoff value of h = 2*10^6 was found between the different cohorts whose DE based signatures 243 
performed better than the RF and EPS signatures and the cohorts whose RF or EPS based signatures 244 
performed better than the DE ones. No significant difference in terms of the number of clusters of 245 
genes obtained with a hierarchical clustering with the 50% most expressed genes when using a constant 246 
height cutoff value of h = 10^5 was found either. No significant difference was found between the 247 
correlation between the top-ranked genes selected with both methods and the 50% most expressed 248 
genes. No correlation was found between the overall survival at 5 years of the different cancer types 249 
and the performance of either method (measured as the ratio of n/20 top-performing signatures). There 250 
is, however, a loose correlation (Pearson correlation coefficient: 0.627, p-value: 0.029) between the 251 
number of best-performing DE based signatures among the 20 signatures of each data set and the 252 
number of differentially expressed genes (adjusted p-value < 0.05) in each data set. Correlation 253 
coefficients and numbers of clusters are present, for all data sets, in Supplementary Table 3. 254 

4 Discussion 255 

Highlighting genes of interest has always been a part of transcriptomics studies and the advent of 256 
RNA sequencing technologies has but further emphasized this endeavor. Traditionally, genes of 257 
interest, in case-control studies where one had access to their expression values, were genes where 258 
said expression varied greatly from one class to the other. This definition has led to the development 259 
of numerous methods making use of diverse statistical models and tests, achieving impressive results 260 
in a lot of different use cases. However, these methods often implicitly neglected the importance of 261 
gene-gene relationships, by only looking at univariate changes. 262 

Here, we propose a paradigm shift, by directing the search for genes of interest towards the use of 263 
machine learning methods originally conceived to predict the membership of a sample in a class, as 264 
these methods intrinsically model the inter-variable relationships (i.e. the previously overlooked 265 
gene-gene links). 266 
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An obvious kind of data sets which should theoretically benefit from this are cancers, as these 267 
pathologies are known to involve several genes in a multistep process, with different mechanisms 268 
implicating intricate relationships between said genes [Vogelstein2013, Yates2012]. 269 

By using 12 data sets containing samples of various cancers, we have shown that supervised 270 
classification algorithms could be used to extract a meaningful ranking of genes. Namely, the 271 
permutation importance (also known as Mean Decrease in Accuracy) generated by the random 272 
forests algorithm and the weights coefficients used in the extreme pseudo-samples provided a 273 
ranking of genes which outperformed classical methods in most data sets. 274 

The permutation importance is not the only variable importance generated by the random forests 275 
classifier, as the Gini importance (or Mean Decrease in Impurity) is also available. However, using 276 
the Gini importance to classify the genes of these data sets yielded slightly worse results than the 277 
results obtained with the permutation importance. Using a combination of both variable importances, 278 
as in [Frères2016], also produced worse results than when using the permutation importance alone. 279 

Given the fact that neither the random forests based gene ranking nor the extreme pseudo-samples 280 
based one outperformed the differential expression based one for all of the 12 data sets, one might 281 
wonder if using both a supervised learning based gene selection technique in conjunction with 282 
differential expression would not yield better results. However, using the supervised learning based 283 
gene selection method after the differential expression one (i.e. using only the genes with a 284 
significant differential expression adjusted p-value as input features of the random forests classifier 285 
or the EPS method) also produced worse results than when using the random forests gene ranking or 286 
the EPS gene ranking alone.  287 

Using survival analysis as a way to validate gene lists coming from cancer data sets whose average 288 
survival differs greatly might spark questions, however there does not seem to be a link between the 289 
overall survival (OS) of these cancers and the performance of the proposed methods. Survival 290 
information constitutes a quantifiable and relatively easily available information for different data 291 
sets. However, using the presumed relationship between the expression values of a gene and the 292 
survival of a patient as a proxy for the role of said gene in the selected disease relies on a strong 293 
hypothesis whose validity might vary across data sets. Therefore, other gene ranking validation 294 
methods should be further explored to assess the performance of a random forests based gene ranking 295 
method and the EPS method in a wider range of RNA-Seq experiments. 296 

In conclusion, we have shown that using the permutation importance internally computed by the 297 
random forests algorithm, when said algorithm is used to build a classifier based on gene expression 298 
values of a case-control RNA-Seq data set, allowed to obtain a ranking of genes; Variational 299 
Autoencoders could be used to generate pseudo-samples mimicking the properties of real samples, 300 
albeit with extreme localizations in latent space; Using the feature weights of said pseudo-samples 301 
allowed to obtain a ranking of genes. These rankings were compared with the results of a differential 302 
expression analysis, with all three gene rankings being evaluated through survival analysis on a 303 
validation cohort different from the cohort used to generate both rankings. The results have shown 304 
that the random forests based method and the extreme pseudo-samples outperformed the differential 305 
expression based method for 9 and 8 out of the 12 data sets analyzed, respectively. Although the 306 
genes selected by both methods are different, there is no significant difference in the number of 307 
highly correlated genes between both methods. Although the goal of this research is not to supersede 308 
differential expression analysis to select genes of interest in RNA-Seq studies, we have shown that 309 
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differential expression analysis might miss out on important genes, and a supervised learning based 310 
gene selection method should be used alongside. 311 

As the field of machine learning contains many different supervised classification and feature 312 
selection algorithms, it would be of interest to extend this work by testing the performance of other 313 
methods for gene selection in the context of case-control RNA-Seq data sets. 314 

 315 
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Name Cancer type N (tumors) n (healthy) Median age Age range 

TCGA-BRCA Breast invasive carcinoma 1097 113 59.07 26-90 

TCGA-LUAD Lung adenocarcinoma 582 59 66.88 33-88 

TCGA-UCEC Uterine Corpus endometrial carcinoma 559 35 64.24 31-90 

TCGA-KIRC Kidney renal clear cell carcinoma 535 72 61.16 26-90 

TCGA-HNSC Head and neck squamous cell carcinoma 528 44 61.14 20-90 

TCGA-THCA Thyroid carcinoma 507 58 46.92 15-89 

TCGA-LUSC Lung squamous cell carcinoma 504 49 68.66 39-90 

TCGA-PRAD Prostate adenocarcinoma 498 52 61.99 42-78 

TCGA-COAD Colon adenocarcinoma 460 41 68.88 31-90 

TCGA-STAD Stomach adenocarcinoma 443 32 67.56 30-90 

TCGA-LIHC Liver hepatocellular carcinoma 377 50 61.53 16-88 

TCGA-KIRP Kidney renal papillary cell carcinoma 291 32 62.03 28-88 

 
Table 1. TCGA data sets used in this study. 
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Name Cancer type Random forests Extreme pseudo-
samples 

TCGA-BRCA Breast invasive carcinoma 5 19 

TCGA-LUAD Lung adenocarcinoma 14 14 

TCGA-UCEC Uterine Corpus endometrial carcinoma 16 9 

TCGA-KIRC Kidney renal clear cell carcinoma 13 10 

TCGA-HNSC Head and neck squamous cell carcinoma 14 15 

TCGA-THCA Thyroid carcinoma 15 15 

TCGA-LUSC Lung squamous cell carcinoma 5 0 

TCGA-PRAD Prostate adenocarcinoma 12 19 

TCGA-COAD Colon adenocarcinoma 11 18 

TCGA-STAD Stomach adenocarcinoma 13 19 

TCGA-LIHC Liver hepatocellular carcinoma 19 8 

TCGA-KIRP Kidney renal papillary cell carcinoma 10 19 

 

Table 2.  The random forests column denotes the number of random forests based signatures 
having a lower log-rank p-value than their corresponding differential expression based 

signatures. The extreme pseudo-samples column denotes the number of extreme pseudo-samples 
based signatures having a lower log-rank p-value than their corresponding differential 

expression based signatures. The 3 colors (green, yellow, red) refer to cases where the proposed 
methods have a higher number, the same number, and a lower number of best-performing gene 

signatures than DESeq2, respectively. 
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