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ABSTRACT The additive genomic variance, the chief ingredient for the heritability, is often underestimated in phenotype-
genotype regression models. Various remedies, including different models and estimators, have been proposed in order to
improve on what has been coined the “missing heritability”. Recently, debates have been conducted whether estimators for the
genomic variance include linkage disequilibrium (LD) and how to explicitly account for LD in estimation procedures.
Up-to-now, the genomic variance in random effect models (REM) has been estimated as a parameter of the marginal, i.e.
unconditional model. We propose that the genomic variance in REM should be predicted as a conditional random quantity
based on the conditional distribution of β. This signifies a paradigm shift from the estimation to the prediction of the genomic
variance. This approach is structurally in perfect accordance to the Bayesian regression model (BRM), where the posterior
expectation of the genomic variance is estimated based on the posterior of β. We introduce a novel, mathematically rigorously
founded predictor for the conditional genomic variance in (g)BLUP, which is structurally close to the Bayesian estimator. The
conditioning of the novel predictor on the data is intrinsically tied to the inclusion of the contribution of LD and the predicted
effects. In addition to that, the predictor shows much weaker dependence on distribution assumptions than estimators of other
approaches, e.g. GCTA-GREML. Last but not least, the predictor, contrasted with the estimator in the unconditional model,
enables an innovative approximation of the influence of LD on the genomic variance in the dataset.
An exemplary simulation study based on the commonly used dataset of 1814 mice genotyped for 10346 polymorphic markers
substantiates that the bias of the novel predictor is small in all standard situations, i.e. that the predictor for the conditional
genomic variance remarkably reduces the “missing heritability”.
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Introduction

The additive (genotypic) variance is defined as the variance
of the breeding value (BV) and is the chief cause of

resemblance between relatives and therefore the most important
determinant of the response of a population to selection
(Falconer and Mackay 1996). In addition to that, the additive
variance can be estimated from observations made on the
population and is a principal component of the (narrow-sense)
heritability, which is one of the main objectives in many genetic
studies (Falconer and Mackay 1996). The heritability is eminent,
amongst other things, for the prediction of the response to
selection in the breeder’s equation (Piepho and Moehring 2007;
Hill 2010). Although non-additive genomic variation exists,
most of the genetic variation is additive, such that it is sufficient

to investigate the additive genetic variance (Hill et al. 2008). In
more detail, epistasis is only important on the gene-level but not
for genetic variances (Hill et al. 2008), and Zhu et al. (2015) show
that for human complex traits dominance variation contributes
little. Nevertheless, linkage disequilibrium (LD) is an important
factor especially when departing from random mating and
Hardy-Weinberg equilibrium, which is often the case in animal
breeding (Hill et al. 2008; Dempfle 2018).
The genomic variance, the genomic equivalent to the genetic
variance, is defined as the variance of a trait that can be
explained by a linear regression on a set of markers (de los
Campos et al. 2015). Many authors have been chasing what is
sometimes coined “missing heritability” (Maher 2008) which
means that only a fraction of the “true” genomic variance
can be captured by regression on influential loci. To begin

Genetics, Vol. XXX, XXXX–XXXX March 2018 1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/282343doi: bioRxiv preprint 

https://doi.org/10.1101/282343


with, researchers have used genome-wide association studies
(GWAS) in order to find quantitative trait loci by using fixed
effect regression combined with variable selection. After having
added the estimated corresponding genomic variances of the
single statistically significant loci, they asserted that they could
only account for a fraction of the “true” genetic variance. For
instance, Maher (2008) found that only 5% instead of the widely
accepted heritability estimate of 80% of human height could
be explained. Golan et al. (2014) state that the “true” genetic
variance is generally underestimated when applying variable
selection, e.g. GWAS, to genomic datasets which are typically
characterized by their high-dimensionality, where the number
of variables p is much larger than the number of observations
n. It is well known that a lot of traits are influenced by many
genes and that at least some loci with tiny effects are missed
when using variable selection or even single-marker regression
models. Consequently, Yang et al. (2010) decided to fit all
common markers jointly using genomic best linear unbiased
prediction (GBLUP), where they assume the effect vector to
vary at random. Then, they estimated the genomic variance
using restricted maximum likelihood (REML) in an approach
that they termed genome-wide complex trait analysis (GCTA)
GREML (Yang et al. 2011). They showed that quantifying the
combined effect of all single-nucleotide polymorphisms (SNPs)
explains a larger part of the heritability than only using certain
variants quantified by GWAS methods. They illustrate their
results on the dataset on human height by pointing out that
they could explain a heritability of about 45%. They concluded
that the main reason for the remaining missing heritability
was incomplete linkage disequilibrium of causal variants with
the genotyped SNPs, which refers to the general difference of
genetic and genomic variances (de los Campos et al. 2015).
Recently, there has been a general discussion whether estimators
for the genomic variance account for linkage disequilibrium
(LD) between markers, which is defined as the covariance
between additive effects of marker pairs (Bulmer 1971). Some
authors argue that estimators similar to GCTA-GREML lack the
contribution of LD (de los Campos et al. 2015; Kumar et al. 2015,
2016; Lehermeier et al. 2017) whereas others (Yang et al. 2016)
resolutely disagree. More specifically, Kumar et al. (2015, 2016)
state that in GCTA-GREML the contributions of the p markers to
the phenotypic value are assumed to be independent normally
distributed random variables with equal variances. Thus, they
claim that the random contribution made by each marker is not
correlated with the random contributions made by any other
marker which leads to a negligence of the contribution of LD
to the genomic variance. Moreover, Kumar et al. (2015, 2016)
criticize GCTA-GREML because of the assumption that the esti-
mated genomic relationship matrix (GRM) is treated as a fixed
quantity without sampling errors although the GRM is actually
a realization of an underlying stochastic process. In a study on
the model plant Arabidopsis (The 1001 Genomes Consortium
2016), Lehermeier et al. (2017) use Bayesian ridge regression
(BRR) to relate the phenotype flowering time to the genomic
data. They use an estimator (termed M2) based on the posterior
distribution of the marker effects obtained by Markov Chain
Monte Carlo (MCMC) methods and show that this estimator
explains a larger proportion of the phenotypic variance than
the estimator, termed M1, based on GBLUP (VanRaden 2008;
Yang et al. 2010, 2011). Lehermeier et al. (2017) show that the
reason for the better performance of the Bayesian estimator for
the genomic variance is the explicit inclusion of disequilibrium

covariances.
In this article we investigate the additive genomic variance in
linear regression models within the framework of quantitative
genetics, i.e. the genetic variance stems from the variation of
QTL genotypes whereas the effects of alleles on a trait are fixed
parameters (Falconer and Mackay 1996; de los Campos et al.
2015). The difference of individuals in their genetics values is
caused by the inter-individual differences in allele content at
QTL (de los Campos et al. 2015).
These assumptions are reflected in the fixed effect model (FEM)
that we treat in Section Fixed Effect Model (FEM), where β is
a deterministic parameter and the genomic variability comes
in only through the randomness of the marker content. We
show that the genomic variance in FEM explicitly includes the
contribution of LD and we derive a nearly unbiased estimator
for the genomic variance in this model, i.e. that the remaining
bias consists only of possible correlations between the plug-in
quantities. However, the FEM is not applicable to genomic
datasets that are characterized by their high-dimensionality. As
a remedy, Bayesian regression models (BRM) and random effect
models (REM) are often used. In this models, tough, the effect
vector β is defined as a random variable and therefore these
models do not ly within the framework of classical quantitative
genetics. We investigate the expression for the genomic variance
in FEM, BRM and REM and notice that, in general, the genomic
variance strongly depends on the assumptions for the effect
vector. In BRM in Section Bayesian Regression Model (BRM),
β is assigned a prior distribution and we seek its posterior
distribution by means of the likelihood of the data. We show
that in this model set-up it is necessary to consider the genomic
variance as a random quantity and not as a fixed population
parameter. This results in the estimation of the posterior
expectation of the (random) genomic variance, which has
already been hinted at in Lehermeier et al. (2017).
In Section Random Effect Model (REM) we show that up-to-now,
the genomic variance in REM has been estimated as a parameter
of the marginal, i.e. unconditional model (e.g. GCTA-GREML).
By strictly conditioning on the effect vector as in BRM, we
constitute a paradigm shift from the estimation of the marginal
genomic variance to the prediction of the random conditional
genomic variance, which is structurally in perfect accordance
to the posterior genomic variance in BRM. Inspired by the
prediction of random effects (or in equivalent terminology: the
estimation of the realized values of random effects) introduced
by Henderson (1984) at the beginning of his chapter on
prediction of random variables, we call our procedure the
prediction of the genomic variance in REM.
To this end, we introduce a mathematically founded nearly
unbiased predictor for the genomic variance that is adapted to
the specified model assumptions. The application of the condi-
tional genomic variance explicitly allows for an adaptation of
the genomic variance to the data which is caused by the radical
change in the structure of the conditional variance-covariance of
β compared to the structure of marginal variance-covariance of
β (from a diagonal structure to an arbitrary structure). By doing
so, we take on the above mentioned critique that GCTA-GREML
neglects the contribution of LD due to the diagonal covariance
structure of the marginal β (Kumar et al. 2015, 2016). We show
that the conditional genomic variance explicitly accounts for
LD which has special practical relevance in animal breeding
(Dempfle 2018), and remarkably reduces the missing heritability.
In addition to that, the difference of the novel predictor and
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the estimator of the marginal genomic variance in REM can be
used as an indicator for the contribution of LD to the genomic
variance. In general, the conditional genomic variance in REM
is structurally similar to the genomic variance in FEM and
therefore has an interpretation close to the classical genetic
variance from quantitative genetics.
For reasons of clarity, we provide all calculations and detailed
derivations in the Appendix. We illustrate our results for
ordinary least-squares (OLS) from the class of FEM, for BRR
from the class of BRM and for (G)BLUP from the class REM on
simulated datasets, where we borrow the covariance structure
from the commonly used dataset on 1814 mice that comes with
the R-package “BGLR” (Perez and de los Campos 2014).

Linear Models and the Genomic Variance

We consider the basic additive linear model

Y = µ + Xβ + ε, (1)

where Y is the phenotype of a random individual, µ is a de-
terministic intercept and β is a p-vector of marker effects. The
random allele content at the markers is coded by the random
row-p-vector X with expectation E[X] = 0 (in Subsection Notes
on the mean-centering of X in the Appendix we consider de-
viations from this assumption) and covariance matrix ΣX . The
residual ε is assumed to be independent of Xβ and normally
distributed with mean 0 and variance σ2

ε . The additive genomic
variance V is then defined as the variance of the genomic value
Xβ which consists of the inter-individual differences in allele
content at the markers as well as the effects of the markers them-
selves (de los Campos et al. 2015):

V := Var(Xβ). (2)

Due to independence of Xβ and ε we can separate the pheno-
typic variance σ2

Y in the genomic variance V and in the residual
variance σ2

ε :

σ2
Y = V + σ2

ε . (3)

Typically, one considers n realizations of model (1), i.e. yi =
Y|(X = xi1, xi2, ..., xip) for i = 1, ..., n, which results in the condi-
tional (on X) model

yi = µ + (Xβ)i + εi := µ +
p

∑
j=1

xijβ j + εi, i = 1, ..., n, (4)

where X denotes the n× p design matrix containing n realiza-
tions of the stochastic p-vector X. We consider mean-centered
data: ∑n

i=1 xij = 0 for j = 1, ..., p (in Subsection Notes on the
mean-centering of X in the Appendix we consider deviations
from this assumption). An unbiased estimator for ΣX is given
by the method-of-moments estimator:

Σ̂X :=
1

n− 1
X>X. (5)

Fitting linear models to data is based on model (4) and many au-
thors (Piepho and Moehring 2007; Yang et al. 2010, 2011; Piepho
et al. 2012; Janss et al. 2012; Lee and Chow 2014; Lehermeier et al.
2017) also build their studies on the investigation and estimation
of the genomic variance on model (4).

We base our analysis for the (theoretical) expression of the ge-
nomic variance on (the theoretical) model (1) for several reasons.
First of all, model (1) describes the underlying data-generating
process which induces the realized model (4). By defining the
genomic variance V given by (2) in model (1), we tackle the
criticism of using the realized GRM without accounting for es-
timation uncertainty issued by Kumar et al. (2015, 2016). More
importantly, treating X as a random variable represents the inter-
pretations from quantitative genetics that the genetic variability
is caused by variation in QTL content. Strikingly, the genomic
variance V in the fixed effect model in Section Fixed Effect Model
(FEM) constantly equals 0 when building on model (4).

Fixed Effect Model (FEM)

In quantitative genetics the uncertainty about genetic values is
assumed to stem from the uncertainty in allele content at the
markers, whereas the effects are population parameters and
therefore possess no variance (Falconer and Mackay 1996; Gi-
anola et al. 2009; de los Campos et al. 2015). In accordance to
that, we consider β here as a p-vector of fixed effects, i.e. as a
deterministic population parameter. Consequently, we calculate
the genomic variance V defined in (2) as

Vf = Var(Xβ) = β>ΣX β

=
p

∑
j=1

β2
j Var(Xj) +

p

∑
i=1

p

∑
j=1
j 6=i

βiβ jCov(Xi, Xj), (6)

where the expression β>ΣX β is the genomic equivalent of the
genetic variance defined in quantitative genetics textbooks for
multiple QTL (Lehermeier et al. 2017). We have split this term
up into the additive locus-specific variance (also called genic
variance) and the contribution of linkage disequilibrium be-
tween different loci. We notice that the genomic variance Vf is a
weighted sum of the variances of the single marker content and
the covariance between the content of the markers, where the
weights are given by the elements of the fixed population effect
vector β.
Replacing β and ΣX in (6) by unbiased estimators β̂ and Σ̂X
leads to the plug-in estimator

V̂bias
f = β̂>Σ̂X β̂ (7)

for the genomic variance Vf (6). The estimator V̂bias
f (7) contains

second order products of the random variables β̂ j, j = 1, ..., p,
and is therefore a biased estimator for (6). We correct for the
covariance of the estimator β̂ by defining

V̂f := β̂>Σ̂X β̂− tr
(

Σ̂XΣ̂β̂

)
(8)

as a less biased estimator for Vf (6), where Σ̂β̂ denotes an unbi-

ased estimator for the variance-covariance matrix Σβ̂ := Cov
(

β̂
)

of β̂.
In the case that we have more observations (individuals) n than
variables (markers) p we can fit the linear model (4) using ordi-
nary least-squares (OLS), for instance. We make the note that if
we would base the definition of the genomic variance V given
by (2) on the genomic value in model (4), we would obtain
Vf = Var(Xβ) ≡ 0. As an outcome of the OLS application we
obtain the estimated effect vector β̂ and its estimated covariance
matrix Σ̂β̂. Plugging these quantities into V̂f (8) we obtain an
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improved estimator for the genomic variance Vf (6) in OLS and
notice that the empirical phenotypic sample variance σ̂2

y splits
up as in (3) into the unbiased estimator V̂f (8) for the genomic
variance in FEM and the unbiased estimator for the residual
variance σ̂2

ε :

σ̂2
y = V̂f + σ̂2

ε . (9)

This implies that with mean-centered data we can expect the
improved estimator for the genomic variance and the estimator
for the residual variance to sum up exactly to the phenotypic
variance regardless of the data considered. This implies that
when using the OLS method to fit a linear model, using the
less biased estimator V̂f (8) to estimate the genomic variance
contribution of all markers is equivalent to simply subtracting
the residual variance from the phenotypic variance. We refer
to Section FEM in the Appendix for a detailed mathematical
derivation of the results in this section.

Bayesian Regression Model (BRM)

Due to the paper of Meuwissen et al. (2001) the usage of Bayesian
methods has strongly increased in quantitative genetics. The
high-dimensionality of genomic data necessitates some way
of regularization. The basic idea of adjustment in Bayesian
regression models is to express uncertainty of the effect vector β
by assigning it a prior distribution. Then, by adapting to the data
by means of its likelihood, one attains the posterior distribution
of the effect vector.
In the first place, we consider the linear model (1) again where
β possesses the prior distribution p(β) with prior expectation
µβ (often chosen as 0) and prior variance-covariance matrix Σβ.
The specific form of the distribution of β is not relevant for the
following analysis. The genomic variance V given by (2) equals

Vb = Var(Xβ) = µ>β ΣXµβ + tr(ΣXΣβ). (10)

This expression for the genomic variance is meaningless because
we can arbitrarily strongly influence it by the choice of the prior
expectation and prior variance-covariance matrix. Instead, we
require the genomic variance in BRM to move away from the
prior assumptions by adapting to the data. In order to enable
this Bayesian learning, we consider the variance of the genomic
value Xβ conditional on the effect vector β:

W := Var(Xβ|β) = β>ΣX β, (11)

which is a quadratic form in the effect vector β. By assigning β
a prior distribution, the genomic variance W (11) is assigned a
prior distribution with prior expectation E[W] = Vb.
In the conditional (on X) linear model (4) investigations in BRM
are performed on the posterior distribution of β by adapting to
the phenotypic data y. We use characteristics of the posterior
distribution p(β|y) of β to infer the posterior distribution of the
genomic variance W given by (11), or equivalently the poste-
rior distribution of the quadratic form W of β. We define the
posterior mean of the genomic variance W as

Wb := E[W|y] = tr
(

ΣXE
[
ββ>|y

])
= µ>β|yΣXµβ|y + tr(ΣXΣβ|y)

(12)

and notice that it comprises the posterior expectation µβ|y :=
E[β|y] and the posterior variance-covariance matrix Σβ|y :=
Var(β|y) of β. The expression Wb structurally resembles the

prior expectation Vb of W but includes the posterior mean as
well as the posterior covariance of β instead of the prior mo-
ments. Structurally, the expressions W and Wb resemble the
genomic variance Vf given by (6) in the FEM in Section Fixed
Effect Model (FEM) and explicitly include the contribution of
LD, where the role of the weights for the covariance terms of X(
formerly played by βiβ j, i 6= j, in Vf, see equation (6)

)
is taken

over by the off-diagonal elements of the matrix of the posterior
second moments E[ββ>|y] of β. Hence, Wb can be split up in
the genic variance and a part including the contribution of LD
similar to Vf in (6).
There are many different approaches to fit the conditional model
(4) in BRM that mainly differ in the choice of the prior distri-
bution for the effect vector β. Most of the time, the posterior
distribution of β is approximated using MCMC methods. Then,
it is possible to estimate characteristics of the (posterior) effect
vector by the mean value or the empirical variance of the result-
ing Markov chain. In this context, we denote the sequence of
the Markov chain of the estimated effects, after discarding the
burn-in iterations and after thinning the chain, by the sequence
of p-vectors

(
β̂(m)

)
m=1,...,M. These vectors are draws from the

distribution p(β|y). Consequently, we express the quantities
µβ|y and Σβ|y by their empirical counterparts, namely the es-
timated posterior mean (also often just termed the estimated
effects) µ̂β|y of β

µ̂β|y =
1
M

M

∑
m=1

β̂(m) (13)

and the estimated posterior covariance

Σ̂β|y =
1

M− 1

M

∑
m=1

β̂(m)
(

β̂(m)
)>

− 1
M(M− 1)

M

∑
k=1

M

∑
m=1

β̂(k)
(

β̂(m)
)>

.

(14)

We propose to plug (13) and (14) into the estimator

Ŵb = µ̂>β|yΣ̂X µ̂β|y − tr(Σ̂XΣ̂µ̂β|y ) + tr(Σ̂XΣ̂β|y) (15)

for the mean of the posterior genomic variance Wb (12) in BRM,
where Σ̂µ̂β|y denotes an unbiased estimator for the covariance
Σµ̂β|y of the estimated effects µ̂β|y.
A detailed mathematical derivation of the results in this section
has been provided in Subsection BRM in the Appendix, where
we also show that plugging (13) and (14) into (12) is equivalent
to using

ŴPost :=
1
M

M

∑
m=1

(
β̂(m)

)>
Σ̂X β̂(m), (16)

which can explicitly be interpreted as an estimator for the pos-
terior mean of the genomic variance W in (11), in which the
empirical mean is taken over the realizations in every MCMC
sample. The estimator ŴPost is called M2 in Lehermeier et al.
(2017) and it has already been mentioned that this approach
draws inferences on the posterior distribution of the genomic
variance, whereas the estimator M1 mentioned in Lehermeier
et al. (2017) equals tr(Σ̂XΣ̂β|y). By strictly deriving Ŵb, see (15),
as well as its corresponding theoretical expression Wb in (12) we
have also derived a relation of the estimators used in Lehermeier
et al. (2017):

M2 = ŴPost ≈ Ŵb ≈ µ̂>β|yΣ̂X µ̂β|y + M1, (17)
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because Σ̂µ̂β|y ≈ 0.

Random Effect Model (REM)

Gianola et al. (2009) shows on toy examples how the genomic
variance changes when treating the effect vector as random in-
stead of treating it as a fixed quantity. In random effect models
we assume that the effect vector β in model (1) is a normally
distributed random variable with mean 0 and diagonal variance-
covariance matrix with equal variances σ2

β, which is equivalent
to modeling the single p components of β as independent ran-
dom variables β j ∼ N (0, σ2

β), j = 1, ..., p.
We obtain the marginal genomic variance V in model (1) as

Vr = Var(Xβ) = tr(ΣXΣβ) = σ2
β

p

∑
j=1

Var(Xj). (18)

The effect vector in the linear model (4) in REM is treated as ran-
dom. Consequently, it is not possible to estimate β but we have
to predict β in the terminology introduced by Henderson (1984),
which means that the realized values of the random effects are
estimated. Common approaches to find a best linear unbiased
predictor (BLUP) for β are based on the mixed model equa-
tions (Henderson 1984) or in general on maximum-likelihood
approaches (Searle et al. 1992). The variance components σ2

ε and
σ2

β in model (4) are usually estimated using restricted maximum
likelihood (REML) (Patterson and Thompson 1971).
Subsequently, the marginal genomic variance Vr (18) can be
estimated by

V̂r = σ̂2
βtr(Σ̂X) =

1
n− 1

σ̂2
βtr
(

X>X
)

. (19)

The derivation of the genomic variance in REM is often entirely
based on the realized model (4) (Piepho and Moehring 2007;
Yang et al. 2010, 2011; Piepho et al. 2012) which results in the
genomic variance-covariance matrix

Cov(Xβ) = XX>σ2
β. (20)

The (realized) genomic variance is estimated as the mean value
of the n genomic variances on the diagonal of (20):

V̂real
r =

1
n

tr
(

Ĉov(Xβ)
)
=

1
n

tr
(

XX>
)

σ̂2
β. (21)

Due to the properties of the trace, V̂real
r is (approximately) equiv-

alent to the estimated genomic variance V̂r in (19) that is based
on the marginal variance Vr, see (18) in model (1). Thus, there
is no difference in considering the stochastic model (1) or the
realized model (4) for the expression of the marginal genomic
variance in REM.
Due to computational advantages, it is common (Piepho and
Moehring 2007; VanRaden 2008; Piepho 2009; Yang et al. 2010,
2011; Speed et al. 2012; Janss et al. 2012; Lee and Chow 2014;
Fernando et al. 2017) to consider the so-called linear equivalent
model (Henderson 1984)

y d
= µ + g + ε, (22)

to model (4), i.e. y in (22) is equally distributed as y in model (4).
In the linear model (22) the n-vector of genomic values

g d
= Xβ ∼ N

(
0, σ2

βXX>
)

(23)

is called breeding-value (BV) (VanRaden 2008; Hill 2010) and
describes the expected performance of a progeny. The covariance
matrix σ2

βXX> of g can be replaced by some sort of equivalent
genomic relationship matrix (GRM) G (VanRaden 2008) which is
the reason why a model fit in REM based on model (22) is called
genomic BLUP (GBLUP). For high-dimensional data where p�
n, it is computationally more efficient to investigate the n-vector
g and its n × n covariance matrix than the p-vector β and its
corresponding p× p covariance matrix. Basically,

σ2
βXX> =

1
p

XX>(pσ2
β) =: Gσ2

g , (24)

where σ2
g := pσ2

β and G := 1
p XX>. The estimated equivalent

genomic variance V̂equi
r in the equivalent model (22) equals

V̂equi
r =

1
n

tr(G)σ̂2
g , (25)

where additionally the mean trace of the GRM G is often stan-
dardized to equal 1. Consequently, the marginal genomic vari-
ance V̂equi

r in the equivalent model (22) equals σ̂2
g . This approach

is termed GCTA-GREML (Yang et al. 2010, 2011). The estimated
genomic variance σ̂2

g is equivalent to the estimated genomic
variance V̂real

r (21) and therefore also in accordance with the
marginal genomic variance Vr given by (18).
No matter which of the equivalent approaches V̂r (19), V̂real

r (21)
or V̂equi

r (25) to estimate the marginal genomic variance Vr (18) is
used, they are similar to the first part of expression Vf (6), namely
∑

p
j=1 β2

j Var(Xj). But instead of weighting the variances of the
allele content by different components of the (fixed) effect vector
β, the weights in Vr, see (18), equal the variance component σ2

β

for every locus. More strikingly, the covariances between the
different loci take no part in Vr in (18) but they do so in Vf in
(6). Nevertheless, it is not clear how strong the disequilibrium
covariances are involved in the estimation of σ̂2

β or σ̂2
g in the

REML equations and implicitly influence the estimates V̂r (19),
V̂real

r (21) and V̂equi
r (25). The assumptions on the marginal dis-

tribution of β (especially on its covariance structure) are very
influential and cause the marginal genomic variance Vr in (18) to
be unsatisfactory. This is similar the genomic variance Vb in (10)
in Section Bayesian Regression Model (BRM) that is arbitrarily
strongly influenced by the prior moments of β.
As a consequence, we consider the genomic variance V (2) con-
ditional on the effect vector β, analogously to Section Bayesian
Regression Model (BRM):

W := Var(Xβ|β) = β>ΣX β = tr(ΣX ββ>), (11)

which is a quadratic form in the normally distributed effect
vector β. The genomic variance W is a random variable with
E[W] = Vr. Investigations on the random variable W have to be
done similar to investigations on the random effect β in REM,
namely by a strict conditioning on the phenotypic data y in accor-
dance to the prediction (Henderson 1984) of the effect vector β,
where the BLUP µβ|y := E[β|y] of β is given by the conditional
expectation of β on y (Searle et al. 1992). Consequently, we define
an unbiased predictor for the random genomic variance W in
(11) as the expectation of the random variable W conditional on
the data y:

Wr := E[W|y] = tr
(
ΣXE[ββ>|y]

)
= µ>β|yΣXµβ|y + tr(ΣXΣβ|y),

(26)
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where we have used the conditional variance-covariance matrix
Σβ|y := Var(β|y) of β additional to the BLUP µβ|y.
The predictor Wr for the genomic variance W is structurally in
perfect accordance with the posterior genomic variance Wb in
(12) and consequently has the same interpretation as Vf, see (6),
similar to the genetic variance in quantitative genetics. Most im-
portantly, opposed to the marginal genomic variance Vr in (18),
the predicted genomic variance Wr includes the contribution
of disequilibrium covariances similar to Vf in (6). This is done
by weighting the covariances of X with the off-diagonals of the
matrix of the conditional second moment E[ββ>|y] of β. Hence,
Wr can be split up in the genic variance and a part including the
contribution of LD similar to Vf in (6).
We examine the covariance of β|y in model (4) more closely and
obtain:

Σβ|y = σ2
β1p×p − σ2

βX>(σ2
βXX> + σ2

ε 1n×n)
−1Xσ2

β. (27)

The marginal covariance structure σ2
β1p×p of β (components in-

dependent with equal variances) in Vr in (18) changes drastically
when considering the conditional (on y) covariance structure
Σβ|y of β. In this conditional approach, the single components
of β|y are not equally and independently distributed, but posses
an arbitrary covariance structure by adapting to the data by
means of the likelihood of the data similar to the posterior co-
variance Σβ|y in Section Bayesian Regression Model (BRM). By
introducing the concept of the prediction of conditional genomic
variance, we tackle one of the central points of critique of GCTA-
GREML issued by Kumar et al. (2015, 2016).
We substitute the variance components implicitly included in
Wr in (26) by estimates and obtain a nearly unbiased predictor
for the conditional genomic variance :

Ŵr = µ̂>β|yΣ̂X µ̂β|y + tr(Σ̂XΣ̂β|y), (28)

or

Ŵequi
r :=

1
n− 1

µ̂>g|yµ̂g|y +
1

n− 1
tr(Σ̂g|y), (29)

when the prediction procedure is based on the equivalent model
(22).
By considering the genomic variance in REM as random and
deriving a predictor for this random variable, we also bridge the
gap between the estimation of the posterior mean of the genomic
variance in BRM and estimation of the marginal variance in REM
that has been observed in Lehermeier et al. (2017).
For a detailed mathematical derivation of the results in this
chapter we refer to Subsection REM in the Appendix. For an
extension of the REM to the mixed-effect model (MEM) we refer
to Subsection MEM in the Appendix.

Statistical Analysis

In this section we compare the performance of the estima-
tors V̂bias

f in (7) and V̂f in (8) from Section Fixed Effect Model
(FEM), the performance of the estimator Ŵb in (15) from Section
Bayesian Regression Model (BRM) and the performance of the
estimator V̂r in (19)as well as the predictor Ŵr in (28) from Sec-
tion Random Effect Model (REM) with respect to the genomic
variance Vf defined in (6). We have already mentioned in Section
Fixed Effect Model (FEM) that the genomic variance Vf is the
genomic equivalent of the genetic variance as defined in quanti-
tative genetics for multiple QTL and explicitly accounts for the

contribution of LD.
We executed all calculations in this section with the free software
R (R Development Core Team 2008).

Preparation of Datasets
We considered the mice dataset that comes with the R-package
BGLR (Perez and de los Campos 2014). The data originally stem
from an experiment from Valdar et al. (2006a,b) in a mice popula-
tion. The dataset contains p = 10346 polymorphic markers that
were measured in n = 1814 mice. The trait under consideration
was body mass index (BMI). In order to compare the estimators
from the FEM with the ones from BRM and REM we created a
second dataset (the reduced mice dataset) where we included
only the first p̃ = 0.6n ≈ 1088 markers, such that p̃ < n holds
true.
We used the n× p (n× p̃) matrix X coding the marker content
from the mice (reduced mice) dataset to obtain a realistic LD-
structure for the further analysis. In order to obtain modified
datasets with different QTL-to-marker densities we assigned k
out of the p (p̃) markers to be QTL. We attributed each desig-
nated QTL with a corresponding “true” (fixed) effect k-vector
βk. Then, we calculated the “true” genomic variance Vk as

Vk = β>ΣXk β, (30)

using formula (6) for Vf from Section Fixed Effect Model (FEM)
because it resembles the genetic variance as defined in quanti-
tative genetics. We denote by Xk the restriction of the marker
content data to the (designated) QTL content. For each k, we
calculated the covariance matrix ΣXk applying the method of
moments estimator (5) to the QTL content data Xk with all indi-
viduals (serves as the whole population). It has been claimed
that the main source of missing heritability is imperfect LD be-
tween markers and QTL (Yang et al. 2010) which we exclude by
explicitly assigning markers to be QTL. In addition to that, the
genomic variance under consideration is purely additive and
the variance-covariance matrix of the QTL content is given. Con-
sequently, the performance of the estimators and of the predictor
depends only on their ability to represent the genomic variance
Vk for all k.
In order to investigate the estimation (prediction) procedures for
each k for different levels of heritabilities

h2
k :=

Vk

Vk + σ2
ε
∈ {0.2, 0.5, 0.8},

we set the true error variance σ2
ε equal to 1 and multiplied the

“true” effect vector βk by the constant ck, where

c2
k :=

h2
k

1− h2
k

σ2
ε

Vk
.

This results in considering “true” genomic variances of Vk ∈
{0.25, 1, 4} for each QTL-marker ratio k/p (k/ p̃). We drew n
realizations of ε from a normal distribution with mean 0 and
standard deviation σε = 1, calculated the phenotypic values
yk using the additive linear model (4), and hence obtained sev-
eral modified genomic datasets with phenotypic and genotypic
values for each Vk and h2

k).

Model-fitting and Genomic Variance Calculation
Given the phenotypic and genotypic data described in Subsec-
tion Preparation of Datasets, we fitted the OLS model using
the R-function “lm” and obtained the estimated effect vector
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β̂ as well as the estimated error variances σ̂2
ε . We used these

in order to calculate the biased estimator V̂bias
f in (7) as well as

the nearly unbiased estimator V̂f in (8). The OLS method is not
well-defined in applications where the number of markers p is
larger than the number of individuals n. Therefore we applied
this method only to the reduced mice dataset.
We fitted the BRR model with the function “BGLR” with the spec-
ification of the model equal to “BRR” in the R-package “BGLR”
(Perez and de los Campos 2014). We decided to use 30000 it-
erations of the Markov chain and discarded the first 10000 as
burn-in, after we had exemplarily checked the convergence of
the resulting Markov chain and asserted convergence in every
case. We kept only every fifth realization of the remaining chain
in order to obtain approximate independence. This left us with
M = 4000 state values that are assumed to be representative of
the posterior distribution. As a result of the application we ob-
tained estimators µ̂ for the intercept, σ̂2

ε for the residual variance,
and a M× p (M× p̃) matrix with realizations of the estimated
effect vector β̂(m), m = 1, ..., M, in every state m of the consid-
ered Markov chain. We plugged these into Ŵpost, see (16), in
order to calculate an estimator for the posterior expectation of
the genomic variance Wb defined in (12).
We fitted the (G)BLUP model in its equivalent form (22) as in
Section Random Effect Model (REM) by using the R-package
“sommer” (Covarrubias-Pazaran 2017) and in particular its func-
tion “mmer”. We obtained the predicted effects µ̂g|y and the
estimated variance components σ̂2

g and σ̂2
ε . We used these quan-

tities in order to calculate the estimator V̂equi
r in (25) for Vr and

the predictor Ŵequi
r in (29) for the conditional genomic variance

Wr. Despite the explicit implementation of V̂equi
r and Ŵequi

r we
use the equivalent quantities V̂r, see (19), and Ŵr, see (28), to
describe the simulation studies in order to emphasize the deriva-
tion using the stochastic data-generating process X.

Performance Indexes

We compared each estimator V̂ for the genomic variance Vk in
(30) with respect to the absolute value of the relative bias

rBias(V̂) :=
|E[V̂]−Vk|

Vk
(31)

and their relative root-mean-squared-error

rRMSE(V̂) :=

√
E
[
(V̂ −Vk)2

]
Vk

. (32)

For the analysis in Subsection Variation of QTL-Allocations. we
define the relative contribution rLD of LD to the genomic vari-
ance Vk as

rLD(Vk) :=
∑

p
i=1 ∑

p
j=1,j 6=i β

(k)
i β

(k)
j Cov(X(k)

i , X(k)
j )

Vk
(33)

and the indicator Ir in REM for the contribution of LD to the
genomic variance as

Ir :=
Ŵr − V̂r

Ŵr
. (34)

Variation of Observational Data

We randomly selected k QTL as described in Subsection
Preparation of Datasets and fixed them for the further anal-
ysis, where we chose the number k from the sets Km :=
{10, 100, 500, 1000, 2000, 5000, 10000} for the mice dataset and
Krm := {10, 50, 100, 200, 500, 1000} for the reduced mice dataset.
For practical reasons of creating effect vectors with shapes of
realizations of normal distributions or the heavier-tailed gamma
distribution, we chose the “true” effect vector βk as a realization
(i.e. fixed value) according to the distributions depicted in Table
1. Formally, we considered an unknown data-generating process
X with n realized p-vectors contained in the design matrices X.
We randomly selected ñ = 0.8n out of the n realizations (individ-
uals) 500 times for each combination of k and h2 which imitates
drawing from the data-generating process X. In each iteration,
we calculated the estimators and the predictor in the OLS, BRR
and (g)BLUP models as described in Subsection Model-fitting
and Genomic Variance Calculation.
The estimation performance of the biased estimator V̂bias

f com-
pared to the improved estimator V̂f from FEM in the reduced
mice dataset is depicted in Figure 1 for a heritability of 0.2
(Vk = 0.25 for all k). The biased estimator V̂bias

f performs dras-
tically worse than the improved estimator V̂f. This behavior
of V̂bias

f is very similar for all considered h2 which emphasizes
the importance of the bias-correction in the FEM. For reasons
of clarity we abstain from depicting the estimator V̂bias

f in the
further analysis.
We compared the performance of the remaining estimators and
the predictor for the genomic variances in the reduced mice
dataset for h2 = 0.2 in Figure 2, for h2 = 0.5 in Figure 3 and for
h2 = 0.8 in Figure 4. The estimated variances are averaged over
the 500 realizations and are depicted in subject to the number of
QTL k which also determines the QTL-marker ratios k/ p̃.
The bias-corrected estimator V̂f given by (8) performs best and
is very close to the “true” value of the genomic variance for all
levels of heritabilities h2 and numbers of QTL k. This is expected
because the “true” genomic variance is calculated according to
the genomic variance in the FEM, the genomic equivalent of the
genetic variance as defined in quantitative genetics.
The estimator Ŵb, see(15), from the BRM overestimates the “true”
genomic variance for h2 = 0.2 for about over 10%. The perfor-
mance of the estimator improves with larger heritability and
for h2 = 0.8 the estimator is very close to the “true” value for
all k. Possible reasons for the overestimation by Ŵb for small
h2 are dependencies between the states of the Markov chain,
such that the approximation (40) is not good enough and that
the model-fit gets worse such that the plugged-in state values
are not representative of the posterior distribution (although the
MCMC algorithm had converged).
The estimation performance of V̂r given by (19) depends on the
QTL-marker ratio such that with increasing number of QTL’s
k the underestimation of V̂r drastically increases, whereas for a
small QTL-marker ratio, the estimator V̂r tends to overestimate
the “true” genomic variance. The performance of the estima-
tor strongly declines with increasing heritability, such that for
h2 = 0.2 the relative bias amounts to about 4%, for h2 = 0.5 to
5− 15% and for h2 = 0.8 to 5%− 20%.
The novel predictor Ŵr defined in (28) from the REM overesti-
mates the “true” genomic variance for h2 = 0.2 but nevertheless
performs better than the estimators from the REM and the BRM.
The predictor Ŵr performs relatively independent of the QTL-
marker ratio and its performance advantage upon V̂r increases
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with increasing h2. Although the “true” genomic variance is cal-
culated according to the FEM, the performance of Ŵr can more
than compete with the estimators V̂f from FEM and Ŵb from
the BRM. We put special emphasis on the performance improve-
ment of the novel predictor Ŵr versus the estimator V̂r in the
case of higher heritability (Figure 4). This resembles the study
of the missing heritability (Maher 2008; Yang et al. 2010) and the
novel predictor remarkably reduced the missing heritability in
REM in our simulation study. The number of covariances that
contribute to the genomic variance Vk depends quadratically on
k (k2 − k) and we draw the conclusion that the increasing bias of
V̂r in (19) with increasing k is due to the quadratic increase in the
number of missed covariances. In contrast to that, the estimators
V̂f in (8), Ŵb in (15) and the predictor Ŵr in (28) fluctuate around
the “true” value of the genomic variance independent on the
number of covariances.
The performance of the estimators and the predictor from BRM
and REM in the full mice dataset is very similar to the perfor-
mance in the reduced mice dataset such that we can also assert
the improved performance of Ŵb and Ŵr in the case of p� n. In
addition to that, we compared the estimators and the predictor
with respect to relative root-mean-squared-error and assert simi-
lar behavior as when investigating the estimation performance.
We conclude that treating the genomic variance as random is
also advantageous with respect to the precision of the estimators
and the predictor.

Table 1 Sources of Effect vector β in Subsection Variation of
Observational Data

K β

10 (1, 0.3,−0.5, 5,−2.4, 0.1,−0.6, 1.3,−2,−1.7)>

50 U [−2.6, 3]

100 G(0.1, 5)a

200 N (0.1, 0.382)

500 N (0.2, 1)

1000 G(0.03, 8)

2000 N (0.1, 0.382)

5000 G(0.03, 8)

10000 N (0.1, 1)

a Gamma distribution with shape and scale parameters

Variation of QTL-Allocations
In Subsection Variation of Observational Data we investigated
the performance of the estimators and the predictor of the ge-
nomic variance for a fixed QTL-allocation and varying observa-
tions. Hence, it is possible that the conclusions made depend
strongly on the specific QTL-allocation and the corresponding
implied LD-structure, and cannot be generalized. Consequently,
we considered the whole dataset of individuals and conducted
the analysis in this section for different QTL-allocations for each
level of heratibility and number of QTL k. In order to do so, we
undertook 2000 iterations of randomly choosing the actual QTL-
allocations for every level of heritability h2 and each number
of QTL k ∈ K, where Km = {10, 100, 500, 1000, 2000, ..., 10000}
for the mice dataset and Krm = {10, 50, 100, 200, ..., 1000} for the

Figure 1 Estimated variance in the FEM (mean value over iter-
ations of subsets of individuals) in the reduced mice dataset
for different number of QTL k and fixed numbers of markers
p̃ = 1088. The “true” genomic variance Vk equals 0.25 for all k
which resembles a heritability h2 of 0.2. The estimator V̂f per-
forms remarkably better than the biased estimator V̂bias

f and is
very close to Vk independently of the QTL-to-marker ratio.

Figure 2 Estimated variance (mean value over iterations of
subsets of individuals) in the reduced mice dataset for differ-
ent number of QTL k and fixed numbers of markers p̃ = 1088.
The “true” genomic variance Vk equals 0.25 for all k which
resembles a heritability h2 of 0.2. The estimator V̂f from FEM
performs best followed by the predictor Ŵr for the conditional
genomic variance in REM which slightly overestimates Vk.
The estimator V̂r underestimates Vk and the bias of the estima-
tors increases with k. The estimator for the posterior genomic
variance Ŵb constantly overestimates V by around 10%.
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Figure 3 Estimated variance (mean value over iterations of
subsets of individuals) in the reduced mice dataset for differ-
ent number of QTL k and fixed numbers of markers p̃ = 1088.
The “true” genomic variance Vk equals 1 for all k which resem-
bles a heritability h2 of 0.5. The estimator V̂f from the FEM and
the predictor Ŵr from the REM are very close to the “true” Vk
for all k. The estimator Ŵb for the posterior mean of genomic
variance also performs well but slightly overestimate Vk with
increasing k. The estimator V̂r drastically underestimates Vk
and the bias of the estimator strongly increases with k.

Figure 4 Estimated variance (mean value over iterations of
subsets of individuals) in the reduced mice dataset for differ-
ent number of QTL k and fixed numbers of markers p̃ = 1088.
The “true” genomic variance Vk equals 4 for all k which resem-
bles a heritability h2 of 0.8. The estimator V̂f from the FEM,
the predictor Ŵr from the REM and the estimator Ŵb are con-
stantly very close to Vk for all QTL-marker ratios k/ p̃. The
estimator V̂r from the REM drastically underestimates Vk and
the bias of the estimator strongly increases with k.

reduced mice dataset. We used β = (1, ..., 1)k as the “true” effect
vector in Vk, see (30), prior to scaling by ck, in order to weight all
locus-specific variances as well as all disequilibrium covariances
equally.
We compared the performance of the estimator V̂bias

f in (7) to
the improved estimator V̂f in (8) in the reduced mice dataset in
Figure 5. Similar to Subsection Variation of Observational Data
we notice that the bias-corrected estimator V̂f behaves much
better than the estimator V̂bias

f . In addition to that, V̂f fluctuates
around the true value of V = 0.25 for all k, which indicates that
the performance is independent of the QTL-marker ratio. We
observed similar behavior for h2 = 0.5 and h2 = 0.8. In Figures
6 (h2 = 0.2), 7 (h2 = 0.5) and 8 (h2 = 0.8) we depict the average
of the estimators and the predictor over all considered QTL-
allocations in the reduced mice dataset for different number of
QTL k for fixed number of markers p̃ = 1088. We notice that
the behavior of all considered quantities over k is more bumpy
compared to the analysis for a fixed QTL-allocation. This indi-
cates that the QTL-allocation influences the estimators and the
predictor. The general conduct of the estimator V̂f, see (8), the
estimator Ŵb, see (15) and the predictor Ŵr, see (28), is similar
and independent of the level of heritability, as we notice that
these quantities have spikes and slabs for the same k (same QTL-
allocations) for each h2. This indicates that V̂f, Ŵb, and Ŵr are
in accordance and confirms that they can be used to estimate
the genomic variance as defined in the FEM (and quantitative
genetics). The estimator V̂f fluctuates around the “true” value of
the genomic variance, wheres the estimator Ŵb constantly over-
estimates the Vk for all k for small h2 (as in Subsection Variation
of Observational Data). The predictor Ŵr fluctuates around the
“true” value of the genomic variance for h2 = 0.2 and slightly
overestimates for larger heritabilities, but performs at least as
good as V̂f and Ŵb. The estimator V̂r from REM underestimates
the “true” value of the genomic variance in all cases where the
bias increases with increasing k regardless of h2. Compared the
behavior in Subsection Variation of Observational Data where
only one QTL-allocation was examined, the estimator V̂r under-
estimates V also for small k. The difference to the novel predictor
Ŵr is striking. Especially for h2 = 0.8 the estimator V̂r accounts
for less than half of the true genomic variance, which is in accor-
dance with observations of the missing heritability (Maher 2008;
Yang et al. 2010). The missed covariances increase quadratically
in k which explains the increasing bias of the estimator V̂r. This
simulation studies indicates that the novel predictor Ŵr in (28)
as well as the estimator Ŵb in (15) are possible solutions to the
missing heritability, because of their explicit inclusion of LD.
For each level of heritability h2 and each number of QTL k we
considered 2000 different QTL-allocations and each of them de-
fines a specific LD-structure. Consequently, the “true” value
of the genomic variance for each QTL-allocation can be distin-
guished by a different relative contribution of LD to V as defined
in rLD defined in (33). We depict the empirical covariance of this
relative contribution of LD with the value of V̂r, Ŵr, the indicator
Ir given by (34), the relative bias (31) of V̂r and the relative bias
of Ŵr for each h2 and k in Figure 9. The correlation of V̂r with
the relative contribution of LD is negative (about −0.75) which
indicates that the larger the contribution of LD becomes, the
smaller the estimator becomes. This is clearly contrasted by the
novel predictor Ŵr which is approximately uncorrelated with
the contribution of LD. In addition to that, the relative bias of V̂r
is positively correlated (about 0.75) with the relative contribu-
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tion of LD which demonstrates that the larger the contribution
of LD, the larger the bias of the estimator becomes. This is once
again contrasted by the relative bias of Ŵr that is approximately
uncorrelated to the contribution of LD. Strikingly, the empirical
correlation of the indicator Ir, which can be calculated using only
V̂r and Ŵr, is positively correlated with the relative contribution
of LD to the genomic variance. As a consequence, Ir constitutes
a novel approximation of the relative contribution of LD to the
genomic variance.
In addition to the analysis for the reduced mice dataset we com-
pared the estimators and the predictor in the full mice dataset
where p� n. The performance of the estimator Ŵb, V̂r, and the
predictor Ŵr are very similar to the performance in the reduced
mice dataset.

Figure 5 Estimated variance in the FEM (mean value over dif-
ferent QTL allocations) in the reduced mice dataset for differ-
ent numbesr of QTL k and fixed number of markers p̃ = 1088.
The “true” genomic variance Vk equals 0.25 for all k which
resembles a heritability h2 of 0.2. The estimator V̂f performs
remarkably better than the biased estimator V̂bias

f and is very
close to V independently of the QTL-to-marker ratio.

Results

We defined the genomic variance V in (2) as the variance of
the genomic value for a stochastic marker content X in Section
Linear Models and the Genomic Variance. We noticed that the
expression for the genomic variance V as a fixed population
parameter strongly depends on the models assumptions on the
effect vector β. As a consequence, we distinguished the analysis
of the genomic variance between the FEM, the BRM and the
REM.
The genomic variance Vf in the FEM in Section Fixed Effect
Model (FEM), where the effect vector β is a deterministic pa-
rameter, is the genomic equivalent of the genetic variance in
quantitative genetics and explicitly includes the contribution of
LD. We noticed that the simple plug-in estimator V̂bias

f , given by
(7), is clearly biased and introduced the improved estimator V̂f in
(8) that is unbiased for V if the plugged-in estimators are uncor-
related. The FEM can be applied when the number of effects is
small or after the application of variable selection or reductions
methods. In the simulation studies on the reduced mice dataset
in Section Statistical Analysis we showed that the bias-corrected
estimator largely improved the estimation of genomic variance
V in FEM (Figures 1 and 5).
The genomic variance Vb, given by (10) in the BRM in Section
Bayesian Regression Model (BRM), proved to be meaningless

Figure 6 Estimated variance (mean value over different QTL
allocations) in the reduced mice dataset for different num-
bers of QTL k and fixed number of markers p̃ = 1088. The
“true” genomic variance Vk equals 0.25 for all k which resem-
bles a heritability h2 of 0.2. The estimator V̂f from the FEM
performs similar to the predictor Ŵr from the REM and they
are both close to the true V of 0.25. The estimator Ŵb from the
BRM performs solidly but constantly sightly overestimates
the “true” genomic variance. The estimator V̂r from the REM
underestimates V by around 40% and the bias of the estimator
tends to increase with the number of QTL k.

Figure 7 Estimated variance (mean value over different QTL
allocations) in the reduced mice dataset for different numbers
of QTL k and fixed number of markers p̃ = 1088. The “true”
genomic variance Vk equals 1 for all k which resembles a her-
itability h2 of 0.5. The estimator V̂f from the FEM performs
similar to the predictor Ŵr from the REM and the estimator
Ŵb from the BRM and they are all very close to V. The estima-
tor V̂r from the REM underestimates V increasingly with the
number of QTL k and by at least 40% starting at a QTL-marker
ratio of 10%.
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Figure 8 Estimated variance (mean value over different QTL
allocations) in the reduced mice dataset for different numbers
of QTL k and fixed number of markers p̃ = 1088. The “true”
genomic variance Vk equals 4 for all k which resembles a heri-
tability h2 of 0.8. The estimator V̂f from the FEM, the predictor
Ŵr from the REM and the estimator Ŵb from the BRM are very
close to the true V of 4. The estimator V̂r from the REM drasti-
cally underestimates V and the bias of the estimator tends to
increase with the number of QTL’s k. For a large QTL-marker
ratio, V̂r can only recover about 40% of the true genomic vari-
ance.

Figure 9 Empirical correlations with the relative contribution
of LD to the “true” genomic variance in the reduced mice
dataset for different numbers of QTL k for fixed number of
markers p̃ ≈ 1088. Values are averaged over the different lev-
els of h2 ∈ {0.2, 0.5, 0.8}. The correlation of the estimator V̂r
with the relative contribution of LD is about −0.7 except for
k = 10, whereas the correlation of the predictor Ŵr fluctuate
around 0. The correlation of the relative bias of V̂r is about 0.7
except for k = 10 which indicates that the larger the contri-
bution of LD to the genomic variance, the larger the bias of
V̂r becomes. Contrary to that, the bias of the predictor Ŵr is
approximately uncorrelated to the relative contribution of LD.
The quantity Ir is positively correlated (0.7− 0.8) to the relative
contribution of LD which makes it an usable indicator for the
relative contribution of LD to the genomic variance.

because of its dependence on characteristics of the prior distri-
bution of the effect vector β. In order to include characteristics
of the posterior distribution of β, we considered the genomic
variance as a random variable W in (11) (conditional on the effect
vector β) with prior expectation Vb. We inferred its posterior
expectation Wb in (12), which includes the contribution of LD
and has an interpretation similar to the genomic variance in
the FEM. By doing so, we laid the theoretical foundations for
the estimation of the posterior genomic variance in BRM and
proved that the estimator for the mean of the posterior genomic
variance ŴPost, given by (16), (Lehermeier et al. 2017) is nearly
unbiased for the expectation of the random variable W. In Sec-
tion Statistical Analysis we illustrated that the estimator Ŵb
performs similarly to the estimator V̂f from the FEM (Figures 4,
7, 8) although it tends to overestimate in cases of low heritabil-
ity (Figures 2, 3, 6). This enables an estimation of the genomic
variance as defined in the FEM for high-dimensional genomic
datasets (p� n).
In Section Random Effect Model (REM) we showed that, up-
to-now, the genomic variance in REM has been treated as the
parameter Vr, given by (18), and that popular estimation meth-
ods (e.g. GCTA-GREML) are based on the marginal covariance
matrix of the effect vector β which leads to a negligence of the
contribution of LD. In perfect accordance with the BRM, we intro-
duced the novel concept of the random genomic variance W in
(11) in REM by conditioning on the effect vector β. Similar to the
prediction of the random effect β, the random genomic variance
W has to be predicted by a strict conditioning on the phenotypic
data by means of its likelihood. We derived a nearly unbiased
predictor Ŵr in (28) for the random genomic variance in REM
that is based on the covariance of the conditional distribution
of β given the data y. By adapting to the data, this approach
explicitly allows for the contribution of LD and remarkably re-
duces the missing heritability of V̂r in REM. In Section Statistical
Analysis we illustrated that Ŵr performs drastically superior
to the estimator V̂r (19) (Figures 3, 4, 6, 7, 8). Furthermore, the
novel predictor Ŵr performs at least as good as the estimator
used for the mean of the posterior genomic variance in BRM Ŵb
and similar to the estimator V̂f. This enables an estimation of the
genomic variance as defined in the FEM in the REM.
In Section Statistical Analysis we compared the estimators and
predictors for the genomic variance with respect to their abil-
ity to estimate the genomic equivalent of the genetic variance
in quantitative genetics in the mice dataset as well as the re-
duced mice dataset. In Subsection Variation of Observational
Data we designated a fixed subset of markers to be QTL and
investigated the performance of the estimator and the predictor
for varying observations, which simulated drawing from the
data-generating process of X. Because the investigation had
only been executed for one fixed QTL setting and corresponding
fixed population effect vector β, we investigated the dependence
of the performance of the estimators and the predictor of the
genomic variance on the QTL-allocation in Subsection Variation
of QTL-Allocations. We asserted that the performance of the
estimators and of the predictor as described above is consistent
when varying the number of observations as well as when vary-
ing the underlying QTL allocation. In the end, we introduced an
innovative indicator Ir in (34) of the contribution of LD on the
genomic variance (Figure 9) by comparing the estimator V̂r and
the predictor Ŵr. This comparison added to the conclusion that
the improved performance of the novel predictor Ŵr compared
to the estimator V̂r is caused by the inclusion of LD.
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Discussion

The additive genetic variance and the narrow sense heritability
are clearly and uniquely defined, but nevertheless estimation
procedures give different results (Chen 2016). The estimation
of the genomic variance (especially in REM) varies even when
using the same marker data to calculate different genomic re-
lationship matrices. (Legarra 2015; Fernando et al. 2017). We
showed in Subsection Notes on the mean-centering of X in the
Appendix that transformations of the input marker-matrix X
change the estimate of the genomic variance when using esti-
mators similar to GCTA-GREML like V̂r (19), V̂real

r (21), or V̂equi
r

(25). The estimate of the genomic variance depends on the spe-
cific form on the estimated GRM and whether one considers
mean-centered data or not. This critique goes hand in hand
with Kumar et al. (2015, 2016) that state that the GRM in GCTA-
GREML is an estimate of the underlying data-generating process
but is treated as a fixed quantity, which makes the calculation of
the genomic variance as in (20) (Yang et al. 2010, 2011) invalid.
As a solution, we built our analysis on the data-generating pro-
cess of the marker data by considering X as a random vector in
model (1), which is also vital to generate a genomic variance in
the FEM where the effects are fixed population parameters. We
showed that treating the marker data as random is not enough
because of the approximate equivalence of V̂r in (19) and V̂real

r
in (21) (as well as its equivalent forms). We introduced the
random genomic variance W in (11) by explicitly conditioning
on the effect vector. As a consequence, the (random) genomic
variance depends on the variance-covariance structure of the
data-generating process X and is consequently independent of
linear transformations of the marker content. In addition to that,
the novel predictor Ŵr, given by (28), for this random quantity
is based on the conditional (on the data y) distribution of the
effects which implies a departure from the marginal variance-
covariance structure of β (diagonal, with equal variances σ2

β)
to the arbitrary variance-covariance structure of β conditional
on y. This approach is in accordance with the estimation of the
posterior mean of the genomic variance Ŵb given by (15) in BRM
(Lehermeier et al. 2017) and tackles yet another central point of
critique on GCTA-GREML issued by Kumar et al. (2015, 2016),
namely that the single marker effects are treated as independent
random variables with equal variances.
In the theoretical expression of the genomic variance Vr in (18)
LD does not contribute. However, when using the REML al-
gorithm to estimate the variance component σ2

β, LD implicitly
contributes to estimated variances similar to GCTA-GREML like
V̂r (19), V̂real

r (21), or V̂equi
r (25). Nevertheless, as we have noticed

in Figure 9, the bias of V̂r is still very much correlated with with
the contribution of LD. Our approach of considering the genomic
variance W in BRM and REM as a random variable conditional
on the effect vector can be considered as an extension of the
genomic variance from the FEM to high-dimensional datasets.
This is intrinsically tied to an explicit contribution of LD to the
genomic variance. To be more specific, we have noticed in Fig-
ure 9 that the bias of Ŵr (28) is approximately uncorrelated with
the contribution of LD. This led us to deducing the indicator Ir,
given (34), for the contribution of LD to the genomic variance.
The estimation and prediction of the effects β in high-
dimensional datasets using the BRM and the REM is executed by
adapting to the data by means of its likelihood, which possibly
results in an over-adjustment. In accordance to that, estimating
the posterior mean of the conditional variance in BRM or predict-

ing the conditional genomic variance in REM bears the risk of
over-adjustment to the data. In our simulation study in Section
Statistical Analysis we have assumed a very simplistic model
and excluded, e.g., the influence of imperfect linkage between
the markers and the QTL. This removed one of the main sources
of the missing heritability claimed in literature, e.g. Yang et al.
(2010). The stability of the novel predictor Ŵr as well as of the es-
timator of the posterior mean Ŵb has still to be further tested in
more complex scenarios and for different datasets with different
LD-structures. Specifically, it would be of interest to apply the
novel predictor Ŵr to the dataset of human height (not available
to us), which is characterized by a large heritability of 80%, and
compare the prediction performance of the genomic variance to
the estimation of the genomic variance performed in Yang et al.
(2010).

Acknowledgements

This research was supported by the Deutsche Forschungsge-
meinschaft, DFG, project number SCHL 1865/4-1, as well as
the ’RTG 1953 - Statistical Modeling of Complex Systems and
Processes’.
We thank Hans-Peter Piepho for his great effort, insight and
expertise that greatly assisted the research, although he may not
agree with all of the interpretations and conclusions of this pa-
per. We would also like to show our gratitude to Chris-Carolin
Schön and Leo Dempfle for important remarks and advice on
the paper. We are also grateful to Henner Simianer, Torsten Pook
and Jonas Brehmer for their comments on earlier versions of the
manuscript.

Literature Cited

Bulmer, M., 1971 The effect of selection on genetic variability.
American Naturalist 105: 201–211.

Chen, G. B., 2016 On the reconciliation of missing heritability
for genome-wide association studies. European Journal of
Human Genetics 24: 1810–1816.

Covarrubias-Pazaran, G., 2017 Solving Mixed Model Equations in
R.

de los Campos, G., D. Sorensen, and D. Gianola, 2015 Genomic
heritability: What is it? PLoS Genetics 11: e1005048.

Dempfle, L., 2018 Personal Communication.
Falconer, D. and T. Mackay, 1996 Introduction into Quantitative

Genetics. Fourth edition.
Fernando, R., H. Cheng, X. Sun, and D. Garrick, 2017 A com-

parison of identity-by-descent and identity-by-state matrices
that are used for genetic evaluation and estimation of variance
components. Journal of Animal Breeding and Genomics 134:
213–223.

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi,
and R. Fernando, 2009 Additive genetic variability and the
bayesian alphabet. Genetics 183: 347–363.

Golan, D., E. S. Lander, and S. Rosset, 2014 Measuring missing
heritability: Inferring the contribution of common variants.
Proceedings of the National Academy of Sciences 111: E5272–
E5281.

Henderson, C. R., 1984 Applications of Linear Models in Animal
Breeding.

Hill, W. G., 2010 Understanding and using quantitative genetic
variation. Philosophical Transactions of the Royal Society B
365: 73–85.

12 Nicholas Schreck et al.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/282343doi: bioRxiv preprint 

https://doi.org/10.1101/282343


Hill, W. G., M. E. Goddard, and P. M. Visscher, 2008 Data and
theory point to mainly additive genetic variance for complex
traits. PLoS Genetics 4.

Janss, L., G. de los Campos, N. Sheehan, and D. Sorensen, 2012
Inferences from genomic models in stratified populations.
Genetics 192: 693–704.

Kumar, S. K., M. W. Feldman, D. H. Rehkopf, and S. Tuljapurkar,
2015 Limitations of GCTA as a solution of the missing heri-
tability problem. PNAS pp. E61–E70.

Kumar, S. K., M. W. Feldman, D. H. Rehkopf, and S. Tuljapurkar,
2016 Respone to “commentary on limitations of GCTA as a
solution to the missing heritability problem”. bioRxiv: http:
//dx.doi.org/10.1101/039594.

Lee, J. J. and C. C. Chow, 2014 Conditions for the validity of
SNP-based heritability estimation. Human Genetics 133: 1011–
1022.

Legarra, A., 2015 Comparing estimates of genetic variance across
different relationship models. Theoretical Population Biology
107: 26–30.

Lehermeier, C., G. de los Campos, V. Wimmer, and C.-C. Schön,
2017 Genomic variance estimates: With or without disequlib-
rium covariances? Journal of Animal Breeding and Genomics
134: 232–241.

Maher, B., 2008 Personal genomes: The case of the missing
heritability. Nature 456: 18–21.

Meuwissen, T., B. Hayes, and M. Goddard, 2001 Prediction of
total genetic value using genome-wide dense marker maps.
Genetics 157: 1819–1829.

Patterson, H. and R. Thompson, 1971 Recovery of inter-block
information when block sizes are unequal. Biometrika 58: 545–
554.

Perez, P. and G. de los Campos, 2014 Genome-wide regression
and prediction with the BGLR statistical package. Genetics
198: 483–495.

Piepho, H.-P., 2009 Ridge regression and extensions for
genomewide selection in maize. Crop Science 49: 1165–1176.

Piepho, H.-P. and J. Moehring, 2007 Computing heritability and
selection response from unbalanced plant breeding trials. Ge-
netics 177: 1881–1888.

Piepho, H.-P., J. Ogutu, T. Schulz-Streeck, B. Estaghvirou,
A. Gordillo, et al., 2012 Efficient computation of ridge-
regression best linear unbiased prediction in genomic selec-
tion in plant breeding. Crop Science 52: 1093–1104.

R Development Core Team, 2008 R: A language and environment
for statistical computing. R Foundation for Statistical Comput-
ing, Vienna, Austria, ISBN 3-900051-07-0.

Searle, S. R., G. Casella, and C. E. McCulloch, 1992 Variance
Components. Wiley Interscience.

Speed, D., G. Hemani, M. R. Johnson, and D. J. Balding, 2012
Improved heritability estimation from genome-wide SNPs.
The American Journal of Human Genetics 91: 1011–1021.

The 1001 Genomes Consortium, 2016 1135 genomes reveal the
global pattern of polymorphism in arabidopsis thaliana. Cell
166: 481–491.

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman,
et al., 2006a Genome-wide genetic association of comlex traits
in heterogeneous stock mice. Nature Genetics 38: 879–887.

Valdar, W., L. C. Solberg, D. Gauguier, W. O. Cookson, J. N. P.
Rawlins, et al., 2006b Genetic and environment effect on com-
plex traits in mice. Genetics 174: 959–984.

VanRaden, P., 2008 Efficient methods to compute genomic pre-
dictions. Journal of Dairy Science 91: 4414–4423.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders,
et al., 2010 Common SNPs explain a large proportion of heri-
tability for human height. National Genetics 42(7): 565–569.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher, 2011
GCTA: A tool for genome-wide complex trait analysis. The
American Journal of Human Genetics 88: 76–82.

Yang, J., S. H. Lee, N. R. Wray, M. E. Goddard, and P. M. Visscher,
2016 Commentary on “Limitations of GCTA as a solution to
the missing heritability problem”. bioRxiv: http://dx.doi.org/10.
1101/036574.

Zhu, Z., A. Bakshi, A. A. Vinkhuyzen, G. Hemani, S. H. Lee,
et al., 2015 Dominance genetic variation contributes little to the
missing heritability for human complex traits. The American
Journal of Human Genetics 96: 377–385.

Appendix

FEM
We derive the results depicted in Section Fixed Effect Model
(FEM). We consider β in the stochastic model

Y = µ + Xβ + ε, (1)

as a deterministic p-vector containing the allele effects and ex-
press the genomic variance as

Vf := Var(Xβ) = β>ΣX β. (6)

Replacing β and ΣX in (6) by unbiased estimators β̂ and Σ̂X
leads to the plug-in estimator

V̂bias
f = β̂>Σ̂X β̂. (7)

This estimator has expectation:

E
[
V̂bias

f

]
= E

[
β̂>Σ̂X β̂

]
=

p

∑
i=1

p

∑
j=1

E
[
σ̂X

ij β̂i β̂ j

]
=

p

∑
i=1

p

∑
j=1

[
Cov

(
σ̂X

ij , β̂i β̂ j

)
+ E

[
σ̂X

ij

]
E
[

β̂i β̂ j

]]

=
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j

)
+ σX

ij

[
σ

β̂
ij + E

[
β̂i

]
E
[

β̂ j

]]

=
p

∑
i=1

p

∑
j=1

(
σX

ij βiβ j + σX
ij σ

β̂
ij

)
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j

)
= β>ΣX β + tr

(
ΣXΣβ̂

)
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j

)
,

(35)

where we denote by σX
ij := Cov(Xi, Xj) the covariance between

the random variables Xi and Xj and by σ
β̂
ij := Cov(β̂i, β̂ j) the

covariance between the random variables β̂i and β̂ j.
The estimator V̂bias

f (7) is biased by the amount

Bias
(

V̂bias
f

)
: = E

[
V̂bias

f

]
−Vf

(35),(6)
= tr

(
ΣXΣβ̂

)
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j

)
,
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where only tr
(
ΣXΣβ̂

)
is amenable to estimation. Consequently,

we define the bias-corrected estimator V̂f for the genomic vari-
ance Vf (6) as

V̂f := β̂>Σ̂X β̂− tr
(

Σ̂XΣ̂β̂

)
, (8)

where Σ̂β̂ is an unbiased estimator for Σβ = Cov(β̂). We first

investigate the bias-correction term tr
(
Σ̂XΣ̂β̂

)
and find that

E
[
tr
(

Σ̂XΣ̂β̂

)]
=

p

∑
i=1

p

∑
j=1

E

[
σ̂X

ij σ̂
β̂
ij

]

=
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β̂
ij

)
+

p

∑
i=1

p

∑
j=1

E

[
σ̂X

ij

]
E

[
σ̂

β̂
ij

]

=
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β̂
ij

)
+

p

∑
i=1

p

∑
j=1

σX
ij σ

β̂
ij

=
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β̂
ij

)
+ tr

(
ΣXΣβ̂

)
. (36)

We examine the estimator V̂f (8):

E
[
V̂f
] (8)
= E

[
β̂>Σ̂X β̂

]
−E

[
tr
(

Σ̂XΣ̂β̂

)]
(35),(36)

= β>ΣX β + tr
(

ΣXΣβ̂

)
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j

)
−

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β̂
ij

)
− tr

(
ΣXΣβ̂

)
= β>ΣX β +

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j − σ̂

β̂
ij

)
. (37)

The estimator V̂f (8) is biased by the amount

Bias
(
V̂f
)

: = E
[
V̂f
]
−Vf

(37),(6)
=

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , β̂i β̂ j − σ̂

β̂
ij

)
,

that is caused only by dependencies between the unbiased plug-
in estimators Σ̂X , β̂ and Σ̂β̂. If they are pairwise uncorrelated,
the estimator Vf is unbiased. We call estimators that are biased
only due to correlations between plugged-in estimators “nearly
unbiased”.
If we fit the conditional (on X) linear model

yi = µ + (Xβ)i + εi := µ +
p

∑
j=1

xijβ j + εi, i = 1, ..., n, (4)

by OLS, we can express

y = µ + Xβ + ε = µ̂ + Xβ̂ + ε̂,

where β̂ = (X>X)−1X>y and ε̂ = y− Xβ̂.
It holds true that

β̂ ∼ N
(

β, σ2
ε (X

>X)−1
)

.

Subsequently, an unbiased estimator Σ̂β̂ for the variance of β̂ in
OLS is given by:

Σ̂β̂ = (X>X)−1σ̂2
ε , (38)

which leads to

tr
(

Σ̂XΣ̂β̂

)
(5),(38)
= tr

(
1

n− 1
X>X(X>X)−1σ̂2

ε

)
=

1
n− 1

σ̂2
ε tr(1p×p)

=
p

n− 1
σ̂2

ε .

It is well-known in OLS theory that an unbiased estimator for
the residual variance σ2

ε in the case of (p+ 1) variables (including
the intercept) is given by

σ̂2
ε :=

1
n− (p + 1)

y>(1−H)y,

where H := X(X>X)−1X> is the so-called hat-matrix.
For mean-centered phenotypes (∑n

i=1 yi/n = 0) we express the
nearly unbiased estimator V̂f (8) in OLS as

V̂f = β̂>Σ̂X β̂− tr
(

Σ̂XΣ̂β̂

)
= y>X(X>X)−1 1

n− 1
X>X(X>X)−1X>y− p

n− 1
σ̂2

ε

=
1

n− 1
y>Hy− p

n− 1
1

n− (p + 1)
y>(1−H)y

=
1

n− 1
y>Hy +

( 1
n− 1

− 1
n− (p + 1)

)
y>(1−H)y

=
1

n− 1
y>y− σ̂2

ε

= σ̂2
y − σ̂2

ε .

We obtain the exact empirical variance decomposition

σ̂2
y = V̂f + σ̂2

ε . (9)

in the OLS model which resembles the theoretical variance de-
composition (3) in model (1).

BRM
In Section Bayesian Regression Model (BRM) we assume β in
the stochastic model

Y = µ + Xβ + ε, (1)

to be distributed according to the prior distribution p(β) with
finite prior expectation µβ := E[β] and finite prior variance-
covariance matrix Σβ := Cov(β). We leave the specific form of
the distribution p(β) unspecified in this general approach. We
calculate the genomic variance

Vb : = Var(Xβ)

= Varβ(E[Xβ|β]) + Eβ[Var(Xβ|β)]

= Varβ(E[X]β) + Eβ[β
>ΣX β]

= E[X]ΣβE[X]> +
p

∑
i=1

p

∑
j=1

E
[
σX

ij βiβ j

]
E[X]=0
=

p

∑
i=1

p

∑
j=1

σX
ij

(
σ

β
ij + E[βi]E[β j]

)
= tr(ΣXΣβ) + µ>β ΣXµβ. (10)
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We can arbitrarily strongly influence the genomic variance Vb
(10) by the choice of the prior first and second moment of β.
As a solution, we define

W := Var(Xβ|β) = β>ΣX β = tr
(

ΣX ββ>
)

, (11)

as the variance of the genomic value Xβ conditional on β. This
random quantity has (prior) expectation

E[W] = E
[
tr
(

ΣX ββ>
)]

= tr
(

ΣXE
[

ββ>
])

= tr
(

ΣX

(
Cov(β) + E

[
β
]
E
[

β>
]))

= tr(ΣXΣβ) + µ>β ΣXµβ

= Vb.

We define

Wb : = E[W|y]
(11)
= tr

(
ΣXE

[
ββ>|y

])
= tr

(
ΣX

(
E
[

β|y
]
E[β>|y

]
+ Cov(β|y)

))
= µ>β|yΣXµβ|y + tr

(
ΣXΣβ|y

)
(12)

as the corresponding posterior mean of the genomic variance W
(11), where

E[Wb] = E
[
E[W|y]

]
= E[W] = Vb.

In the conditional model

yi = µ + (Xβ)i + εi := µ +
p

∑
j=1

xijβ j + εi, i = 1, ..., n, (4)

we adapt to the data and define the estimator Ŵb for the expec-
tation of the posterior genomic variance Wb (12):

Ŵb := µ̂>β|yΣ̂X µ̂β|y − tr
(

Σ̂XΣ̂µ̂β|y

)
︸ ︷︷ ︸

Ŵ(1)
b

+ tr
(

Σ̂XΣ̂β|y
)

︸ ︷︷ ︸
Ŵ(2)

b

, (15)

where we correct for the bias of the purely plug-in estimator
by subtracting tr(Σ̂XΣ̂µ̂β|y ) equivalently to the nearly unbiased
estimator V̂f (8) in Subsection FEM. The first part of expression

(15), Ŵ(1)
b , is similar to V̂f (8) such that we calculate as in (37):

Eβ|y
[
Ŵ(1)

b

]
= µ>β|yΣXµβ|y

+
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , (µ̂β|y)i(µ̂β|y)j − σ̂

µ̂β|y
ij

)
.

We derive the expectation of the second part of expression (15),

Ŵ(2)
b , as

Eβ|y
[
Ŵ(2)

b

]
= E

[
tr(Σ̂XΣ̂β|y)

]
= E

[ p

∑
i=1

p

∑
j=1

σ̂X
ij σ̂

β|y
ij

]

=
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β|y
ij

)
+

p

∑
i=1

p

∑
j=1

E
[
σ̂X

ij

]
E
[
σ̂

β|y
ij

]
=

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β|y
ij

)
+ tr(ΣXΣβ|y).

Combining these results, we find

E
[
Ŵb

]
= E

[
Ŵ(1)

b

]
+ E

[
Ŵ(2)

b

]
=

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , (µ̂β|y)i(µ̂β|y)j − σ̂

µ̂β|y
ij

)
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , σ̂

β|y
ij

)
.

The remaining bias of the estimator Ŵb vanishes if the estima-

tors σ̂
X|y
ij , σ̂

β|y
ij , σ̂

µ̂β|y
ij and (µ̂β|y)i(µ̂β|y)j themselves are pairwise

uncorrelated for all i = 1, ..., n and j = 1, ..., p.
In applications, we obtain the Markov chain sequence of p-
vectors

(
β̂(m)

)
m=1,...,M after discarding the burn-in iterations

and after thinning the chain. We use the empirical mean

µ̂β|y =
1
M

M

∑
m=1

β̂(m) (13)

as an unbiased estimator for the posterior expectation µβ|y and
the empirical variance

Σ̂β|y =
1

M− 1

M

∑
m=1

β̂(m)
(

β̂(m)
)>

− 1
M(M− 1)

M

∑
k=1

M

∑
m=1

β̂(m)
(

β̂(k)
)>

(14)

as an estimator for the posterior covariance Σβ|y. In order to

calculate Ŵb (15) we still need an empirical expression for the
covariance Σµ̂β|y of the estimated effects.
It holds for all k, m ∈ {1, ..., M}, k 6= m, that

Cov
(

β̂(m), β̂(k)
)
≈ 0, (39)

because we have thinned the MCMC sample in order to obtain
an approximately independent chain. We find

Σµ̂β|y := Cov
(
µ̂β|y

)
(13)
= Cov

(
1
M

M

∑
m=1

β̂(m),
1
M

M

∑
k=1

β̂(k)
)

=
1

M2

M

∑
m=1

M

∑
k=1

Cov
(

β̂(m), β̂(k)
)

=
1

M2

[
M

∑
m=1

Cov
(

β̂(m)
)
+

M

∑
m=1

M

∑
k=1
k 6=m

Cov
(

β̂(m), β̂(k)
)]

(39)
≈ 1

M2

M

∑
m=1

Cov
(

β̂(m)
)

=
1
M

Σβ|y, (40)

where the last equation is due to the fact that all samples
β̂(m), m = 1, ..., M left in the chain are representative of the pos-
terior distribution. Thus,

tr
(
Σ̂XΣ̂µ̂β|y

) (40)
≈ 1

M
tr
(
Σ̂XΣ̂β|y

)
, (41)

where the approximation in (41) is the more precise, the closer
the chain is to independence.
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We express the nearly unbiased estimator Ŵb on the basis of
MCMC realizations as

Ŵb
(15),(41)
≈ µ̂>β|yΣ̂X µ̂β|y +

(
1− 1

M

)
tr
(
Σ̂XΣ̂β|y

)
. (42)

Plugging µ̂β|y (13) and Σ̂β|y (14) into (42), we obtain:

Ŵb ≈µ̂>β|yΣ̂X µ̂β|y + (1− 1
M

)tr(Σ̂XΣ̂β|y)

(13),(14)
=

( 1
M

M

∑
m=1

(β̂(m))>
)

Σ̂X

( 1
M

M

∑
m=1

β̂(m)
)

+
M− 1

M

[ 1
M− 1

M

∑
m=1

(β̂(m))>Σ̂X β̂(m)

− 1
M(M− 1)

M

∑
k=1

M

∑
m=1

(β̂(k))>Σ̂X β̂(m)
]

=
1
M

M

∑
m=1

(β̂(m))>Σ̂X β̂(m). (16)

We conclude that the estimator Ŵpost (16) approximates the
nearly unbiased estimator Ŵb (15) for the mean of the posterior
genomic variance Wb in BRM.

REM
In Section Random Effect Model (REM) we assume that β in the
stochastic model

Y = µ + Xβ + ε, (1)

is normally distributed with mean µβ = 0 and finite marginal
variance-covariance matrix σ2

β1p×p:

β ∼ N (0, σ2
β1p×p). (43)

We calculate the genomic variance V (2) as

Vr = Var(Xβ)

= Varβ(E[Xβ|β]) + Eβ[Var(Xβ|β)]

= Varβ(E[X]β) + Eβ[β
>ΣX β]

= σ2
βE[X]>E[X] +

p

∑
i=1

p

∑
j=1

E
[
σX

ij βiβ j

]
E[X]=0
=

p

∑
i=1

p

∑
j=1

σX
ij

(
σ

β
ij + E[βi]E[β j]

)
= tr(ΣXΣβ) + E[β]>ΣXE[β]

(43)
= σ2

βtr(ΣX) = σ2
β

p

∑
j=1

Var(Xj). (18)

After obtaining an unbiased estimator σ̂2
β for the variance com-

ponent σ2
β (e.g. REML) the marginal genomic variance Vr (18)

can be estimated by

V̂r = σ̂2
βtr(Σ̂X). (19)

We calculate

E
[
V̂r
]
= E

[
σ̂2

βtr(Σ̂X)
]

= Cov
(

σ̂2
β, tr(Σ̂X)

)
+ E

[
σ̂2

β

]
E
[
tr(Σ̂X)

]
= σ2

βtr(ΣX) + Cov
(

σ̂2
β, tr(Σ̂X)

)
.

We conclude that V̂r (19) is a nearly unbiased estimator for the
marginal genomic variance Vr (18) and is bias-free if the esti-
mators σ̂2

β and Σ̂X are uncorrelated. The estimators V̂real
r (21)

and V̂equi
r (25) are nearly unbiased estimators for the marginal

genomic variance Vr (18) using the same reasoning.
In order to explicitly include LD into the expression of the ge-
nomic variance we condition on the effect vector β and define

W := Var(Xβ|β) = β>ΣX β = tr(ΣX ββ>), (11)

which is a quadratic form in the normally distributed β. This
random variable has expectation

E[W] = E
[
tr
(

ΣX ββ>
)]

= tr
(

ΣXE
[

ββ>
])

= tr
(

ΣX

(
E
[

β
]
E
[

β>
]
+ Cov(β)

))
= tr(ΣXσ2

β1p×p)

= σ2
β

p

∑
j=1

Var(Xj) = Vr.

By strictly conditiong on the data we define the unbiased predic-
tor Wr

Wr := E[W|y] = tr
(

ΣXE
[

ββ>|y
])

= µ>β|yΣXµβ|y + tr(ΣXΣβ|y),

(26)

for the random genomic variance W (11), where µβ|y := E[β|y]
is the BLUP of β and Σβ|y := Cov(β|y).
The predictor Wr is by definition unbiased for the random vari-
able W, if E[Wr] = E[W]. We calculate

E[Wr] = E
[
E[W|y]

]
= E[W] = Vb

and conclude that Wr (26) is an unbiased predictor for W (11).
In the conditional model

yi = µ + (Xβ)i + εi := µ +
p

∑
j=1

xijβ j + εi, i = 1, ..., n, (4)

it holds that

y ∼ N
(

µ, XX>σ2
β + σ2

ε 1n×n︸ ︷︷ ︸
:=Σ̃−1

)
,

and we investigate the joint distribution of y and β asy

β

 ∼ N [
µ

0

 ,

 Σ̃−1 σ2
βX

σ2
βX> σ2

β1p×p

].

Because of the joint normal distribution we obtain

β|y ∼ N (σ2
βX>Σ̃(y− µ), σ2

β1p×p − σ2
βX>Σ̃Xσ2

β).

The BLUP for β is defined as µβ|y := E[β|y] (Searle et al. 1992)
such that we obtain

µβ|y = E[β|y] = σ2
βX>Σ̃(y− µ), (44)

as well the variance-covariance matrix Σβ|y of the conditional
distribution of β

Σβ|y := Cov(β|y) = σ2
β1p×p − σ2

βX>Σ̃Xσ2
β. (27)
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and

Cov(µβ|y) = Var(β)−E
[
Cov(β|y)

]
= σ2

βX>Σ̃Xσ2
β (45)

We plug (27) into Wr (26) and obtain

Wr = µ>β|yΣXµβ|y + tr(ΣXΣβ|y)

= µ>β|yΣXµβ|y + σ2
βtr(ΣX)− tr(ΣXσ2

βX>Σ̃Xσ2
β)

= µ>β|yΣXµβ|y + Vr − tr(ΣXσ2
βX>Σ̃Xσ2

β). (46)

We replace the variance components σ2
β and σ2

ε in (44) and (27)
by unbiased estimators (e.g. REML) and plug them into Wr (26):

Ŵr = µ̂>β|yΣ̂X µ̂β|y + tr(Σ̂XΣ̂β|y), (28)

= V̂r + µ̂>β|yΣ̂X µ̂β|y − σ̂4
βtr
(
Σ̂XX> ˆ̃ΣX

)
.

We make the important note that the unbiasedness of the pre-
dictor Ŵr (28) can only be given conditional on the estimated
variance components σ̂2

β and σ̂2
ε because of dependencies be-

tween these estimators and y. This problem is common in REM
and also holds true for the BLUP µ̂β|y = Ê[β|y] = σ̂2

βX> ˆ̃Σ(y− µ̂)

whose unbiasedness can only be asserted conditionally:

E
[
µ̂β|y|σ̂2

β, σ̂2
ε

]
= E

[
σ̂2

βX> ˆ̃Σ(y− µ̂)|σ̂2
β, σ̂2

ε

]
= σ̂2

βX> ˆ̃ΣE
[
y− µ̂|σ̂2

β, σ̂2
ε

]
= 0 = E[β].

Similarly, we calculate

E
[
Ŵr|σ̂2

β, σ̂2
ε

]
= E

[
V̂r + µ̂>β|yΣ̂X µ̂β|y − σ̂4

βtr
(
Σ̂XX> ˆ̃ΣX

)
|σ̂2

β, σ̂2
ε

]
= σ̂2

βE
[
tr(Σ̂X)|σ̂2

β, σ̂2
ε

]
+ E

[
µ̂>β|yΣ̂X µ̂β|y|σ̂2

β, σ̂2
ε

]
− σ̂4

βtr
(
E
[
Σ̂X |σ̂2

β, σ̂2
ε

]
X> ˆ̃ΣX

)
(35)
= σ̂2

βtr(ΣX) + E
[
µ̂β|y|σ̂2

β, σ̂2
ε

]>
ΣXE

[
µ̂β|y|σ̂2

β, σ̂2
ε

]
+ tr

(
ΣXCov

(
µ̂β|y|σ̂2

β, σ̂2
ε

))
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , (µ̂β|y)i(µ̂β|y)j|σ̂2

β, σ̂2
ε

)
− σ̂4

βtr
(
ΣXX> ˆ̃ΣX

)
(45)
= σ̂2

βtr(ΣX)

+
p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , (µ̂β|y)i(µ̂β|y)j|σ̂2

β, σ̂2
ε

)
= E

[
W|σ̂2

β, σ̂2
ε

]
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂X
ij , (µ̂β|y)i(µ̂β|y)j|σ̂2

β, σ̂2
ε

)
,

such that we can assert nearly (conditional) unbiasedness.
In the equivalent linear model

y = µ + Xβ + ε = µ + g + ε, (22)

it holds that

µg|y := E[g|y] = E[Xβ|y] = Xµβ|y

Consequently,

1
n− 1

µ̂>g|yµ̂g|y =
1

n− 1
µ̂>β|yX>Xµ̂β|y = µ̂>β|yΣ̂X µ̂β|y.

In addition to that, we calculate

Σg|y := Cov(g|y) = XCov(µβ|y)X
>

= XΣµβ|Y X>

and

1
n− 1

tr(Σ̂g|y) =
1

n− 1
tr(XΣ̂µβ|y X>)

=
1

n− 1
tr(X>XΣ̂µβ|y )

= tr(Σ̂XΣ̂µβ|y ).

This shows the equivalence of

Ŵequi
r :=

1
n− 1

µ̂>g|yµ̂g|y +
1

n− 1
tr
(

Σ̂g|y
)

. (29)

to Ŵr (28) in the linear model (4).

MEM
Up-to-now we have considered random effect models only. We
extend model (1) by including a fixed effect Z f which results in
a mixed effect model (MEM) of the form

Y = Z f + Xβ + ε, (47)

where f is a k-vector of fixed effects as in section Fixed Effect
Model (FEM), β is a p-vector of random effects as in section
Random Effect Model (REM), Z is a random k row-vector and X
is a random p row-vector. We assume that Z f and ε as well as
Xβ and ε are independent.
We calculate

Var(Y) = Var(Z f + Xβ + ε)

= Var(Z f ) + Var(Xβ) + 2Cov(Z f , Xβ) + σ2
ε . (48)

Inferences on the additive genomic variance of the fixed effect
Z f can be done as in Section Fixed Effect Model (FEM) and
inferences on the additive genomic variance of the random effect
Xβ can be done as in Section Random Effect Model (REM). If one
is interested in the contribution of LD between fixed effects and
random effects, e.g. when including single important markers
as fixed effects in the MEM, we propose to predict the random
conditional covariance

Cov(Z f , Xβ|β) = f>Cov(Z, X)β. (49)

We propose

f̂ Σ̂XZµ̂β|y (50)

as a predictor for (49), where

f̂ = (Z> ˆ̃ΣZ)−1Z> ˆ̃Σy (51)
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is the BLUE of f with conditional covariance

Cov
(

f̂ |σ̂2
β, σ̂2

ε

)
= Cov

(
(Z> ˆ̃ΣZ)−1Z> ˆ̃Σy|σ̂2

β, σ̂2
ε

)
= (Z> ˆ̃ΣZ)−1Z> ˆ̃ΣCov

(
y|σ̂2

β, σ̂2
ε

)
ˆ̃ΣZ(Z> ˆ̃ΣZ)−1

= (Z> ˆ̃ΣZ)−1. (52)

We calculate:

E
[

f̂ Σ̂XZµ̂β|y|σ̂2
β, σ̂2

ε

]
(35)
= tr

(
ΣXZCov

(
f̂ , µ̂β|y|σ̂2

β, σ̂2
ε

))
+

p

∑
i=1

p

∑
j=1

Cov
(

σ̂XZ
ij , f̂i(µ̂β|y)j|σ̂2

β, σ̂2
ε

)
=

p

∑
i=1

p

∑
j=1

Cov
(

σ̂XZ
ij , f̂i(µ̂β|y)j|σ̂2

β, σ̂2
ε

)
,

because

Cov
(

f̂ , µ̂β|y|σ̂2
β, σ̂2

ε

)
= Cov

(
f̂ , σ̂2

βX> ˆ̃Σy|σ̂2
β, σ̂2

ε

)
−Cov

(
f̂ , σ̂2

βX> ˆ̃ΣZ f̂ |σ̂2
β, σ̂2

ε

)
(51)
= Cov

(
(Z> ˆ̃ΣZ)−1Z> ˆ̃Σy, σ̂2

βX> ˆ̃Σy|σ̂2
β, σ̂2

ε

)
− σ̂2

βCov
(

f̂ |σ̂2
β, σ̂2

ε

)
Z> ˆ̃ΣX

(52)
= σ̂2

β(Z
> ˆ̃ΣZ)−1Z> ˆ̃Σ ˆ̃Σ−1 ˆ̃ΣX

− σ̂2
β(Z

> ˆ̃ΣZ)−1Z> ˆ̃ΣX

= 0.

Because the covariance (49) has expectation 0, the predictor (50)
is nearly unbiased given estimators σ̂2

β and σ̂2
ε .

Notes on the mean-centering of X
In model (1) in Section Linear Models and the Genomic Variance
we consider X to be a random row vector with expectation 0. If
we depart from that assumption and consider X̃ with E[X̃] 6= 0
and Cov(X̃) = ΣX instead of X, we reformulate model (1) based
on X̃ as

Y = µ + X̃β + ε = µ +
(
X̃−E[X̃]

)
β + E[X̃]β + ε

d
= µ + Xβ + E[X̃]β + ε.

In the FEM (β deterministic) the fixed term E[X]β is absorbed
by the intercept such that

Y = µ̃ + Xβ + ε

with µ̃ = µ + E[X̃]β and we obtain linear model (1) with mean-
centered data and but different (fixed) intercept. Consequently,
the genomic variance in the FEM Vf (6) is unchanged whether
we consider mean-centered allele content X or not (X̃):

Var(Xβ) = β>ΣX β = Var(X̃β).

In BRM and REM, where β ∼ (µβ, Σβ) is a random variable, the
term E[X̃]β is a random variable itself and is absorbed by the
residual instead of the intercept:

Y = µ + X̃β + ε

= µ +
(
X̃−E[X̃]

)
β + E[X̃]β + ε

= µ + Xβ + ε̃

where ε̃ ∼ (0, σ2
ε + E[X]ΣβE[X]>).

For the genomic variance V (2) in BRM and REM it makes a dif-
ference whether we consider the mean-centered X or X̃ because:

Var(X̃β) = Varβ(E[X̃β|β]) + Eβ[Var(X̃β|β)]

= Varβ(E[X̃]β) + Eβ[β
>ΣX β]

= E[X̃]>ΣβE[X̃] +
p

∑
i=1

p

∑
j=1

E
[
σX

ij βiβ j

]
= E[X̃]ΣβE[X̃]> + tr(ΣXΣβ) + µ>β ΣXµβ

6= tr(ΣXΣβ) + µ>β ΣXµβ = Var(Xβ).

This is consistent with the approach in Section Random Effect
Model (REM) in the realized model (4) where the genomic vari-
ance in REM is estimated based on X:

Cov(Xβ) = XX>σ2
β (20)

or when using GRM’s in the equivalent model (22)

σ2
βXX> =

1
p

XX>(pσ2
β) =: Gσ2

g .

The genomic variance in these models clearly depends on
whether using mean-centered matrices X or not, especially in
the equivalent model transformations of X change the variance-
covariance matrix of g. The GRM’s are generally based on mean-
centered matrices which is the reason why we have based the
main analysis in this paper on the mean-centered approach.
The random genomic variance W (11), however, does not de-
pend on centering:

W := Var(Xβ|β) = β>ΣX β = tr(ΣX ββ>) (11)

and is therefore consistent with the genomic variance in FEM
with respect to the independence to mean-centering.
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