
	 1	

RUNNING HEAD: Complete transfer between component and pattern motion  1	

 2	

 3	

Disentangling locus of perceptual learning in the visual 4	

hierarchy of motion processing   5	

 6	

Ruyuan Zhang1,2, Duje Tadin1,3 7	
 8	
1Department of Brain & Cognitive Sciences and Center for Visual Science, University of 9	

Rochester, Rochester, NY, 14627, USA.  10	
2Center for Magnetic Resonance Research, Department of Radiology, University of 11	

Minnesota at Twin Cities, Minneapolis MN, 55455, USA. 12	
3Departments of Ophthalmology and Neuroscience, University of Rochester Medical 13	

Center, Rochester, NY, 14642, USA. 14	

 15	

 16	

Corresponding author	17	
Ruyuan Zhang        18	
Center for Magnetic Resonance Research    19	
University of Minnesota 20	
1210 Fifield AVE   21	
Falcon Heights, MN 55108 22	
585-752-6673   23	
ruyuanzhang@gmail.com 24	
 25	

 26	

 27	

 28	

 29	

 30	

  31	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 2	

ABSTRACT 32	

Visual perceptual learning (VPL) can lead to long-lasting perceptual improvements. 33	

While the efficacy of VPL is well established, there is still a considerable debate about 34	

what mechanisms underlie the effects of VPL. Much of this debate concentrates on where 35	

along the visual processing hierarchy behaviorally relevant plasticity takes place. Here, 36	

we aimed to tackle this question in context of motion processing, a domain where links 37	

between behavior and processing hierarchy are well established. Specifically, we took 38	

advantage of an established transition from component-dependent representations at the 39	

earliest level to pattern-dependent representations at the middle-level of cortical motion 40	

processing. We trained two groups of participants on the same motion direction 41	

identification task using either grating or plaid stimuli. A set of pre- and post-training 42	

tests was used to determine the degree of learning specificity and generalizability. This 43	

approach allowed us to disentangle contributions from both low- and mid-level motion 44	

processing, as well as high-level cognitive changes. We observed a complete bi-45	

directional transfer of learning between component and pattern stimuli as long as they 46	

shared the same apparent motion direction. This result indicates learning-induced 47	

plasticity at intermediate levels of motion processing. Moreover, we found that motion 48	

VPL is specific to the trained stimulus direction, speed, size, and contrast, highlighting 49	

the pivotal role of basic visual features in VPL, and diminishing the possibility of non-50	

sensory decision-level enhancements. Taken together, our study psychophysically 51	

examined a variety of factors mediating motion VPL, and demonstrated that motion VPL 52	

most likely alters visual computation in the middle stage of motion processing. 53	

 54	

  55	
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INTRODUCTION 56	

A large body of evidence has shown that the human visual system can gain long-lasting 57	

perceptual improvements following several sessions of perceptual training. This 58	

phenomenon, called visual perceptual learning (VPL), has been an active area of research 59	

because VPL is a remarkable demonstration that human vision can remain plastic even in 60	

adulthood 1,2. Numerous studies have revealed training-induced perceptual improvements 61	

on a wide range of visual tasks, including low-level contrast and orientation 62	

discrimination tasks 3,4,5,6, mid-level motion and form tasks 7,8,9 and even high-level 63	

object and face recognition tasks 10,11.  64	

While the robustness of learning effects is well established, debate persists with 65	

respect to the mechanisms underlying VPL. Early psychophysical work found that 66	

learning effects are usually confined to the trained parameters 6,12. Such strong specificity 67	

suggests that VPL most likely takes place within low-level visual areas (e.g., V1 or V2) 68	

since neurons therein exhibit narrow ranges of spatial and feature selectivity (e.g., 69	

orientation, motion direction). Recent evidence, however, challenges this idea by 70	

revealing an increasing number of cases where the transfer of VPL is viable to novel 71	

stimulus conditions and tasks 13,14. This is consistent with an involvement of higher-level 72	

visual areas, wherein neurons usually respond to larger spatial areas and more complex 73	

stimulus features. Some studies even suggest the contributions from the brain areas that 74	

process non-sensory attributes. For instance, perceptual learning might manifest as the 75	

change of decision variables encoded in the prefrontal cortex 15. Alternatively, perceptual 76	

learning might facilitate encoding of abstract concepts representing basic visual features 77	

(e.g., orientation and contrast) 16 or lead to a better set of task-specific rules 17. Given that 78	

these theories postulate changes beyond canonical sensory mechanisms, we refer to them 79	

as ‘non-sensory’ learning processes. 80	

 The task of linking VPL to specific brain areas is complicated by the complex 81	

functional specializations of the brain. The brain includes multiple brain regions that are 82	

organized into a coarse, but richly interconnected hierarchy 18,19. Even a simple 83	

perceptual choice likely arises from the interplay among multiple brain regions. One 84	

strategy is to take advantage of visual processes where links between behavior and neural 85	

structures are well established. Here, we focus on VPL in context of motion perception, a 86	
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perceptual domain where we have a relatively advanced understanding of different 87	

processing stages 20. In primates, neurons selective to motion direction first occur in the 88	

earliest cortical areas V1 and V2 21. However, conscious motion perception is most 89	

closely linked to intermediate visual areas, such as MT and V3A. These areas contain a 90	

large portion of neurons showing strong preferential responses to different motion 91	

directions 22,23,24,25. In addition, perceptual decisions based on motion stimuli have been 92	

linked to several higher-level brain areas (e.g., lateral intraparietal cortex (LIP) and 93	

prefrontal cortex). These areas are often ascribed as “evidence accumulators” that 94	

integrate sensory information provided by the upstream motion processing units in order 95	

to form perceptual decisions and guide visual behaviors 26,27 (but see ref. 28). Finally, non-96	

sensory attributes, such as task rules and decision strategies, encoded in high-level 97	

cognitive areas, can also mediate performance in motion perception tasks 29. This 98	

complex hierarchy can be operationalized as a symbolic three-layer network (Figure 1). 99	

This network consists of a low-level (e.g., V1/V2), a middle level (e.g., MT/V3A) and a 100	

high-level (e.g., LIP, prefrontal cortex) processing stage.  101	

 In contrast with the established understanding of visual motion processing stages, 102	

their role in human VPL is largely unknown. To address this question, we took advantage 103	

of an established transition from component-dependent representations at the earliest 104	

level to pattern-dependent representations in the middle-level of cortical motion 105	

processing 30,31. A plaid stimulus composed of two obliquely moving gratings (Figure 1) 106	

is generally perceived as a rigid object moving horizontally 32. While many MT neurons 107	

faithfully respond to the perceived motion direction in moving plaids, neurons in V1 108	

primarily respond to the directions of two component gratings 30,31. This dissociation 109	

allows us to psychophysically infer the main locus of the behaviorally related plasticity 110	

induced by motion VPL. If learning effects are specific to the trained component motion, 111	

irrespective of the perceived pattern motion, it would indicate component-dependent 112	

learning predominantly at the lowest levels of motion processing. Conversely, if learning 113	

effects are specific to the perceived pattern motion, it would point toward pattern-114	

dependent learning at middle-levels of motion processing. If this learning still retains 115	

some sensory-level specificity (e.g., speed, size and velocity), we can conclude that non-116	
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sensory cognitive processes are not the major drivers of the observed behavioral 117	

improvement.  118	

 119	
Figure 1. A simplified hierarchy of visual motion processing with three 120	
hierarchical stages 20. Neurons in the low-level motion system respond 121	
best to component directions of plaid stimuli (full orange arrows). 122	
Neurons in the middle-level motion system respond selectively to the 123	
perceived pattern motion direction (empty red arrow). In this and all 124	
subsequent figures, empty arrows indicate faster perceived speed 125	
associated with plaid motion.  The third stage involves complex sensory 126	
and non-sensory high-level cognitive processes. 127	
 128	

METHODS AND EXPERIMENTAL PROCEDURES 129	

Participants and apparatus  130	

Fourteen undergraduate students from University of Rochester (18 to 22 years old, 5 131	

males and 9 females) took part in this study. All participants had normal or corrected-to-132	

normal vision. The Research Subjects Review Board at the University of Rochester 133	

approved experimental protocols and all participants provided written consent forms. 134	

Stimuli were generated by Matlab Psychtoolbox 33 and presented using customized 135	

digital light processing (DLP) projector (DepthQ WXGA 360 driven by a NVIDIA 136	

Quadro FX 4800 at 1280 × 720 resolution). The projector frame rate was 360 Hz, 137	

resulting in discrete 2.78-ms frames. DLP projectors are natively linear, and this was 138	

verified with a Minolta LS-110 photometer. Viewing distance was 61.5 inches, with a 139	

projected image of 46.74 × 25 inches. 140	

 141	
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 142	
Figure 2. Task illustration showing trial structure used for all training, pre- 143	
and post-test conditions. Participants viewed a moving stimulus that was 144	
either a grating or a plaid (arrows are for illustration purposes only). 145	
Stimulus duration varied on each trial, as determined by two interleaved 146	
staircases. Participants indicated the perceived stimulus direction via 147	
button press (e.g., left vs. right in this case). 148	

 149	

Stimulus and task settings 150	

Participants were randomly assigned into two groups – one group trained on component 151	

motion (grating; N = 8) and another group trained on pattern motion stimuli (plaid; N = 152	

6). All participants were tested and trained on a two-alternative forced choice motion 153	

direction identification task (Figure 2), reporting the perceived stimulus motion direction 154	

via key press. Auditory feedback was provided after each trial during the training phase 155	

but not at pre-/post-test (to minimize learning effects in pre-/post-test). To facilitate 156	

fixation, we used the following fixation sequence (Figure 2): a fixation circle (0.8° 157	

radius) appeared after each key press response and, the circle shrank to 0.13° over 200 158	

ms, remained at that size for 360 ms, and then disappeared 360 ms before stimulus onset. 159	

We found in our previous work that this dynamic fixation sequence was very effective in 160	

guiding eye gaze to the center of the screen before the stimulus onset 34. The inter-trial 161	

interval was 1000 ms. 162	

Dynamic fxation
560ms

Blank
360ms

Stimulus

Response

ITI
1000ms

Time
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As detailed below, the two training groups used partially overlapping sets of pre- 163	

and post-test conditions. We selected this design to limit pre- and post-test sessions to 164	

only the most diagnostic test conditions for each group. This allowed us to test the 165	

bidirectional transfer between component and pattern motion, as well as the dependency 166	

of learning transfer on several key low-level stimulus features.  167	

In the component-training group, the training stimulus was a grating  (contrast = 168	

50%, drift speed = 4°/s, radius = 8°, 2D raised cosine spatial envelope; spatial frequency 169	

= 1 cycle/°; Figure 3Aa). Training motion directions were either left/right or up/down, 170	

counterbalanced across participants. Motion directions for other stimulus conditions were 171	

adjusted according to the directions of trained stimuli. During the pre- and post-test, 172	

temporal duration thresholds (defined by the full-width at half-height of a hybrid between 173	

a Gaussian and a trapezoidal temporal envelope; see 35 for details) were measured across 174	

another five stimulus conditions: (1) a plaid stimulus moving in the trained directions 175	

(Figure 3Ab); (2) a plaid stimulus containing the trained component and moving 45° 176	

away from the trained direction (Figure 3Ac); (3-5) moving gratings that matched the 177	

trained grating except that they differed in (3) direction and orientation (orthogonal to the 178	

trained direction; Figure 3Ad), (4) stimulus size (radius = 1°, Figure 3Ae), and (5) 179	

contrast (contrast = 2%, Figure 3Af).  180	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 8	

 181	

 182	

 183	
Figure 3. Pre- and post-training stimuli for (A) the component-training 184	
group and (B) the plaid-training group. The red icons show the training 185	
stimulus for each group. These conventions are kept in subsequent figures. 186	
With the exception of Be, the speed of all grating stimuli was 4°/s (marked 187	
by solid arrows). The plaid component speed was also 4°/s, which resulted 188	
in the apparent plaid speed of 5.66°/s (marked by empty arrows). To 189	
assess the effect of stimulus speed on transfer of learning, we also 190	
included a grating whose speed matched the plaid speed of 5.66°/s (Be, 191	
empty arrows). Although all stimulus conditions were conducted together, 192	
we analyze and present data into two batches: bidirectional transfer 193	
between component and pattern motion (Figure 5) and transfer to other 194	
stimulus features (Figure 6).  195	

 196	

For the plaid-training group, the plaid stimuli consisted of two orthogonal 197	

component gratings (component contrast = 50%, size = 8°, 2D raised cosine spatial 198	

envelope; component spatial frequency = 1 cycle/°; Figure 3Ba). Component drift speed 199	

was 4°/s, which resulted in the plaid velocity of 5.66°/s. Training motion directions were 200	

Component-training

Plaid-training

A

B
a b c d e f

a b c d e
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either left/right or up/down, counterbalanced across participants. In addition to the trained 201	

condition, duration thresholds were measured for five additional pre- and post-test 202	

stimulus conditions: (1) a moving grating with the same apparent direction and speed as 203	

the trained plaid stimulus (Figure 3Bb); (2, 3) two component gratings that constituted 204	

the trained plaid stimulus (i.e., gratings with direction ±45° away from the trained 205	

directions; Figure 3Bc. Note that these data were collected in two separate blocks, each 206	

testing one motion direction axis, and subsequently averaged to get a single threshold 207	

estimate); (4) a plaid stimulus moving to the untrained directions, but comprised of same 208	

static component features (Figure 3Bd); (5) a grating moving in the trained directions 209	

(left/right) but with the original plaid apparent speed (speed = 5.66°/s, Figure 3Be).  210	

 211	

Experimental procedures and Data analysis 212	

Pre- and post-test consisted of six randomly ordered blocks corresponding to different 213	

stimulus conditions (the trained stimulus, plus 5 additional stimulus conditions, as 214	

described above). In each block, stimulus durations were controlled by two 80-trial 215	

interleaved staircases (a 2-down-1-up staircase and a 3-down-1-up staircase), yielding 216	

160 trials for each threshold estimate. The initial starting durations for two staircases 217	

were 100 ms and 110 ms, respectively. Pre- and post-test measurements were conducted 218	

on day 2 and day 7, respectively. On day 1, each participant completed a practice phase 219	

that was identical to the pre- and post-test battery, except that each block consisted of 220	

only 60 trials. The purpose of this practice day was to help stabilize pre-test 221	

measurements. The perceptual training lasted four days (days 3-6). On each day, 222	

participants completed seven 100-trial blocks, resulting in a total of 28 training blocks. 223	

For the first training block on the first training day (day 3), the initial starting durations 224	

for the two staircases were 100 ms and 110 ms. For all subsequent training blocks, the 225	

initial stimulus durations were the durations in the final trials of two staircases in the 226	

previous training block. All participants completed these seven experimental sessions 227	

within 14 days. 228	

 To estimate duration thresholds for each pre- and post-test condition, we fit 229	

Weibull psychometric functions to 160 trials of raw data using the maximum likelihood 230	
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method, estimating the thresholds at 82% correct. The amount of learning in each 231	

condition was estimated by computing percent of improvement (PI): 232	

PI =
thresholdpre − thresholdpost

thresholdpre
*100%

(1) 
233	

where thresholdpre and thresholdpost indicate duration thresholds for the corresponding 234	

pre- and post-test stimulus conditions. We used paired t-tests for comparisons of pre- and 235	

post-test thresholds and for comparison of PI across stimulus conditions. One-sample t-236	

tests were used for assessing the statistical significance of PI against the null hypothesis 237	

of 0% PI. All t-tests were two-tailed and performed using Matlab Statistical and Machine 238	

Learning Toolbox.  239	

 240	
Figure 4. Learning curves for the component- (black) and the plaid-241	
training (gray) group. Data are thresholds for 28 training blocks, tested 242	
over 4 days of training. Vertical dashed lines separate data for four 243	
training days. Note that the plaid-training group showed lower duration 244	
thresholds. This is expected given the faster apparent speed of plaid 245	
stimuli and known effects of stimulus speed on temporal duration 246	
thresholds 36. Error bars are SEM across subjects. 247	

 248	

RESULTS 249	

Effective perceptual learning for both component and plaid stimuli 250	

We first examined whether our training procedure was sufficient to result in perceptual 251	

improvement. Here, for each group, we compared pre- and post-test thresholds for the 252	

trained stimulus condition. The results revealed significant improvements in thresholds 253	
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for both the component- and the plaid-training group (Figure 5E; t(7) = 2.79, p = 0.0268 254	

and (5) = 6.28, p = 0.0015, respectively). We also computed percent of improvement (PI, 255	

see Equation 1), and found significantly positive PIs for both groups (Figure 5F; t(7) = 256	

5.06, p = 0.0015; t(5) = 12.04 , p = 6.97 x 10-6), with each group showing about a 20% 257	

improvement in performance. 258	

 259	

Bidirectional transfer of learning between component and plaid motions 260	

The main focus of this paper is to examine the transfer of perceptual learning to a range 261	

of diagnostic stimulus conditions. A two-stage criterion was used to assess transfer of 262	

learning. First, we concluded that learning transfers to a stimulus condition if the pre-263	

/post-test difference on this condition was statistically significant. If a stimulus condition 264	

passed this first test, then we compared its PI to the corresponding trained condition (i.e., 265	

either trained component or trained plaid). If the transfer PI was significantly smaller than 266	

the trained PI, the result was described as a “partial transfer”. Alternatively, if the PI for a 267	

transfer condition was not statistically smaller than the PI for its corresponding trained 268	

condition, we referred to it as “complete transfer”, according to an established convention 269	

in VPL research 13,16,17. 270	

The key aim of this study was to determine whether perceptual training leads to 271	

plasticity within low-level component-dependent motion processing or middle-level 272	

pattern-dependent motion processing. To be precise, component-dependent plasticity 273	

predicts that training on a component motion stimulus should only transfer to the plaid 274	

composed of the trained component gratings, and that training on a plaid stimulus should 275	

only transfer to its two constituent components (Figure 5A-B). On the contrary, pattern-276	

dependent plasticity predicts that training on a component motion stimulus or on a plaid 277	

motion stimulus that moves in the same directions should mutually transfer to each other 278	

(Figure 5C-D).  279	

Our results were consistent with plasticity in pattern-dependent mechanisms. First, 280	

perceptual training on a component grating significantly reduced the duration thresholds 281	

on the plaid that moved in the same apparent direction as the trained grating (Figure 5E 282	

left panel, pre-/post-test, t(7) = 2.88, p = 0.0237; Figure 5F left panel, PI, t(7) = 3.08, p = 283	

0.0178).  More importantly, the PI was statistically equivalent to the PI on the trained 284	
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grating (Figure 5F left panel; t(7) = 0.002, p = 0.999). Consistently, perceptual training 285	

on a plaid stimulus also transferred to the component grating that moved in the same 286	

apparent direction (Figure 5E right panel, pre-/post-test, t(5) = 3.336, p = 0.0207; Figure 287	

5F right panel, PI, t(5) = 2.971, p = 0.0311). Also, the PI on the untrained component was 288	

not statistically different from the PT on the original trained plaid (Figure 5F right panel, 289	

PI, t(5) = 1.29, p = 0.2533). The bidirectional transfer between the component and the 290	

plaid stimuli that moved to the same directions suggest that perceptual training most 291	

likely alters the computation in the visual units that process the pattern motion direction. 292	

Moreover, training effects on a component did not significantly transfer to a plaid that 293	

included the trained component, but moved in a different direction (Figure 5E left panel, 294	

pre-/post-test, t(7) = 0.784, p = 0.4586; Figure 5F left panel, PI, t(7) = 0.405, p = 0.6978). 295	

Plaid training also did not improve the performance on its two constituent components 296	

(Figure 5E right panel, pre-/post-test, t(5) = 0.305, p = 0.7709; Figure 5F right panel, PI, 297	

t(5) = 0.963, p = 0.3797). Taken together, these findings suggest that pattern-dependent 298	

learning at the middle-level motion system, rather than component-dependent learning at 299	

the low-level motion system, plays a pivotal role in mediating learning transfer of motion. 300	

 301	

 302	
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 303	
Figure 5. Schematic illustrations (A, C), predictions (B, D) and empirical 304	
results (E-F) for component-dependent and pattern-dependent VPL. A. 305	
The component-dependent VPL takes place at the lowest level of motion 306	
processing, as indicated by the red rectangle. Here, training on a 307	
component stimulus should only transfer to the plaid stimulus that 308	
comprises the trained component. Moreover, training on a plaid stimulus 309	
should only transfer to its two constituent components. B. Learning effects 310	
as predicted by component-dependent learning in panel A. C-D. 311	
Illustrations of the pattern-dependent perceptual learning and its predicted 312	
learning effects, following conventions in panels A and B. Here, plasticity 313	
takes place at the middle stage of motion processing. (E) Duration 314	
thresholds at pre-/post-test across stimulus conditions in the component 315	
(left panel) and the plaid training (right panel), respectively. (F) Learning 316	
effects quantified as percent of improvement (PI%) across stimulus 317	
conditions and training regimes. The overall pattern mimics the 318	
predictions in (D), indicating that plasticity likely occurs at the middle-319	
level of motion analysis. For all subplots, error bars denote ±1 SEM across 320	
subjects. Significance symbol conventions are *:p < 0.05; **:p < 0.01; ***: 321	
p < 0.001; n.s.: non-significant. Same definitions of error bars and symbol 322	
conventions are kept for all figures in this paper. 323	

 324	
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Specificities to direction, speed, size, and contrast 327	

We have thus far focused on experimentally disentangling component-dependent from 328	

pattern-dependent VPL, with the results arguing against low-level component-dependent 329	

VPL. What remains unclear, however, is whether the perceptual training led to 330	

enhancements in the processing of sensory features or high-level non-sensory attributes. 331	

For instance, participants might learn motion directions as abstract concepts 16 or be more 332	

familiar with the general task statistics (e.g., stimulus timing, stimulus-response 333	

association 17). In this case, plasticity takes place in higher brain hierarchy that is 334	

independent of the sensory processing. To further delineate the plasticity in the sensory 335	

(Figure 6A-B) or the non-sensory processing (Figure 6C-D), we examined the tolerance 336	

of our training across several other forms of stimulus variations, i.e., direction, speed, 337	

size, and contrast. The prediction is that if the plasticity is largely limited to sensory 338	

processing, learning should be confined to the trained stimuli; otherwise learning effects 339	

will transfer irrespective of the variations in other stimulus features. 340	

The results indicated a notable specificity to stimulus variations. In the 341	

component-training group, we did not find significant transfer for trained and test stimuli 342	

that differed in motion directions (Figure 6E left panel, pre-/post-test, t(7) = 1.886, p = 343	

0.101; Figure 6F left panel, PI, t(7) = 2.016, p = 0.084). We also found no significant 344	

transfer to test stimuli that have smaller size (Figure 6E left panel, pre-/post-test, t(7) = 345	

1.308, p = 0.232; Figure 6F left panel, PI, t(7) = 1.376, p = 0.211) or lower contrast 346	

(Figure 6E left panel, pre-/post-test, t(7) = 2.187, p = 0.065; Figure 6F left panel, PI, t(7) 347	

= 1.971, p = 0.089). 348	

 Similarly, if component motion directions were switched such that the resulting 349	

plaid moves in an orthogonal direction, transfer effects in the plaid-training group were 350	

not statistically evident (Figure 6E right panel, pre-/post-test, t(5) = 1.268, p = 0.261; 351	

Figure 6F right panel, PI, t(5) = 1.645 , p = 0.161). We also investigated how changing 352	

stimulus speed affects learning transfer. When the grating speed was increased to match 353	

the apparent speed of the trained plaid, the transfer effect was not significant (Figure 6E 354	

right panel, pre-/post-test, t(5) = 1.257, p = 0.265; Figure 6F right panel, PI, t(5) = 1.635, 355	

p = 0.163).  356	
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 Taken together, we find that motion VPL is specific to stimulus direction, speed, 357	

size, and contrast. These results demonstrate that our training has strong susceptibilities 358	

to variations in basic visual features. Such strong dependencies indicate that a broadly 359	

tuned non-sensory learning mechanism unlikely plays an important role in observed 360	

learning because it predicts a broad transfer over variations in low-level stimulus features. 361	

Note that we cannot completely eliminate the possibility of changes in sensory readout 362	

mechanisms since, theoretically, a refined readout mechanism can be sensitive to changes 363	

in sensory features 37,38. Nonetheless, these results suggest the pivotal roles of basic 364	

stimulus features in perceptual learning of motion. 365	

 366	

 367	
 368	

Figure 6. Specificity of motion VPL to basic sensory features. A-B. 369	
Illustrations and predictions of the plasticity at the highest-level stage (e.g., 370	
PFC) in the three-layer network. This mechanism predicts that training on a 371	
component or a plaid stimulus should be generalizable regardless of the 372	
variations in low-level visual features, such as direction, speed, size, and 373	
contrast. C-D Illustrations and predictions akin to (A-B), expect that the 374	
plasticity occurs within the general sensory representation stage. This 375	
scheme predicts that training on a component or a plaid stimulus should 376	
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exhibit minimal transfer to the stimuli that differ in basic visual features. (E) 377	
Duration thresholds at pre-/post-test across stimulus conditions in two 378	
training groups. (F) Empirical learning effects, quantified as percent of 379	
improvement (PI%), across stimuli and training groups. The transfer pattern 380	
of learning is more consistent with predictions in (D). No significant transfer 381	
in all other stimulus conditions is noted, implying the plasticity within the 382	
sensory representation level as shown in (C). 383	

 384	

DISCUSSION 385	

Elucidating where in the visual processing hierarchy plasticity associated with VPL takes 386	

place has been a key question in perceptual learning research over the past decades. Here, 387	

we addressed this question in the domain of motion perception. We trained participants to 388	

identify motion directions of either component motion (a drifting grating) or pattern 389	

motion (a drifting plaid), and assessed transfer of learning to a variety of carefully 390	

controlled stimulus conditions. The bidirectional transfer of learning between component 391	

and pattern motion provides evidence that learning effects most likely take place at the 392	

middle-levels of processing where component motions are combined into plaid percepts, 393	

and, at the same time, rules out plasticity at the low-levels where complex motions are 394	

represented as components. In addition, we also observed specificities to the trained 395	

direction, speed, stimulus size, and contrast. These results are in line with the previous 396	

findings that VPL is generally vulnerable to the variations in basic feature dimensions 397	

and argue against plasticity in high-level brain areas that represent non-sensory cognitive 398	

factors, such as general task statistics and decision rules 15,16,17. 399	

 Our results are of significance for understanding mechanisms underlying motion 400	

perception. As one of the key research topics in vision science, dissociable functional 401	

roles of the low-level and the middle-level motion system have been well documented 402	
22,39,40. The seminal paper by Adelson and Movshon 32 documented how moving plaid 403	

percepts can arise from component gratings. Subsequent neurophysiological work 404	

discovered distinct tuning properties of individual neurons in V1 and MT with 405	

preferences toward component and plaid representations, respectively 30. These findings 406	

were generalized to humans. Huk and Heeger 41 reported robust fMRI adaptation to 407	

pattern motion in the human motion-sensitive area hMT+. Thus, the phenomenon of 408	
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component and pattern motion serves as a good benchmark for studying visual hierarchy 409	

of motion processing. 410	

 Although we have a good understanding of visual motion processing hierarchy, 411	

we know little about the roles different stages play in VPL. We address this question by 412	

showing that training on component or pattern motion bi-directionally transfers to each 413	

other if the two stimuli share the same apparent motion direction. These results suggest 414	

that, when a plaid motion stimulus is being learned, learning signals might preferentially 415	

refine the pattern-selective units that respond to the apparent motion direction, but not the 416	

component sensitive units. While there have been many behavioral studies of motion 417	

VPL, to our knowledge, no studies employed an experimental design that allowed 418	

distinguishing between plasticity at low and at the middle levels of motion processing. 419	

For instance, VPL studies typically relied on random-dot-kinematogram stimuli or 420	

trained subjects on fine direction discrimination tasks 7,42,43. Studies that used gratings 421	

only tested contrast thresholds for coarse motion direction judgments 44.  422	

 Our study also constrains theoretical models of VPL. Two distinct computational 423	

frameworks of VPL have emerged so far, where learning either improves the quality of 424	

sensory encoding or optimizes high-level readout and decision mechanism that can in 425	

turn promote perceptual sensitivity. Empirical evidence, however, is highly contentious. 426	

Early psychophysical studies on motion VPL demonstrated the considerable specificity to 427	

the trained direction 7,8, implying the plasticity among direction-selective units. However, 428	

specificities in motion VPL have also been shown to be mediated by other factors, such 429	

as task difficulty 45,46, exposure to other directions 47, external noise 44. This debate in 430	

VPL psychophysics is mirrored by a similar debate with respect to the neural substrates 431	

of VPL. For example, after training monkeys on a motion direction decision task, Law 432	

and Gold 27 found pronounced behaviorally relevant changes in neural responses in area 433	

LIP, but minimal changes in neural activities in area MT. This study advocates a 434	

mechanism beyond the sensory-representation level, where training results in a more 435	

efficient extraction of useful sensory information rather than in an enhancement of 436	

sensory representations per se. In contrast, recent fMRI studies found that motion VPL 437	

refines the cortical tuning of the human MT, emphasizing the pivotal role of enhancement 438	

at sensory-representation level 48,49. Notably, the mechanistic role of high-level cognitive 439	
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influences in sensory processing is still largely unknown. Previous studies have suggested 440	

at least two broad categories, mechanisms that are sensory (e.g., selective readout) and 441	

those that are non-sensory (e.g., conceptual learning, rule-based learning). While 442	

disentangling between these higher level processes is beyond the scope of this paper, the 443	

observed specificity to basic stimulus features argues against non-sensory cognitive 444	

factors. 445	

 What are the possible neural underpinnings of the observed empirical findings in 446	

the present work? We surmise that several mechanisms may coexist and interact. First, 447	

because training on a plaid motion stimulus does not fully transfer to its two components 448	

(Figure 5E), we conclude that a significant part of the relevant plasticity occurs 449	

downstream from the low-level motion mechanisms. Given the evidence that MT neurons 450	

analyze pattern motion by selectively integrating inputs from a population of V1 neurons 451	
38, one possible mechanism is that learning improves information transmission from the 452	

low-level to the middle-level motion processing. Such a mechanism is consistent with 453	

findings of a recent study where attention was shown to improve the amount of 454	

information transferred from V1 to hMT+ 50. Moreover, learning effects in our study are 455	

specific to direction, speed, contrast, and size, indicating critical roles of neuronal tuning 456	

to these low-level visual features. For example, stimulus contrast and size have strong 457	

influences on neural responses in motion processing 51. This is also in line with our 458	

previous findings showing that motion perception is strongly modulated by stimulus 459	

contrast and size 52,53—behavioral findings that have been linked to mechanisms within 460	

area MT 54,55.  461	

 In summary, our study provides evidence for the training-induced plasticity in the 462	

intermediate stage of motion processing, and highlights the significance of basic motion-463	

related visual attributes in mediating the transfer of motion VPL.   464	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 19	

References 465	

1 Sasaki, Y., Nanez, J. E. & Watanabe, T. Advances in visual perceptual learning 466	
and plasticity. Nat. Rev. Neurosci. 11, 53-60 (2010). 467	

2 Watanabe, T. & Sasaki, Y. Perceptual learning: toward a comprehensive theory. 468	
Annu. Rev. Psychol. 66, 197-221 (2015). 469	

3 Adini, Y., Sagi, D. & Tsodyks, M. Context-enabled learning in the human visual 470	
system. Nature. 415, 790-793 (2002). 471	

4 Adini, Y., Wilkonsky, A., Haspel, R., Tsodyks, M. & Sagi, D. Perceptual learning 472	
in contrast discrimination: the effect of contrast uncertainty. J Vis. 4, 993-1005 (2004). 473	

5 Yu, C., Klein, S. A. & Levi, D. M. Perceptual learning in contrast discrimination 474	
and the (minimal) role of context. J Vis. 4, 169-182 (2004). 475	

6 Fahle, M. Specificity of learning curvature, orientation, and vernier 476	
discriminations. Vision Res. 37, 1885-1895 (1997). 477	

7 Ball, K. & Sekuler, R. A specific and enduring improvement in visual motion 478	
discrimination. Science. 218, 697-698 (1982). 479	

8 Ball, K. & Sekuler, R. Direction-specific improvement in motion discrimination. 480	
Vision Res. 27, 953-965 (1987). 481	

9 Fine, I. & Jacobs, R. A. Perceptual learning for a pattern discrimination task. 482	
Vision Res. 40, 3209-3230 (2000). 483	

10 Bi, T., Chen, N., Weng, Q., He, D. & Fang, F. Learning to discriminate face 484	
views. J. Neurophysiol. 104, 3305-3311 (2010). 485	

11 Furmanski, C. S. & Engel, S. A. Perceptual learning in object recognition: object 486	
specificity and size invariance. Vision Res. 40, 473-484 (2000). 487	

12 Fahle, M. & Edelman, S. Long-term learning in vernier acuity: effects of stimulus 488	
orientation, range and of feedback. Vision Res. 33, 397-412 (1993). 489	

13 Xiao, L. Q. et al. Complete transfer of perceptual learning across retinal locations 490	
enabled by double training. Curr. Biol. 18, 1922-1926 (2008). 491	

14 Wang, R., Zhang, J. Y., Klein, S. A., Levi, D. M. & Yu, C. Task relevancy and 492	
demand modulate double-training enabled transfer of perceptual learning. Vision Res. 61, 493	
33-38 (2012). 494	

15 Kahnt, T., Grueschow, M., Speck, O. & Haynes, J. D. Perceptual learning and 495	
decision-making in human medial frontal cortex. Neuron. 70, 549-559 (2011). 496	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 20	

16 Wang, R. et al. Perceptual Learning at a Conceptual Level. J. Neurosci. 36, 2238-497	
2246 (2016). 498	

17 Zhang, J. Y. et al. Rule-based learning explains visual perceptual learning and its 499	
specificity and transfer. J. Neurosci. 30, 12323-12328 (2010). 500	

18 Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 501	
27, 649-677 (2004). 502	

19 Wandell, B. A. Computational neuroimaging of human visual cortex. Annu. Rev. 503	
Neurosci. 22, 145-173 (1999). 504	

20 Park, W. J. & Tadin, D. Motion Perception in Stevens' Handbook of Experimental 505	
Psychology and Cognitive Neuroscience Vol. 2 Series (ed John Serences) Ch. Sensation, 506	
Perception, and Attention, 415-488 (Wiley, 2018). 507	

21 Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of 508	
monkey striate cortex. J. Physiol. 195, 215-243 (1968). 509	

22 Born, R. T. & Bradley, D. C. Structure and function of visual area MT. Annu. 510	
Rev. Neurosci. 28, 157-189 (2005). 511	

23 Newsome, W. T. & Pare, E. B. A selective impairment of motion perception 512	
following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201-2211 513	
(1988). 514	

24 Servos, P., Osu, R., Santi, A. & Kawato, M. The neural substrates of biological 515	
motion perception: an fMRI study. Cereb. Cortex. 12, 772-782 (2002). 516	

25 Antal, A. et al. Direct current stimulation over V5 enhances visuomotor 517	
coordination by improving motion perception in humans. J. Cogn. Neurosci. 16, 521-527 518	
(2004). 519	

26 Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the 520	
parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916-1936 (2001). 521	

27 Law, C. T. & Gold, J. I. Neural correlates of perceptual learning in a sensory-522	
motor, but not a sensory, cortical area. Nat. Neurosci. 11, 505-513 (2008). 523	

28 Latimer, K. W., Yates, J. L., Meister, M. L., Huk, A. C. & Pillow, J. W. 524	
NEURONAL MODELING. Single-trial spike trains in parietal cortex reveal discrete 525	
steps during decision-making. Science. 349, 184-187 (2015). 526	

29 Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. 527	
Neurosci. 30, 535-574 (2007). 528	

30 Rodman, H. R. & Albright, T. D. Single-unit analysis of pattern-motion selective 529	
properties in the middle temporal visual area (MT). Exp. Brain Res. 75, 53-64 (1989). 530	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 21	

31 Movshon, J. A. & Newsome, W. T. Visual response properties of striate cortical 531	
neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733-7741 (1996). 532	

32 Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual 533	
patterns. Nature. 300, 523-525 (1982). 534	

33 Pelli, D. G. The VideoToolbox software for visual psychophysics: Transforming 535	
numbers into movies. Spat. Vis. 10, 437-442 (1997). 536	

34 Foss-Feig, J. H., Tadin, D., Schauder, K. B. & Cascio, C. J. A substantial and 537	
unexpected enhancement of motion perception in autism. J. Neurosci. 33, 8243-8249 538	
(2013). 539	

35 Tadin, D., Lappin, J. S. & Blake, R. Fine temporal properties of center-surround 540	
interactions in motion revealed by reverse correlation. J. Neurosci. 26, 2614-2622 (2006). 541	

36 Lappin, J. S., Tadin, D., Nyquist, J. B. & Corn, A. L. Spatial and temporal limits 542	
of motion perception across variations in speed, eccentricity, and low vision. J Vis. 9, 30 543	
31-14 (2009). 544	

37 Dosher, B. A., Jeter, P., Liu, J. & Lu, Z. L. An integrated reweighting theory of 545	
perceptual learning. Proc Natl Acad Sci U S A. 110, 13678-13683 (2013). 546	

38 Rust, N. C., Mante, V., Simoncelli, E. P. & Movshon, J. A. How MT cells 547	
analyze the motion of visual patterns. Nat. Neurosci. 9, 1421-1431 (2006). 548	

39 Simoncelli, E. P. & Heeger, D. J. A model of neuronal responses in visual area 549	
MT. Vision Res. 38, 743-761 (1998). 550	

40 Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception 551	
of motion. J. Opt. Soc. Am. A. 2, 284-299 (1985). 552	

41 Huk, A. C. & Heeger, D. J. Pattern-motion responses in human visual cortex. Nat. 553	
Neurosci. 5, 72-75 (2002). 554	

42 Liu, Z. & Weinshall, D. Mechanisms of generalization in perceptual learning. 555	
Vision Res. 40, 97-109 (2000). 556	

43 Shibata, K. et al. Decoding reveals plasticity in V3A as a result of motion 557	
perceptual learning. PLoS One. 7, e44003 (2012). 558	

44 Lu, Z. L., Chu, W. & Dosher, B. A. Perceptual learning of motion direction 559	
discrimination in fovea: separable mechanisms. Vision Res. 46, 2315-2327 (2006). 560	

45 Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual 561	
learning. Nature. 387, 401-406 (1997). 562	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319


	 22	

46 Liu, Z. L. Perceptual learning in motion discrimination that generalizes across 563	
motion directions. Proceedings of the National Academy of Sciences of the United States 564	
of America. 96, 14085-14087 (1999). 565	

47 Zhang, J. Y. & Yang, Y. X. Perceptual learning of motion direction 566	
discrimination transfers to an opposite direction with TPE training. Vision Res. 99, 93-98 567	
(2014). 568	

48 Chen, N. et al. Sharpened cortical tuning and enhanced cortico-cortical 569	
communication contribute to the long-term neural mechanisms of visual motion 570	
perceptual learning. NeuroImage. 115, 17-29 (2015). 571	

49 Chen, N., Cai, P., Zhou, T., Thompson, B. & Fang, F. Perceptual learning 572	
modifies the functional specializations of visual cortical areas. Proc Natl Acad Sci U S A. 573	
113, 5724-5729 (2016). 574	

50 Saproo, S. & Serences, J. T. Attention improves transfer of motion information 575	
between V1 and MT. J. Neurosci. 34, 3586-3596 (2014). 576	

51 Pack, C. C., Hunter, J. N. & Born, R. T. Contrast dependence of suppressive 577	
influences in cortical area MT of alert macaque. J. Neurophysiol. 93, 1809-1815 (2005). 578	

52 Tadin, D., Lappin, J. S., Gilroy, L. A. & Blake, R. Perceptual consequences of 579	
centre-surround antagonism in visual motion processing. Nature. 424, 312-315 (2003). 580	

53 Tadin, D. Suppressive mechanisms in visual motion processing: From perception 581	
to intelligence. Vision Res. 115, 58-70 (2015). 582	

54 Schallmo, M.-P. et al. Suppression and facilitation of human neural responses. 583	
eLife. 7 (2018). 584	

55 Liu, L. D., Haefner, R. M. & Pack, C. C. A neural basis for the spatial 585	
suppression of visual motion perception. eLife. 5 (2016). 586	
 587	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282319doi: bioRxiv preprint 

https://doi.org/10.1101/282319

