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1 Abstract

2 Analysis of the spatial sub-cellular distribution of proteins is of vital importance
3 to fully understand context specific protein function. Some proteins can be found
a with a single location within a cell, but up to half of proteins may reside in multiple
5 locations, can dynamically re-localise, or reside within an unknown functional com-
6 partment. These considerations lead to uncertainty in associating a protein to a single
7 location. Currently, mass spectrometry (MS) based spatial proteomics relies on super-
8 vised machine learning algorithms to assign proteins to sub-cellular locations based on
0 common gradient profiles. However, such methods fail to quantify uncertainty associ-
10 ated with sub-cellular class assignment. Here we reformulate the framework on which
11 we perform statistical analysis. We propose a Bayesian generative classifier based on
12 Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus
13 proteins have a probability distribution over sub-cellular locations, with Bayesian com-
14 putation performed using the expectation-maximisation (EM) algorithm, as well as
15 Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide uncer-
16 tainty quantification, thus adding a further layer to the analysis of spatial proteomics.
17 Our framework is flexible, allowing many different systems to be analysed and reveals
18 new modelling opportunities for spatial proteomics. We find our methods perform
19 competitively with current state-of-the art machine learning methods, whilst simulta-
20 neously providing more information. We highlight several examples where classification
21 based on the support vector machine is unable to make any conclusions, while uncer-
22 tainty quantification using our approach provides biologically intriguing results. To our
23 knowledge this is the first Bayesian model of MS-based spatial proteomics data.
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2 Author summary

25 Sub-cellular localisation of proteins provides insights into sub-cellular biological processes.
26 For a protein to carry out its intended function it must be localised to the correct sub-
27 cellular environment, whether that be organelles, vesicles or any sub-cellular niche. Correct
28 sub-cellular localisation ensures the biochemical conditions for the protein to carry out its
20 molecular function are met, as well as being near its intended interaction partners. Therefore,
30 mis-localisation of proteins alters cell biochemistry and can disrupt, for example, signalling
a1 pathways or inhibit the trafficking of material around the cell. The sub-cellular distribution
2 of proteins is complicated by proteins that can reside in multiple micro-environments, or
33 those that move dynamically within the cell. Methods that predict protein sub-cellular
s localisation often fail to quantify the uncertainty that arises from the complex and dynamic
35 nature of the sub-cellular environment. Here we present a Bayesian methodology to analyse
36 protein sub-cellular localisation. We explicitly model our data and use Bayesian inference to
37 quantify uncertainty in our predictions. We find our method is competitive with state-of-the-
s art machine learning methods and additionally provides uncertainty quantification. We show
30 that, with this additional information, we can make deeper insights into the fundamental
s0 biochemistry of the cell.

« 1 Introduction

22 Spatial proteomics is an interdisciplinary field studying the localisation of proteins on a large-
a3 scale. Where a protein is localised in a cell is a fundamental question, since a protein must be
s localised to its required sub-cellular compartment to interact with its binding partners (for
s example, proteins, nucleic acids, metabolic substrates) and carry out its function (Gibson,
s 2009). Furthermore, mis-localisations of proteins are also critical to our understanding of
sz biology, as aberrant protein localisation have been implicated in many pathologies (Olkkonen
s and ITkonen, 2006; Luheshi et al., 2008; Laurila and Vihinen, 2009; De Matteis and Luini,
s 2011; Cody et al., 2013), including cancer (Kau et al., 2004; Rodriguez et al., 2004; Latorre
so et al., 2005; Shin et al., 2013) and obesity (Siljee et al., 2018).

51 Sub-cellular localisations of proteins can be studied by high-throughput mass spectrom-
2 etry (MS) (Gatto et al., 2010). MS-based spatial proteomics experiments enable us to con-
s3 fidently determine the sub-cellular localisation of thousands of proteins within in a cell
sa  (Christoforou et al., 2016), given the availability of rigorous data analysis and interpretation
ss  (Gatto et al., 2010).

56 In a typical MS-based spatial proteomics experiment, cells first undergo lysis in a fashion
s7 which maintains the integrity of their organelles. The cell content is then separated using
ss a variety of methods, such as density separation (Dunkley et al., 2006; Christoforou et al.,
so  2016), differential centrifugation (Itzhak et al., 2016), free-flow electrophoresis (Parsons et al.,
oo 2014), or affinity purification (Heard et al., 2015). In LOPIT (Dunkley et al., 2004, 2006;
o1 Sadowski et al., 2006) and hyperLOPIT (Christoforou et al., 2016; Mulvey et al., 2017),
62 cell lysis is proceeded by separation of the content along a density gradient. Organelles
63 and macro-molecular complexes are thus characterised by density-specific profiles along the
e« gradient (De Duve and Beaufay, 1981). Discrete fractions along the continuous density
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es gradient are then collected, and quantitative protein profiles that match the organelle profiles
s along the gradient, are measured using high accuracy mass spectrometry (Mulvey et al.,
er 2017).

68 The data are first visualised using principal component analysis (PCA) and known sub-
so cellular compartments are annotated (Breckels et al., 2016a). Supervised machine learning
70 algorithms are then typically employed to create classifiers that associate un-annotated pro-
71 teins to specific organelles (Gatto et al., 2014a), as well as semi-supervised methods that de-
72 tect novel sub-cellular clusters using both labelled and un-labelled features (Breckels et al.,
7z 2013). More recently, a state-of-the-art transfer learning (TL) algorithm has been shown
7o to improve the quantity and reliability of sub-cellular protein assignments (Breckels et al.,
75 2016b). Applications of such methods have led to organelle-specific localisation information
76 of proteins in plants (Dunkley et al., 2006), Drosophila (Tan et al., 2009), chicken (Hall
77 et al., 2009), human cell lines (Breckels et al., 2013), mouse pluripotent embryonic stem cells
s (Christoforou et al., 2016) and cancer cell lines (Thul et al., 2017).

79 Classification methods which have previously been used include partial least squares
so discriminate analysis (Dunkley et al., 2006), K nearest neighbours (Groen et al., 2014),
s1 random forests (Ohta et al., 2010), naive Bayes (Nikolovski et al., 2012), neural networks
sz (Tardif et al., 2012) and the support vector machine amongst others (see Gatto et al. (2014a)
s for an overview). Although these methods have proved successful within the field they have
s limitations. Typically, such classifiers output an assignment of proteins to discrete pre-
ss annotated sub-cellular locations. However, it is important to note that half the proteome
ss cannot be robustly assigned to a single sub-cellular location, which may be a manifestation of
ez proteins in so far uncharaterised organelles or proteins that are distributed amongst multiple
ss locations. These factors lead to uncertainty in the assignment of proteins to sub-cellular
so localisations, and thus quantifying this uncertainty is of vital importance (Kirk et al., 2015).
90 To overcome the task of uncertainty quantification, this article presents a probabilistic
o1 generative model for MS-based spatial proteomics data. Our model posits that each anno-
o2 tated sub-cellular niche can be modelled by a multivariate Gaussian distribution. Thus, the
o3 full complement of annotated proteins is captured by a mixture of multivariate Gaussian
os distributions. With the prior knowledge that many proteins are not captured by known
os sub-cellular niches, we augment our model with an outlier component. Outliers are often
o6 dispersed and thus this additional component is described by a heavy-tailed distribution:
oz the multivariate Student’s t-distribution, leading us to a T Augmented Gaussian Mixture
s model (TAGM).

99 Given our model and proteins with known location, we can probabilistically infer the
1o sub-cellular localisation of thousands of proteins. We can perform inference in our model by
w1 finding mazimum a posteriori (MAP) estimates of the parameters. This approach returns the
102 probability of each protein belonging to each annotated sub-cellular niche. These posterior
w3 localisation probabilities can then be the basis for classification. In a more sophisticated, fully
10a  Bayesian approach to uncertainty quantification, we can additionally infer the entire posterior
105 distribution of localisation probabilities. This allows the uncertainty in the parameters in our
s model to be reflected in the posterior localisation probabilities. We perform this inference
107 using Markov-chain Monte-Carlo methods; in particular, we provide an efficient collapsed
ws Gibbs sampler to perform inference.

109 We perform a comprehensive comparison to state-of-the-art classifiers to demonstrate


https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282269; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1o that our method is reliable across 19 different spatial proteomics datasets and find that
u1 - all classifiers we considered perform competitively. To demonstrate the additional biological
12 advantages our method can provide, we apply our method to a hyper LOPIT dataset on mouse
1z pluripotent embryonic stem cells (Christoforou et al., 2016). We consider several examples
ua  of proteins that were unable to be assigned using traditional machine-learning classifiers
us and show that, by considering the full posterior distribution of localisation probabilities,
ue we can draw meaningful biological results and make powerful conclusions. We then turn
uz our hand to a more global perspective, visualising uncertainty quantification for over 5,000
ug proteins, simultaneously. This approach reveals global patterns of protein organisation and
110 their distribution across sub-cellular compartments.

120 We make extensive use of the R programming language (R Core Team, 2017) and existing
121 MS and proteomics packages (Gatto and Lilley, 2012; Gatto et al., 2014b). We are highly
122 committed to creating open software tools for high quality processing, visualisation, and
123 analysis of spatial proteomics data. We build upon an already extensive set of open software
24 tools (Gatto et al., 2014b) as part of the Bioconductor project (Gentleman et al., 2004;
125 Huber et al., 2015) and our methods are made available as part of this project.

» 2 Results

1z 2.1 Application to mouse pluripotent embryonic stem cell data

12s We model mouse pluripotent embryonic stem cell (E14TG2a) data (Christoforou et al.,
120 2016), which contains quantitation data for 5032 proteins. This high-resolution map was
130 produced using the hyperLOPIT workflow (Mulvey et al., 2017), which uses a sophisticated
131 sub-cellular fractionation scheme. This fractionation scheme is made possible by the use of
132 Tandem Mass Tag (TMT) 10-plex and high accuracy TMT quantification was facilitated
13 by using synchronous precursor selection MS3 (SPS-MS3) (McAlister et al., 2014), which
13« reduces well documented issues with ratio distortion in isobaric multiplexed quantitative
s proteomics (Ting et al., 2011). The data resolves 14 sub-cellular niches with an additional
136 chromatin preparation resolving the nuclear chromatin and non-chromatin components. Two
137 biological replicates of the data are concatenated, each with 10 fractions along the density
s gradient. We defined gold standard organelle markers as those with unambiguous single
139 annotation (Gatto et al., 2014a). A protein marker list for the mouse pluripotent embryonic
uo stem cells was manually curated using information from the UniProt database, the Gene
11 Ontology and the literature, as was performed in Christoforou et al. (2016). The following
12 section applies our statistical methodology to these data and we explore the results.

w3 2.1.1 Maximum a posteriori prediction of protein localisation

s This section applies the TAGM model to the mouse pluripotent embryonic stem cell data,
us by deriving MAP estimates for the model parameters and using these for prediction. Visual-
ue isation is important for data analysis and exploration. A simple way to visualise our model
w7 18 to project probability ellipses onto a PCA plot. Each ellipse contains a proportion of total
us probability of a particular multivariate Gaussian density. The outer ellipse contains 99% of
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us the total probability whilst the middle and inner ellipses contain 95% and 90% of the prob-
10 ability respectively. Visualising only the first two principal components can be misleading,
151 since proteins can be more (or less) separated in subsequent principal components. We visu-
12 alise the first two principal components along with the first and fourth principal components
153 as a representative example. For the TAGM model, we derive probability ellipses from the
1sa  MAP estimates of the parameters.

Visualisation of probability ellipses Visualisation along 1st and 4th principal components
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Figure 1: (a) PCA plot of the 1st and 2nd principal components for the curated marker
proteins of the mouse stem cell data. The organelles are, in general, well separated. Though
some organelles overlap, they are separated along different principal components. The densi-
ties used to produce the ellipses are derived from the MAP estimates. (b) Marker resolution
along the 1st and 4th principal components show that the mitochondrion and peroxisome
markers are well resolved, despite overlapping in the 1st and 2nd component. We also see
that the ER/Golgi apparatus markers are better separated from the extracellular matrix
markers.

155 We now apply the statistical methodology described in section 4, to predict the local-
156 isation of proteins to organelles and sub-cellular components. In brief, we produce MAP
157 estimates of the parameters by using the expectation-maximisation algorithm, to form the
s basis of a Bayesian analysis (TAGM-MAP). We run the algorithm for 200 iterations and
10 inspect a plot of the log-posterior to assess convergence of the algorithm (see appendix 5.3).
1o We confirm that the difference of the log posterior between the final two iterations is less
11 than 107% and we conclude that our algorithm has converged. The results can be seen in
162 figure 2 (left), where the posterior localisation probability is visualised by scaling the pointer
163 for each protein.

164 Figure 2 (right) demonstrates a range of probabilistic assignments of proteins to organelles
s and sub-cellular niches. We additionally consider a full, sampling-based Bayesian analysis
166 using Markov-chain Monte Carlo (MCMC) to characterise the uncertainty in the localisation
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167 probabilities. In our case a collapsed Gibbs sampler is used to sample from the posterior of
s localisation probabilities. The remainder of this article focus on analysis of spatial proteomics
160 in this fully Bayesian framework.

TAGM-MAP localisation predictions TAGM-MCMC localisation prediction

> 40S Ribosome.
60S Ribosome
® Actin cytoskeleton
imiGolgi apparatus. Cytosol
Endoplasmic reticulum/Golgi apparatus
< —° Endosome
Extracellular matrix

PC2 (23.85%)
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PC1 (48.41%) PC1 (48.41%)

Figure 2: PCA plot of the protein quantitation data with colours representing the pre-
dicted class (5032 proteins) illustrating protein localisation preductions using TAGM-MAP
(left) and TAGM-MCMC (right) respectively. The pointer size of a protein is scaled to the
probability that particular protein was assigned to that organelle. Markers, proteins whose
localisations are already known, are automatically assigned a probability of 1 and the size
of the pointer reflects this.

7o 2.1.2 Uncertainty in the posterior localisation probabilities

171 This section applies the TAGM model to the mouse pluripotent embryonic stem cell data, by
12 considering the uncertainty in the parameters and exploring how this uncertainty propogates
173 to the uncertainty in protein localisation prediction. In figure 3 we visualise the model as
174 before using the first two principal components along with the first and fourth principal
175 component as a representive example. For the TAGM model, we derive probability ellipses
e from the expected value of the posterior normal-inverse-Wishart (NIW) distribution.

177 We apply the statistical methodology detailed in section 4. We perform posterior com-
7 putation in the Bayesian setting using standard MCMC methods (TAGM-MCMC). We run
170 6 chains of our Gibbs sampler in parallel for 15,000 iterations, throwing away the first 4, 000
180 iterations for burn-in and retain every 10"* sample for thinning. Thus 1,100 sample are
181 retained from each chain. We then visualise the trace plots of our chains; in particular, we
122 monitor the number of proteins allocated to the known components (see appendix 5.4). We
183 discard 1 chain because we do not consider it to have converged. For the remaining 5 chains
1sa we further discard the first 500 samples by visual inspection. We then have 600 retained
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185 samples from 5 separate chains. For further analysis, we compute the Gelman-Rubin conver-
s gence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998), which is computed
wr as R~ 1.05. Values of R far from 1 indicate non-convergence and since our statistic is less
188 than 1.1, we conclude our chains have converged. The remaining samples are then pooled to
180 produce a single chain containing 3000 samples.

190 We produce point estimates of the posterior localisation probabilities by summarising
101 samples by their Monte-Carlo average. These summmaries are then visualised in figure 2
192 (right panel), where the pointer is scaled according to the localisation probabilities of the
103 sub-cellular niche with the largest posterior probability. Monte-Carlo based inference also
104 provides us with additional information; in particular, we can interrogate individual proteins
105 and their posterior probability distribution over sub-cellular locations.

196 Figure 4 illustrates one example of the importance of capturing uncertainty. The E3
107 ubiquitin-protein ligase TRIP12 (G5E870) is an integral part of ubiquitin fusion degrada-
s tion pathway and is a protein of great interest in cancer because it regulates DNA repair
190 pathways. The SVM failed to assign this protein to any location, with assigment to the 60S
200 Ribosome falling below a 5% FDR and the MAP estimate assigned the protein to the nucleus
200 non-chromatin with posterior probability < 0.95. The posterior distribution of localisation
202 probabilities inferred from the TAGM-MCMC model, shown in figure 4, demonstrates that
203 this protein is most probably localised to the nucleus non-chromatin. However, there is some
204 uncertainty about whether it localises to the 40S ribosome. This could suggest a dynamic
205 role for this protein, which could be further explored with a more targeted experiment.

Visualisation of probability ellipses Visualisation along the 1st and 4th principal component
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Figure 3: (a) Probability ellipses produced from using the MCMC method. The density is
the expected value from the NIW distribution. (b) Probability ellipses visualised along the
1st and 4th principal component also from the MCMC method.
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Distribution of Subcellular Membership for Protein G5E870
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Figure 4: Violin plot revealing the posterior distribution of localisation probabilities of pro-
tein E3 ubiquitin-protein ligase (G5E870) to organelles and sub-cellular niches. The most
probable localisation is nucleus non-chromatin, however there is uncertainty associated with
this assignment.
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206 2.1.3 Enrichment analysis of outlier proteins

207 In previous sections, we demonstrated that we can assign proteins probabilitically to sub-
208 cellular compartment and quantify the uncertainty in these assignments. Some proteins
200 cannot be well described as belonging to any known component and we model this using an
210 additional T-distribution outlier component (see Section 4).

211 It is biologically interesting to decipher what functional role proteins that are far away
212 from known components play. We perform an over-representation analysis of gene ontology
213 (GO) terms to asses the biological relevance of the outlier component (Boyle et al., 2004;
2a Yu et al., 2012). We take 1111 proteins that were allocated to known components with
215 probability less than 0.95. Note that these 1111 proteins exclude proteins that are likely
216 to belong to a known location, but we are uncertain about which localisation. We then
217 perform enrichment analysis against the set of all proteins quantified in the hyper LOPIT
218 experiment. We search against the cellular compartment, biological process and molecular
210 function ontologies.

220 Supplementary figure 16 shows this outlier component is enriched for cytoskeletal part
21 (p < 1077) and microtuble cytoskeleton (p < 1077). Cytoskeleton proteins are found
222 throughout the cell and therefore we would expect them to be found in every fraction along
223 the density gradient. We also observe enrichment for highly dynamic sub-cellular processes
24 such as cell division (p < 107%) and cell cycle processes (p < 1075), again these proteins are
225 unlikely to have steady-state locations within a single component. We also see enrichment for
226 molecular functions such as tranferase activity (p < 0.005), another highly dynamic process.
227 These observations justify including an additional outlier component in our mixture model.
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2 2.2 Comparison with other classifiers

220 In this section, we assess the generalisation performance of our methods on several datasets,
230 by computing performance metrics associated with each classifier as detailed in section 4.4.
231 We compare the SVM and KNN classifiers alongside the MAP and MCMC approaches
232 detailed in the methods section. We compute the F1 score and quadratic loss over 100
233 rounds of stratified 5-fold cross-validation. The hyperparameter for the KNN algorithm, the
3¢ number of nearest neighbours, is optimised via an additional internal 5-fold cross-validation
235 and the hyperparameters for the SVM, sigma and cost, are also optimised via internal 5-fold
236 cross validation (Hsu et al., 2010).

237 We test our methods on the following datasets Drosophila (Tan et al., 2009), chicken
228 (Hall et al., 2009), mouse pluripotent embryonic stem cells from Christoforou et al. (2016)
239 and Breckels et al. (2016b), the human bone osteosarcoma epithelial (U2-OS) cell line (Thul
20 el al., 2017), the HeLa cell line of Ttzhak et al. (2016), the 3 HeLa cell lines from Hirst
200 et al. (2018) and 10 primary fibroblast datasets from Beltran et al. (2016). These datasets
222 Tepresent a great variety of spatial proteomics experiments across many different workflows.
243 The two hyper LOPIT datasets on mouse pluripotent embryonic stem cells and the U2-OS
224 cell line use TMT 10-plex labelling and contain the greatest number of proteins. Earlier LO-
25 PIT experiments on the Drosophila and chicken use iTRAQ 4-plex labelling, whilst another
26 LOPIT mouse pluripotent embryonic stem cell dataset uses iTRAQ 8-plex. The datasets
27 of Itzhak et al. (2016) and Hirst et al. (2018) employ a different methodology completely -
s seperating cellular content using differential centrifugation (as opposed to along a density-
2a0  gradient). Furthermore, the methods use SILAC rather than iTRAQ or TMT for labelling.
250 The experiments of Hirst et al. (2018) were designed to explore the functional role of AP-5 by
251 coupling CRISPR-CAS9 knockouts with spatial proteomics methods. We analysed all three
22 datasets from Hirst et al. (2018), which includes a wild type HeLa cell line as a control, as
253 well as two CRISPR-CAS9 knockouts: AP5Z1-KO1 and AP5Z1-KO2 respectively.

254 In addition, we analyse the spatio-temporal proteomics experiments of Beltran et al.
25 (2016), which uses TMT-based MS quantification. This experiment explored infecting pri-
256 mary fibroblasts with Human cytomegalovirus (HMCV) and the goal of these experiments
257 was to explore the dynamic perturbation of host proteins during infection, as well as the sub-
2ss  cellular localisation of viral proteins throught the HCMYV life-cycle. They produced spatial
250 maps at different time points: 24,48, 72,96, 120 hours post infection (hpi), as well as mock
260 maps at these same time points to serve as a control - this results in 10 different spatial
261 proteomics maps.

262 In each case, a dataset specific marker list was used, which is curated specifically for
263 the each cell line. We removed "high-curvature ER" annotations from the HeLa dataset
26a  (Itzhak et al., 2016), as well as the "ER Tubular", "Nuclear pore complex" and "Peroxisome"
265 annotations from the HeLa CRISPR-CAS9 knockout experiments (Hirst et al., 2018) as
266 there are too few proteins to correctly perform cross-validation. Table 1 summarises these
267 datasets, including information about number of quantified proteins, the workflow used and
268 the number of fractions.

269 Figure 5 compares the Macro-F1 scores across the datasets for all classifiers and demon-
270 strates that no single classifier consistently outperforms any other across all datasets, with
ann results being highly consistent across all methods, as well as across datasets. We perform

10
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MS-based Spatial Proteomics datasets

Cell line or or- | Workflow Labelling Fractions Proteins

ganism (including
combined
replicates)

Drosophila LOPIT iTRAQ 4 888

Chicken DT40 LOPIT iTRAQ 16 1090

Mouse pluripo- | HyperLOPIT TMT 20 5032

tent K14TG2a

stem cell

HeLa (Itzhak et | Organeller Maps | SILAC 30 3766

al.)

HeLa (Hirst et | Organeller Maps | SILAC 15 2046

al.)

U2-0O8 cell line | HyperLOPIT TMT 37 5020

Primary Fibrob- | Spatio- TMT 6 2196

last Temporal

Methods

E14TG2a LOPIT iTRAQ 8 2031

(Breckels et

al.)

Table 1: Summary of spatial proteomics datasets used for comparisons

a pairwise unpaired t-test with multiple testing correction applied using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) to detect differences between classifier
performance.

In the Drosophila dataset only the KNN algorithm outpeforms the SVM at significance
level of 0.01, whilst no other significant differences exist between the classifiers. In the chicken
DT40 dataset only the MCMC method outperforms the KNN classifier at significance level
of 0.01, no other significant conclusion can be drawn. In the mouse dataset the MAP based
method outperforms the MCMC method at significance level of 0.01, no other significant
conclusions can be drawn. In the HeLa dataset all classifiers are significantly different at
a 0.01 level. These differences may exist because the dataset does not fit well with our
modelling assumptions; in particular, this dataset set has been curated to have a class
called "Large Protein Complex", which likely describes several sub-cellular structures. These
might include nuclear compartments and ribosomes, as well as any cytosolic complex and
large protein complex which pellets during the centrifugation conditions used to capture
this mixed sub-cellular fraction. Moreover, the cytosolic and nuclear fraction were processed
separately leading to possible imbalance with comparisions with other datasets. Thus, the
large protein complex component might be better described as itself a mixture model or
more detailed curation of these data may be required. We do not consider further modelling
of this dataset in this manuscript. For the U2-OS all classifiers are significantly different at a
significance level of 0.01 except for the SVM classifier and the MCMC method, with the MAP
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202 method performing the best. Figure 5 shows that for this dataset all classifiers are performing
203 extremely well. In the three Hirst datasets the MAP method significantly outperforms all
200 Other methods (p < 0.01), whilst in the wild type HeLa and in the CRISPR-CAS9 KO1
205 there is no significant difference between the KNN and MCMC method. In the CRISPR-
26 CAS9 KO2 the MCMC method outperforms the SVM and KNN methods (p < 0.01). In the
207 interest of brevity, the remaining results for the t-tests can be found in tables in appendix

298 55
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Figure 5: Boxplots of the distributions of Macro F1 scores for all spatial proteomics datasets.
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209 The Macro-F1 scores do not take into account that whilst the TAGM model may mis-
a0 classify, it may do so with low confidence. We therefore additionally compute the quadratic
s loss, which allows us to make use of the probabilitic information provided by the classifiers.
302 'The lower the quadratic loss the closer the probabilitic predicition is to the true value. We
303 plot the distributions of quadratic losses for each classifier in figure 6. We observe highly
;04 consitent performance across all classifiers across all datasets. Again, we perform a pairwise
305 unpaired t-test with multiple testing correction.

306 We find that in 16 out of 19 datasets (all of those except HeLa Wild type, HeLa KO1
sz and HeLa KO2) the MCMC methods achieves the lowest quadratic loss at a signifiance
s level < 0.0001 over the SVM and KNN classifiers. In 6 out of these 16 datasets there is no
300 significant difference between the MCMC and the MAP methods. In the three Hirst datasets
a0 in which the MCMC did not acheive the lowest quadratic loss, the SVM outperformed.
s However, in two of these datasets (HeLa Wild type and KO1) the MAP method and SVM
sz classifier were not significantly different. In the Hirst KO2 dataset there were no signicant
a3 differences between the MAP and MCMC methods.

314 In the vast majority of cases, we observe that if the TAGM model, using the MCMC
sis - methodology, makes an incorrect classification it does so with lower confidence than the SVM
aie  classifier, the KNN classifier and the MAP based classifier, whilst if it is correct in its assertion
a1z it does so with greater confidence. Additionally, a fully Bayesian methodology provides us
s1s - with not only point estimates of classification probabilities but uncertainty quantification in
s10 these allocations, and we show in the following section that this provides deeper insights into
320 protein localisation.
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Boxplot of Quadratic Losses
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Figure 6: Boxplots of the distributions of Quadratic losses for all spatial proteomics datasets.
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321 Computing distributions of F1 scores and quadratic losses, which can only be done on the
322 marker proteins, can help us understand whether a classifier might have greater generalised
323 performance accuracy. However, we are interested in whether there is a large disagreement
124 between classifiers when prediction is performed on proteins for which we have no withheld
325 localisation information. This informs us about a systematic bias for a particular classifier
126 or whether a classifier ensemble could increase performance. To maintain a common set
327 of proteins we set thresholds for each classifier in turn and compare to the other classifier
1g  without thresholding. Firstly, we set a global threshold of 0.95 for the TAGM-MCMC and
120 then for these proteins plot a contingency table against the classification results from the
330 SVM. Secondly, we set a 5% FDR for the SVM and then for these proteins plot a contingency
;a1 table against the classification results from the TAGM-MCMC. We visualise the contingency
332 tables as heat plots in figure 7.
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Figure 7: A heatmap representation of a contingency table, where we compare assignment
results for proteins with unknown protein localisation using the TAGM-MCMC and SVM.
The scale ranges from 0 to 1 with values indicating the proportion of assigned proteins to
that sub-cellular location. Values along the diagonal represent agreement between classifiers
whilst other values represent disagreement. The coherence between the classifers is very
high. (a) In this case we set a probability threshold of 0.95 for the TAGM assignments with
no threshold for the SVM. (b) In this case we set a 5% FDR threshold for the SVM and no
threshold for the TAGM-MCMC.

333 In general, we see an extremely high level of coherence between the TAGM and the SVM,
;3¢ with almost all proteins predicted to concordant sub-cellular compartments. Figure 7 shows
a5 there is some disagreement between assigning proteins to the lysosome and plasma mem-
336 brane, to the cytosol and proteasome, and between the large and small ribosomal subunits.
;37 However, we have not used the uncertainty in the probabilitic assignments to produce the
a8 contingency tables above. In the next sections, we explore examples of proteins with uncer-
330 tainty in their posterior localisation probabilities. Selecting biologically relevant thresholds
a0 18 important for any classifier and exploring uncertainty is of vital importance when drawing
;a1 biological conclusions.
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s 2.3 Interpreting and exploring uncertainty

a3 Protein sub-cellular localisation can be uncertain for a number of reasons. Technical varia-
aa  tions and unknown biological novelty, such as yet uncharacterised functional compartments,
as  can be some of the reasons why a protein might have an unknown or uncertain localisation.
s Furthermore many proteins are known to reside in multiple locations with possibly different
w7 functional duties in each location (Jeffery, 2009). With these considerations in mind, it is
ag  pertinent to quantify the uncertainty in our allocation of proteins to organelles. This section
a0 explores several situations where proteins display uncertain localisation and considers the
350 biological factors that influence uncertainty. We later explore and visualise whole proteome
351 uncertainty quantification.

352 Exportin 5 (Q924C1) forms part of the micro-RNA export machinery of the nucleus,
353 transporting miRNA from the nucleus to the cytoplasm for further processing. It then
354 translocates back through the nuclear pore complex to return to the nucleus. Exportin
35 D can then continue to mediate further transport between nucleus and cytoplasm. The
6 SVM was unable to assign a localisation of Exportin 5, with its assignment falling below
57 a 5% FDR to wrongly assign this protein to the proteasome. This incorrect assertion by
s the SVM was confounded by the similarity between the cytosol and proteasome profiles.
10 Figure 8 demonstrates, according to the TAGM-MCMC model, that Exportin 5 most likely
360 localises to the cytosol but there is some uncertainty with this assignment. This uncertainty
;1 is reflected in possible assignment of Exportin 5 to the nucleus non-chromatin and this
362 uncertainty is a manifestation of the the fact that the function of this protein is to shuttle
363 between the cytosol and nucleus.

364 The Phenylalanine-tRNA ligase beta subunit protein (QO9WUA2) has an uncertain lo-
s calisation between the 40S ribosome and the nucleus non-chromatin demonstrated in figure
36 9. This protein was left unclassified by the SVM because its score fell below a 5% FDR
sz threshold to assign it to the 40S ribosome. Considering that this protein is involved in the
s acylation of transfer RNA (tRNA) with the amino acid phenylalanine to form tRNA-Phe to
60 be used in translation of proteins, it is therefore unsurprising that this protein’s steady state
a0 location is ribosomal. Whilst the SVM is unable to make an assignment, TAGM-MCMC is
an able to suggest an assignment and quantify our uncertainty.

372 Relatively little is known about the Dedicator of cytokinesis (DOCK) protein 6 (Q8VDRY),
;73 a guanine nucleotide exchange factor for CDC42 and RAC1 small GTPases. The SVM could
s mot assign localisation to the ER/Golgi, since its score fell below a 5% FDR. Furthermore,
a5 the TAGM-MCMC model assigned this DOCK 6 to the outlier component with posterior
sre  probability > 0.95. Figure 10 shows possible localisation to several components along the
sz secretory pathway. As an activator for CDC42 and RAC1 we may expect to see them with
sz similar localisation. CDC42, a plasma membrane associated protein, regulates cell cycle and
370 division and is found with many localisations. Furthermore RACI1, a small GTPase, also
;0 regulates many cellular processes and is found in many locations. Thus the steady-state
;1 distribution of DOCKG6 is unlikely to be in a single location, since its interaction partners
;2 are found in many locations. This justifies including an outlier component in our model, else
383 We may erroneously assign such proteins to a single location.
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Distribution of Subcellular Membership for Protein Q924C1

Profile of Protein Q924C1 with marker distributions
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Figure 8: Exportin 5 (Q924C1) showing localisation to the cytosol with some uncertainty
about association to the nucleus non-chromatin. (a) The violin plot shows uncertain lo-
calisation between these two sub-cellular localisations. (b) The quantitative profile of this
protein shows mixed profile between the profiles of the organelle markers. (¢) The density
plot shows a complex distribution over localisations for this protein. (d) The protein Q924C1
has steady state distribution between the cytosol and nucleus non-chromatin.
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Figure 9: Phenylalanine-tRNA ligase beta subunit protein TRIP12 (Q9WUA2) showing
localisation to the 40S Ribosome with some uncertainty about association to the nucleus
non-chromatin. (a) The violin plot shows uncertain localisation between these two sub-
cellular localisations. (b) The quantitative profile of this protein shows mixed profile between
the profiles of the organelle markers. (c¢) The density plot shows a complex distribution over
localisations for this protein. (d) The protein QIWUA2 has steady state distribution skewed
towards the 40S Ribosome and close to the nucleus non-chromatin.
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Distribution of Subcellular Membership for Protein Q8VDR9

Profile of Protein Q8VDR9 with marker distributions
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Figure 10: Q8VDRY showing localisation to the outlier component. (a) The violin plot shows
uncertain localisation between several sub-cellular niches. (b) The quantitative profile of this
protein shows mixed profile between the profiles of the organelle markers. (c¢) The density plot
shows a similar localisation probabilities for both the ER/Golgi and Extracellular matrix. (d)
The protein Q8VDRY has steady state distribution in the centre of the plot skewed toward
the secretory pathway; in particular, the ER/Golgi and Extracellular matrix components.
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e 2.4 Visualising whole sub-cellular proteome uncertainty

;s The advantage of the TAGM-MCMC model is its ability to provide proteome wide uncer-
;s tainy quantification. Regions where organelle assignments overlap are areas were uncertainty
se7 1S expected to be the greatest, as well as areas with no dominant component. We take an
;g8 information theoretic approach to summarising uncertainty in protein localisation by com-
30 puting the Shannon entropy (Shannon, 1948) for each Monte-Carlo sample ¢t = 1,..., T of the
300 posterior localisation probabilities of each protein

T

K
{H“) == pilog (pi?)} , (1)
k=1 t=1
301 where pg,i) denotes the posterior localisation probabilty of protein ¢ to component k at

302 iteration t. We then summarise this as a Monte-Carlo averaged Shannon entropy. The greater
303 the Shannon entropy the more uncertainty associated with the assignment of this protein.
304 The lower the Shannon entropy the lower the uncertainty associated with the assignment
305 Of this protein. In figure 11 panel (a), we visualise the Shannon entropy of each protein in
s a PCA plot, by scaling the pointers in accordance to this metric. We also note that while
37 localisation probability (of a protein to its most probable location) and the Shannon entropy
208 are correlated, figure 11 panel (c), it is not perfect. Thus it is important to use both the
a0 localisation probabilities and the uncertainty in these assignments to make conclusions.

400 Figure 11 demonstrates that the regions of highest uncertainty are those in regions where
w1 organelles assignments overlap. The conclusions from this plot are manifold. Firstly, many
w2 proteins are assigned unambiguously to sub-cellular localisations; that is, not only are some
a3 proteins assigned to organelles with high probability but also with low uncertainty. Secondly,
s there are well defined regions with high uncertainty, for example proteins in the secretory
ws pathway or proteins on the boundary between cytosol and proteasome. Finally, some or-
we ganelles, such as the mitochondria, are extremely well resolved. This observed uncertainty in
w7 the secretory pathway and cytosol could be attributed to the dynamic nature of these parts of
ss the cell with numerous examples of proteins that traffic in and out of these sub-cellular com-
wo partments as part of their biological role. Moreover, the organelles of the secretory pathway
s10 share similar and overlapping physical properties making their separation from one another
a1 using biochemical fractionation more challenging. Furthermore, there is a region located in
a2 the centre of the plot where proteins simultaneously have low probability of belonging to
a3 any organelle and high uncertainty in their localisation probability. This suggests that these
a4 proteins are poorly described by any single location. These proteins could belong to multiple
a5 locations or belong to undescribed sub-cellular compartments. The information displayed in
a1 these plots and the conclusion therein would be extremely challenging to obtain without the
sz use of Bayesian methodology.
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Figure 11: PCA plots of the mouse pluripotent embryonic stem cell data, where each point
represents a protein and is coloured to its (probabilistically-)assigned organelle. (a) In this
plot, the pointer is scaled to the Shannon entropy of this protein, with larger pointers
indicating greater uncertainty. (b) In this plot, the pointer is scaled to the probability of
that protein belonging to its assigned organelle. (¢) We plot the localisation probabilities
against the Shannon entropy with each protein.

22


https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282269; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

w 3 Dilscussion

s We have demonstrated that a Bayesian framework, based on Gaussian mixture models, for
s20 spatial proteomics can provide whole sub-cellular proteome uncertainty quantification on the
w21 assignment of proteins to organelles and such information is invaluable. Performing MAP
a2 inference using our generative model provides fast and straightforward approach, which is
223 vital for quality control and early data exploration. Full posterior inference using MCMC
24 provides not only point estimates of the posterior probability that a protein belongs to a
w25 particular sub-cellular niche, but uncertainty in this assignment. Then, this uncertainty can
w26 be summarised in several ways, including, but not limited to, equi-tailed credible intervals
w27 of the Monte-Carlo samples of posterior localisation probabilities. Posterior distributions
»2g for indivdual proteins can then be rigorously interrogated to shed light on their biological
229 mechanisms; such as, transport, signalling and interactions.

430 As well as the local uncertainty seen by exploring individual proteins, we further explored
i1 using a Monte-Carlo averaged Shannon entropy to visualise global uncertainty. Regions of
132 high uncertainty, as measured using this Shannon entropy, reflect highly dynamics regions
s33 of the sub-cellular environment. Hence, biologists can now explore uncertainty at different
s3a levels and then are able to make quantifiable conclusions and insights about their data.
135 Furthermore, our Bayesian model is interpretable and our inferences are fully conditional on
s36  our data, allowing them to be easily modified with changing experimental design.

437 In addition, we produced competitive classifier performance to the state-of-the-art clas-
a3g sifiers. We considered two traditional machine-learning methods: the SVM and KNN classi-
139 fiers; as well as two classifiers based on our model: a MAP classifier and classification based
a0 on MCMC. We compared all methods on 19 different spatial proteomics datasets, across
a1 four different organisms. When considering the macro-F1 score as a performance metric,
a2 no single classifier outperformed another across all datasets. However, using MCMC based
a3 inference our method significantly outperforms the SVM and KNN classifiers with respect
sa  to the quadratic loss in 16 our of 19 datasets. This allows us to have greater confidence
as in our conclusions when they are draw from our Bayesian inferences. Furthermore, using
ws MCMOC provides a wealth of additional information, and so becomes the method of choice
w7 for analysing spatial proteomics data.

448 Analysis of a hyper LOPIT experiment applied to mouse pluripotent embryonic stem cells
a9 demonstrated that the additional layer of information that our model provides is biologically
o relevant and provides further avenues for additional exploration. Moreover, applying our
i1 method to a biologically significant dataset now provides the scientific community with lo-
w52 calisation information on up to 4000 proteins for the mouse pluripotent stem cell proteome.
i3 Figure 12 demonstrates that from an initial input of roughly 1000 marker proteins with a
s priori known location and 4000 unknown proteins with unknown location, SVM and TAGM-
5. MCMC can provide rigorous localisation information on roughly 2000 proteins. However,
6 our methodology, by also considering uncertainty, allows us to obtain information on another
ss7 1000 proteins. Thus, we have augmented this dataset by providing uncertainty quantifica-
w8 tion on the localisation of proteins to their sub-cellular niches, which had been previously
ss0 unavailable. We note that our method is general enough to be applied to many MS-based
w0 spatial proteomics protocols including: LOPIT, hyperLOPIT, protein correlation profiling
w1 (PCP) (Foster et al., 2006), differential centrifugation approaches and spatio-temporal pro-
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w2 teomics methods. In our flexible software implementation, all hyperparameters for the priors
163 can be changed if users have precise priors they wish to specify.

Effect of Methodology on Protein Assignment

5000

Unknown Unknown Unknown

4000

<0.1
Shannon Entropy

3000

>0.99
Posterior Probability

Number of Proteins

2000 <5% FDR

1000

0 - - -

Input SVM TAGM
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Figure 12: The barplot demonstrates the effect of applying different methodologies on protein
assignment when applied the mouse pluripotent embryonic stem cell data. Roughly 2000
proteins are classified using either SVM and TAGM-MCMC; however, TAGM-MCMC can

draw additional conclusions about an extra 1000 proteins by quantifying uncertainty.

464 We have also provided a new set of visualisation methods to accompany our model, which
w5 allow us to easily interrogate our data. High quality visualisation tools are essential for
w6 rigorous quality control and sound biological conclusions. Our methods have been developed
w67 1n the R statistical programming language and we continue to contribute to the Bioconductor
ws project (Gentleman et al., 2004; Huber et al., 2015) with inclusion of our methods within
w0 the pRoloc package (>= 1.21.1) (Gatto et al., 2014b). The underlying source code used to
a0 generate this document is available at https://github.com/lgatto/2018-TAGM-paper.

a1 Currently, our model does not integrate localisation information from different data
a2 sources, nor does it explicitly model proteins with multiple localisation. However, one (of
sz many) biological explanations for the uncertainty that we model in the allocation probabil-
ara ities is provided by multiple localisation. Thus a protein for which it is uncertain to which
a5 two sub-cellular niches it is resident within it is perhaps resident of both niches. In further
wre - work, we plan to explicitly model such cases to deconvolute different sources of uncertainty.
w7 In addition, extensions to semi-supervised non-parametric methods are under consideration
s to detect novel sub-cellular niches. These are the subjects of further work.
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« 4 Model and methods

a0 We describe in this section the probabilistic model that uses the labelled data to associate
w1 un-annotated proteins to specific organelles or sub-cellular compartments.

« 4.1 Mixture models for spatial proteomic data

i3 We observe N protein profiles each of length L, corresponding to the number of quantified
ssa fractions along the gradient density, including combining replicates. For i = 1,... N, we
s denote the profile of the i-th protein by x; = [z1;,...,21;]. We suppose that there are
sss K known sub-cellular compartments to which each protein could localise (e.g. cytoplasm,
w7 endoplasmic reticulum, mitochondria, ...). Henceforth, we refer to these K sub-cellular
w8 compartments as components, and introduce component labels z;, so that z; = k if the i-
ss0  th protein localises to the k-th component. We denote by X the set of proteins whose
w0 component labels are known, and by X the set of unlabelled proteins. If protein ¢ is in X,
w1 we desire the probability that z; = k for each &k = 1,..., K. That is, for each unlabelled
w2 protein, we want the probability of belonging to each component (given a model and the
w3 observed data).

494 We initially model the distribution of profiles associated with proteins that localise to
a5 the k-th component as multivariate normal with mean vector p, and covariance matrix 3,
a6 SO that:

xilzi =k~ N(py, Zi)- (2)

a97 For any i, we define the prior probability of the i-th protein localising to the k-th com-
ws ponent to be p(z; = k) = m;.. Letting 6 = {p,, X1 H | denote the set of all component mean
w0 and covariance parameters, and w = {m; }* | denote the set of all mixture weights, it follows
soo  (from the law of total probability) that:

K
p(xil0,7) = i f (xil g, i), (3)
k=1
501 where f(x|u, ) denotes the density of the multivariate normal with mean vector pu and
so2 covariance matrix ¥ evaluated at x.
503 Equation (3) defines a generative probabilistic model known as a mizture model. Such

sos  models are useful for describing populations that are composed of a number of distinct ho-
sos mogeneous subpopulations. In our case, we model the full complement of measured proteins
sos as being composed of K subpopulations, each corresponding to a different organelle or sub-
sor  cellular compartment. The literature of mixture model applications to biology is rich and
sos some recent example include applications to retroviral integration sites (Kirk et al., 2016),
so0  genome-wide associations studies (Liley et al., 2017), single-cell transcriptomics (Lénnberg
si0 et al., 2017) and affinity purification MS proteomics (Choi et al., 2010).

511 Though some proteins are well described as belonging to a single component, many
si2 proteins multi-localise or might belong to uncharacterised organelles. In order to allow the
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s13 model to better account for these "outliers" that cannot be straightforwardly allocated to
s1a - any single known component, we extend it by introducing an additional "outlier component".
si5 Lo do this, we augment our model by introducing a further indicator latent variable ¢. Each
sie  protein x; is now described by an additional variable ¢;, with ¢; = 1 indicating that protein
sz X; belongs to a organelle derived component and ¢; = 0 indicating that protein x; is not well
sis8  described by these known components. This outlier component is modelled as a multivariate
si0 | distribution with degrees of freedom k, mean vector M, and scale matrix V. Thus equation
s20  (2) becomes

Xi|Zi = ku 9252 NN(IJ’kaEk)@T(’%»M7V)1_¢i' (4)

521 Further let g(x|xk, M, V) denote the density of the multivariate T-distribution so that
22 Equation (3) becomes:

=

p(xi|07 , ¢i> K, M7 V) = Z Tk (f(XZ“J’k:v Ek)¢ig(xi|’%7 M7 V)1—¢71) . (5)
k=1

523 For any ¢, we define the prior probability of the i-th protein belonging to the outlier
24 component as p(¢; = 0) = e.

525 We can then rewrite equation (5) in the following way:
K
p(Xi|67 ™, K, €, M, V) = Z Tk ((1 - E)(f(xi|“k7 Zk) + Eg(xi|ﬁv M, V)) ) (6)
k=1

526 Throughout we take k = 4, M as the global mean, and V as half the global variance of
s27 the data, including labelled and unlabelled proteins. The reason for formulating the model
28 as in equation (5) is because it leads to a flexible modelling framework. Furthermore, ¢ has
s20 an elegant model selection interpretation, since it decides whether x; is better modelled by
s30  the known components or the outlier component. It is important to note that f and g could
ss1 be replaced by many combinations of distributions and thus could be valuable in modelling
s32 other datasets. The choice of parameters for the multivariate T-distribution was decided
533 50 that it mimicked a multivariate normal component with the same mean and variance
s3a but with heavier tails to better capture dispersed proteins, which we refer to as outlier
s35 proteins throughout the text. The variance of the multivariate T-distribution is designed to
s3s  be large such that is relatively flat when compared with multivariate Gaussian distributions
537 which describe annotated components. Similar approaches for modelling outliers have been
s3s  explored in the literature and often the outlier term is considered constant or as a Poisson
s30  process, independent of the observation (Banfield and Raftery, 1993; Cooke et al., 2011;
sa0  Coretto and Hennig, 2016; Hennig, 2004).

s 4.2 Model ﬁtting

s2 We adopt a Bayesian approach toward inferring the unknown parameters, 8 = {p,, 3} |

sis ™ = {m}5_ |, and € of the mixture model presented in Equation (5). For m, we take a
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saa  conjugate symmetric Dirichlet prior with parameter (5, so that m,...,mx ~ Dirichlet(S);
sas and for the component-specific parameters p, and ¥, we take conjugate normal-inverse-
sas  Wishart (NIW) priors with parameters {p, Ao, 10, So}, so that:

b
pe, 2~ N (Mk’lto, )\—k) W (3o, So) - (7)
0
547 We also place a conjugate Beta prior on € with parameters v and v, so that € ~ B(u, v).

sas Allowing € to be random allows us to infer the number of proteins that are better described
sa0 by an outlier component rather than any known component.

550 The full model, which we henceforth refer to as a T-augmented Gaussian Mixture model
ss1. (TAGM), can then be summarised by the plate diagram shown in Figure 13.

] (o] %] [
\ /

Figure 13: Plate diagram for TAGM model. This diagram specifies the conditional indepen-
dencies and parameters in our model.

552 To perform inference for the parameters, we make use of both the labelled and unlabelled
ss3 data. For the labelled data X, since z; and ¢; are known for these proteins, we can update
ssa the parameters with their data analytically by exploiting conjugacy of the priors (see, for
55 example, Gelman et al., 1995). For the unlabelled data we do not have such information and
sse SO in the next sections we explain how to make inferences of the latent variables.

2 4.3 Prediction of localisation of unlabelled proteins

sss  Having obtained the posterior distribution of the model parameters analytically using, at
sso  first, the labelled data only, we wish to predict the component to which each of the unlabelled
seo proteins belongs. The probability that a protein belongs to any of the K known components,
se1  that is z; = k and ¢; = 1, is given by (see appendix 5.1 for derivations):

(1 — €) f(Xi| g, X))

p(¢i:1,ZZ':]€|XZ',0,7T7€,H,M,V>: 174
Zkz:l Tk (1 — €) f (3| g, 2i) + €9(x5 |k, M, V)

, (8)
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se2  whilst on the other hand,
mreg(Xilw, M, V)
Sy e (1= €) £ (%3], Si) + €g(xi]k, M, V)

563 Processing of the unlabelled data can be done by inferring mazimum a posteriori (MAP)
ses  estimates for the parameters. However, this approach fails to account for the uncertainty in
ses the parameters, thus we additionally explore inferring the distribution over these parameters.

p(oi =0,z =k[x;,0, 7, k¢, M, V) =

- (9)

se6 4.3.1 Maximum a posteriori prediction

ss7 We use the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) to find mai-
sss  mum a posteriori (MAP) estimates for the parameters (see, for example, Murphy, 2012). To
seo  specify the parameters of the prior distributions, we use a simple set of heuristics provided
s70 by Fraley and Raftery (2007). By defining the following quantities

aj, =p(z =k, ¢; = 1|x;), by, = p(z; = k, ¢; = 0|x;)
wi, =p(z; = klx;) = a, + bi

n K
ak:E Qif, & = E Qg
i=1 k=1

. K (10)
be = b, b= b
i=1 k=1
Ty = Z Wik,
i=1
571 we can compute
Ae =Ao + ag,
Ve =1 + ag,
Ry + A
mg :M’ (11)
Ak
_ _ Aoy , _ - _ _
St =81+ ; (21, — po)" (Zp — po) + Z air(x; — )" (2 — ).
k i=1
572 Then the parameters of the posterior mode are:
fl, =my,
. 1 (12)
Yy =———35."
N+ D27k
573 We note if @x; is a labelled protein then a;, = 1 and these parameters can be updated

sz without difficulty. The above equation constitutes a backbone of the E-step of the EM
s7s  algorithm, with the entire algorithm specified by the following summary:
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576 E-Step: Given the current parameters compute the values given by equations (10), with
s77 formulae provided in equations (8) and (9).

578 M-Step: Compute
B u+b—1

C(a+b)+ (utv)—2

s7o  and
e+ B — 1

TN+Y - K

n
_ 1
Ly — — E QX | -
A \ “—
=1

581 Finally, compute the MAP estimates given by equations (12). These estimates are then
ss2 used in the following iteration of the E-step.

583 Denoting by Q the expected value of the log-posterior and letting ¢ denote the current
ssa iteration of the EM algorithm, we iterate until |Q(6|60;) — Q(0]0,_1)] < ¢ for some pre-
ses  specified 0 > 0. Once we have found MAP estimates for the parameters @y4p, Tyap
sss and ey 4p we proceed to perform prediction. We plug the MAP parameter estimates into
ss7  Equation (8) in order to obtain the posterior probability of protein i localising to component
sss K, p(z; = k,¢ = 1X;, Opap, Tarap, €map, £, M, V). To make a final assignment, we may
ss0 allocate each protein according to the component that has maximal probability. A full
soo technical derivation of the EM algorithm can be found in the appendix (appendix 5.1).

Tk

sso as well as

so0 4.3.2 Uncertainty in the posterior localisation probabilities

se2 The MAP approach described above provides us with a probabilistic assignment, p(z; =
soa k.0 = 1|X;,0pap, Tpap, €xap, K, M, V), of each unlabelled protein to each component.
sos  However, it fails to account for the uncertainty in the parameters @, w and e. To address
sos this, we can sample parameters from the posterior distribution.

596 Let {8, 7w® ¢®1T_ be a set of T sampled values for the parameters 6, 7, ¢, drawn from
so7 the posterior.
598 The assignment probabilities can then be summarised by the Monte-Carlo average:
T
p(zi = ka ¢ = 1|X17 €, M7 V) ~ T_l Zp(zz - k? ¢ = ]-’X'u 0<t)7 7.‘.(15)7 e(t)a R, M7 V)
t=1
599 Other summaries of the assignment probabilities can be determined in the usual ways

s0 tO obtain, for example, interval-estimates. We summarise interval-estimates using the 95%
s01 equi-tailed interval, which is defined by the 0.025 and 0.975 quantiles of the distribution of
sz assignment probabilities, {p(z; = k, ¢ = 1|x;, 80, 7w® O M, V)IL,.

603 Sampling parameter values in our model requires us to compute the required conditional
so« probabilities and then a straightforward Gibbs sampler can be used to sample in turn from
sos these conditionals. In addition, we can bypass sampling the parameters by exploiting the
s0s conjugacy of our priors. By marginalising parameters in our model we can obtain an efficient
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sor collapsed Gibbs sampler and therefore only sample the component allocation probabilities
s and the outlier allocation probabilities. The derivations and required conditionals can be
s0o found in the appendix (appendix 5.2).

s0 4.4 Classifier assessment

s We compared the classification performance of the two above learning schemes to the K-
sz nearest neighbours (KNN) and the weighted support vector machine (SVM) classifiers.

613 The following schema was used to assess the classifier performance of all methods. We
s1«  split the marker sets for each experiment into a class-stratified training (80%) and test (20%)
e1s partitions, with the separation formed at random. The true classes of the test profiles are
s16 withheld from the classifier, whilst the algorithm is trained. The algorithm is then assessed
s17 on its ability to predict the classes of the proteins in the test partition for generalisation
s1s accuracy. How each classifier is trained is specific to that classifier. The KNN and SVM
s10 have hyperparameters optimised using 5-fold cross-validation. This 80/20 data stratification
s20 is performed 100 times in order to produce 100 sets of macro-F1 (He and Garcia, 2009) scores
22 and class specific F1 scores (Breckels et al., 2016b). The F1 score is the harmonic mean of
s22 the precision and recall, more precisely:

.. tp tp
precision = ——— recall = ———.
tp+ fp tp+ fn
623 tp denotes the number of true positives; fp the number of false positives and fn the

s2a number of false negatives. Thus

precision X recall

F1=2x — .
precision + recall

625 High Macro F1 scores indicates that marker proteins in the test dataset are consistently
s26 correctly assigned by the classifier. We note that accuracy alone is an inadequate measure
s27  Of performance, since it fails to quantify false positives.
628 However, a Bayesian Generative classifier produces probabilistic assignment of observa-
s20 tions to classes. Thus while the classifier may make an incorrect assignment it may do so
s30 with low probability. The F1 score is unforgiving in this situation and will not use this
e31 information. To measure this uncertainty, we introduce the quadratic loss which allows us
s32 10 compare probabilistic assignments (Gneiting and Raftery, 2007). For the SVM, a logis-
33 tic distribution is fitted using maximum likelihood estimation to the decision values of all
63« binary classifiers. Then, the membership probabilities for the multi-class classification is
35 calculated using quadratic optimisation. The logistic regression model assumes errors which
36 are distributed according to a centred Laplace distribution for the predictions, where maxi-
s37  mum likelihood estimation is used to estimate the scale parameter (Meyer et al., 2017). For
s3s the KNN classifier, we interpret the proportion of neighbours belonging to each class as a
630 non-parametric posterior probability. To avoid non-zero probabilities for classes we perform
ss0  Laplace smoothing; that is, the posterior allocation probability is given by

pla = M) = =g e

(13)
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641 where N, is the number of neighbours belonging to class k in the neighbourhood of z;,
sz C'is the number of classes, K is the number of nearest neighbours (optimised through 5-fold
sa3 cross validation) and dj, is the incidence rate of each class in the training set. Finally, a > 0
sas 1S the pseudo-count smoothing parameter. Motivated by a Bayesian interpretation of placing
sas a Jeffrey’s type Dirichlet prior over multinomial counts, we choose o = 0.5 (Hazimeh and
sas  Zhai, 2015; Valcarce et al., 2016; Manning et al., 2008). The quadratic loss is given by the
a7 following formula:

N
Q2 = ZH% —piH%a (14)

i=1
648 where ||-||2 is the Iy norm and ¢; is the true classification vector and p; is a vector of

sao predicted assignments to each class. It is useful to note that the corresponding risk function
es0 18 the mean square error (MSE), which is the expected value of the quadratic loss.
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« D Appendices

2 .1 Appendix 1: Derivation of EM algorithm for TAGM model

ss3 Lhis appendix give a formal derivation of the EM algorithm used for our model. Computa-
ssa tions are standard but useful and similar technical summaries can be found (for example see
ses Lraley and Raftery (2005); Murphy (2007)) We let H = { s, Ao, 10, So} denote the parame-
se6 ters of the normal-inverse-Wishart prior. More precisely:

>
RS (uk\uo, rﬁ) WS4l S0 . (15)

667 Furthermore, let 6, = {p;, Xx}, and let © = {x, M, V'} be the parameters of the global
ses /| distribution. We specify the following hierarchical Bayesian model.

7|3 ~ Dir(B),
0| H ~ NIW(H),

zi|m ~ cat(r),

e|u, v ~ B(u,v) (16)
¢ile ~ Ber(1l —¢)
Xi|zi = k,0,8,0 ~ N (x;|py, D) M=V T (x|, M, V) HE=0)
669 Since p(¢; = 1) = 1 — €, we can rewrite the last line of the model (16) as the following:
p(X|2i = k,0,9,0) = (1 — )N (x;|pop, Z) + €T (x|, M, V).
s7o 'The total joint probability is
p(0,6,X,2,®) =p(X, Z, 10,7, €)p(e|u, v)p(0| H)p(n|5)
n K
= TTTT (71 = N (ol ) @D T o, ML V) 0) FE 0
i=1 k=1
K
- (HNIW(H)) - Dir(f) - B(u,v).
k=1
(17)
671 Before we formally derive an EM algorithm for this model, we derive a few useful quan-

o2 tities. Let f(x|u, ) denote the density of the multivariate normal with mean vector g and
e3 covariance matrix ¥ evaluated at x and further let g(x|x, M, V) denote the density of the
ez multivariate T-distribution. We compute that

~
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P(¢i = 1>Xi\2¢ = /f)

(o = 1|z = k,x;) =

p(xilzi = k)
p<Xz"Z7L =k, ¢; = 1)P(¢i = Hzi = k)
— 18
PGl = k) (18)
B (1= f (il B0)
(1 =€) f(xilpay,, B) + eg(xi]m, M, V)
675 Likewise we see that,
Al N ef(x;| M, V)
PO = O = 52X = = Flag, 500 + gl ML V) (19)
676 Thus
p(oi = 1,2 = k[x;)
= p(@ = 1|Zi = k,Xi)P<Zi = k|Xz)
o . o ' P(Xifzz' = k)p<zi = k)
- p(¢z - 1|Zz - k’,Xl) p(Xz)
_ p<¢2 _ 1|Zz _ k,Xi) (p<xi|zi - k7¢1 — O>p<¢l - 0) +p(xi|zi — ka ¢’L - 1)]9(@51 - 1))])(21 — k)
p(x;)
(20)
677 and then substituting values leads to
(1 — ) f (x| oy Zie) me (1 — ) f (%l g, Bi) + eg(xils, ML V)
(1 =€) f(xil by, X)) + eg(xil i, MLV) SO (1 — €) f (4] gy, S) + €9 (x5, M, V)
(1 — €) f (x| g, Xi) .
Sy (1= €) f (il Si) + €9 (], M, V)
(21)
678 We also see that
(65 = 0. 2 = k|x;) = mreg(x; |k, M, V) (22)

> T (1= €)f (il b, B) + eg(xilw, ML V)
679 We can now formally derive the EM algorithm for this model. First, we compute the
sso expected value of the log-posterior function with respect to the conditional distribution of
ss1 the latent variable given the observations (under the current estimate of the parameters).
es2 For notational convenience we suppress the dependence on the parameters.
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Q(616)
:Ez,é\x,é[log])w; X, Z,®)]

=Y " B, 45 6ll08 p(0; %1, 21, ;)]
=1

n K 1
=33 bl = k6 = rlxi) log(L(Buxi, = = k. 61)) + log(p(w +Zlog (60,))

i=1 k=1 r=0

n K 1
:ZZ Zp(zl =k, ¢ = r|x;) log(p(xi, 2 = k, ¢i|0})) + log(p(m) + Zlog (01))

i=1 k=1 r=0

=Q'(616) + D(w, )
(23)
683 We note that the equation splits up into a likelihood term @’ plus the log prior D. The

ess coefficient of the first term in the equation above has already been derived and the other
e85 term is given by:

p(xi, 2z =k, ¢;)|0y)
= p(Xi, 9Ok, zi = k)p(z; = k|Ok)
= mep(Xi, 0i|Ok, 20 = k) (24)
= . (P(Xi[ Ok, 2 = K, 0:1)p(iOk, 2 = k)
= Tk (((1 — ) f(xil g, 2n))? (€g(xi|1, M, V))1_¢i) 7

686 where we used that ¢; was a binary random variable. Thus we see that
Q'(016)
K
=ZZ > p(zi = k, ¢ilxi) log(p(xi, 2 = k, 6:16%))
i=1 k=1 ®
n K
= Z Z Z =k, ¢ilx:) log(m (1 — ) f(xil g, Ba))? (eg (], M, V)1 7)
i=1 k=1 @
n K
= D> p(z =k dilx) (log(my) + dilog((1 — €) f (xil i, S)) + (1 = ¢3) log(eg(xil , M, V)
i=1 k=1 &
=(A4) +(B) +(C) + (D)

(25)

687 where
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(4) = 373" pe; = kfxi) log(m)

i=1 k=1
n K
(B) =YY p(zi =k, dulxi) (¢ log(1 — €) + (1 — ¢4) log(e))
i=1 k=1 & (26)
n K
(€)= Z Z Zp(zi =k, ¢i[x;) b log (f (Xi| g, X))
i=1 k=1 &
n K
(D) = Z Z ZP(% =k, ¢;|x;)(1 — &;) log(g(x;|x, M, V)).
i=1 k=1 &
688 Then again using that ¢; is binary we can make the following simplifications.
n K
(B) =3 plzi = ks = 1x:) log(1 — €) + p(z = k, ¢; = 0]x;) log(c)
i=1 k=1
n K
(C) =" p(zi =k, & = 1]x:) log (f (xil 1y, ) (27)
i=1 k=1
n K
(D) = Z ZP(%’ =k, ¢; = 0|x;) log(g(xi|x, M, V)).
i=1 k=1
689 Terms can now be maximised by considering terms independently because of linearity.

soo Note that the equations 8 and 9 are computed with respect to the current estimated values
so1 of the parameters. For convenience set the following notation

ik, p(zi =k,¢; = sz’)
bir :P(Zi =k, ¢; = O’Xi)
wik, =p(2; = k|x;) = ag, + b

n K
GkZE aikaa:E Qg
i=1 k=1
n K
b, = E bir, b = E br
i=1 k=1
n
Ty = E Wik
i=1

692 The maximisation step requires finding argmaang(Glé), this can be found for parameter
s separately for each linear term. To find €, we need only consider computing the maximisation
soa step from equation (B). First set e; = 1 —¢ and e5 = € and add the log prior term to equation
sos  (B). Thus, the required Lagrangian is

(28)

6

o
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L. = alog(e) + blog(ez) + (u — 1)log(ez) + (v — 1) log((e1) + A(e1 + €2 — 1) + constant.
(29)
s0s Solving this system leads to
u+b—1

S P Y Py gy (30)

607 To find the MAP estimate for 7, we examine equation (A) and add the log prior. Fur-
s0s thermore we must maximise 7 under the constraint that Zszl 7, = 1. The Lagrangian for
00 this constrained optimisation problem is the following,

n K K
L= Z Zwik log () — log(B(5)) + Z Br — 1) log(mg) + A (Z T — 1) (31)
k=1 k=1

i=1 k=1
700 The fixed point of this Lagrangian solves the required constrained optimisation problem
701 and B(f) denotes the Beta function with parameter (.

9L _ e Bl

= +A=0
87rk Tk Tk
K (32)
oL
O S w10
k=1
702 Solving this pair of equations yields
Te + B — 1
Ty = 33
NI -K %)
703 To find the posterior mode of the remaining parameters requires some work. First we

704 recall that the normal inverse-Wishart prior is proportional to:

K

vo+D+2 1 o _ A _
T ™ exp (—ger(si57) ) o (=30ar (S = o) =) ). 30
k=1

705 The required equation we are interested in is (C).

K
Z air log(f (xi| g, Xr))

i=1 k=1
K n n n
Dlog (2m) 1 1 _
= Z { Qjfp——(—— — B} Zaik log || — B Z%’ktr (Ekl(Xz‘ - Nk)T(Xi - Hk))}
k=1 i=1 k=1 i=1
- Dlog(2n) .
= > {-%% — 50k log |Xg] — —tr (E ;aik(xi — )" (% — Nk)) } :

(35)
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706 Now to derive the M-step objective we remove the constant terms and add on the log
707 prior. This leads to

K
Z {%M log [Zx| — %W‘ (212150‘1) - %t (E e — o) (1 — Mo))}
k=1
« , , B . ] (36)
+ ; {—5% log [Xg| — 5”’ (Zk ;aik(xi — )" (x5 — Mk)) } :
708 This can be rewritten as

K
vw+D+2+a 1 1o A

Z{ . k10g|2k|—§t7" (Eklso 1) — Shtr (Z l(ﬂk—ﬂo)T(Mk—Ho))}

k=1

2 2
« (37)
—l—Z{——tr( 1Zazk (xi—pk)>}.
k=1
700 Now define x; = (D", a;xX;)/a; and note the following algebraic rearrangements.
Zaik(xi - “’k)T<Xi — )
i=1
= anx!x; — pix; — x4 pf
i=1
S SITC T S (z s ) o+ vl
= Z AiRX; Xi — by, Xy — Xy Py + apy py,
i=1
_ - T T
Zalkx X; — apXp Xp, + ap(Xp — )" (X — )
i=1
= Z ain(xi — Xp) T (%5 — Kp) + an(Ze — )" (R — py)
i=1
710 This allows us to rewrite equation 37 as
K [y +D+2+a
kz_:{ 0 ; klo |Zk|——tr< <S +Za,k —Xk (Xz‘—ik)>)}

+ 2 {‘%“‘ (Zrt ol = 1) (1, — 110)) + an(Xe — )" (Xp — “k))}
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711 This can be written as:

3 {%D” log || — %tr (3180 Y) - %tr (S (et — ) " (. — mk)))} (40)

k=1
712 Where,
)\k :)\0 + ay
U =V + ap
apXp + A
my, = kXE ol (41)
Ak
— - oG, ,_ — . _ _
St =St + S Rk — )T (R — po) + Y aan(xi — %i)T (% — %)
Ak i=1
713 Thus the parameters of the posterior mode are:
fu, =my,
. 1 (42)
Np=—"7—25"
N+ D2k
714 To summarise the EM algorithm, we iterate between the two steps:
715 E-Step: Given the current parameters compute the values given by equations (28), with
716 formulas provided in equations (8) and (9).
77 M-Step: Compute
B u+b—1
C(a+b)+(utv) -2
7n1s  and
Te + e — 1
T = )
N+>Y B— K
79 as well as
1T
X = — QX
720 Compute the MAP estimates given by equations (42). These estimates are then used

721 in the following iteration of the E-step. Iterate until |Q(0]60;) — Q(0]6:—1)| < ¢ for some
722 pre-specified § > 0.
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= 5.2 Appendix 2: Derivation of collapsed Gibbs sampler for TAGM
724 model
725 'To derive the Gibbs sampler we write down all the conditional probabilities. Then, exploiting

726 conjugacy, we can marginalise parameters in the model. Recall the total joint probability is
727 the following:

i=1 k=1
K
: (HNIW(H)) - Dir(8) - B(u,v).
k=1
(43)
728 Suppose we know the hidden latent component allocations z; and outlier allocations ¢;.

720 Then we could sample from the a required normal distribution. The conditional probability
730 of the parameters given the allocations is given by:

n

p(ek’Xa Za ®7 971@7 ﬁ> u,v, H) X pO(Qk) H N(XZ“’I‘Im Ek)]l((z)i:l)‘ (44)
i=1
731 The prior is conjugate and so the posterior belongs to the same parametric family as the

732 prior, a NIW distribution, and so the parameters can be updated as follows:

nEXi + Aol
my =—————
Ak
>\k :)\0 + ng
Vg =V + Ny (45)
_ Ao, _
Se=So+ Y, (= %) = %) + S (% - ) (%~ o),
. k
i:z;=k,p;=1
733 where ny = |{x;|z; = k,¢; = 1}|. Now we write down the conditional of the component
724 allocations
p(ZZ = k|Xa Z—i; q)v Qa 57 u, v, H) (8 pO(zz = k|z—i7 B)p(xz|x—za Z_iy Rg = kv (1)7 H) (46)
735 The first term in this equation is

g PEmkdd)  nZ)9)
e =k D =28 ) o
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736 To calculate the numerator we proceed by marginalising over 7 as follows
W219) = [ el = L0 TR (48)
I(n+p8) . T(Br)
737 Hence, we arrive at the following probability:
polzi = klz—i, B) = n—tk\zl—;fil (49)
738 The conditional for the second term of 46 is more tricky. First note the following condi-

730 tional distributions

X7,|Zz - k7Xk’\i7 sz = 17 CI)7Z—i ~ N(Xl‘ek)
Xz"Zi = k,Xk\i, i =0,0,2_; ~ T(Xim’ M, V)v (50)
Xi’Zi = k7 Xk\ia (bia (I)7 A N(Xilek)ﬂ(d)i:l)T(XiL K, M? V>n(¢l:0)7

740 where we denote Xj\; as the observations associated with class k, besides x;. Now, we
71 first note that:

p(Xz’, Xk\z‘|<25z'7 P, H)

742 Thus, we find an equation for the numerator, using the fact that terms associated with
73 ¢; = 0 do not depend on k and thus can be absorbed into the normalising constant.

p(Xz|zz = kan\hgbia q)7H7 Z—i) = p<X1|Xk\lv¢Za <D7H) = (51)

Z(fh:l

744 This is the marginal likelihood of the data. Thus the ratio in 51 is the posterior predictive
75 which is given by the non-centred T-distribution with formula given by:

(L + M) Sk )
o )\k(vk—d—Fl) )

T(Uk—d+1,m

e Thus, we can compute the following:

P(Zi = k‘Xa Z_i, <D797ﬁ7U7717H) X pO(Zi = k|27¢,5)p(xi\xfi, 2, @, 2 =k, H)

Mg\ + Bk ( (1 + )\k>Sk
= ————T | xs|lvp —d+ 1, my, .
n+> fr—1 o U Nelvg —d+ 1)
(53)
747 It remains to compute the conditional for the ¢;. By first recalling that ¢; is binary we

s see that
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(il X, Z,0,8,u, 0, H) o< po(es) [ [ N (xl6:)" =D (x|, M, V) HO=0) (54)
=1

749 can be written as

p(¢l = 1|Xa Z79a ¢—i767uvva) OCpO(gbl = 1|¢—ivuav)p(xi|x—ia¢i = 1aZa0a®a6auvvaH)a
p(¢l = 0|X7 Z797 ¢—i7/87u7U7H) o8 p0(¢2 = Ol(ﬁ_i,u,v)p(Xi’X_i, ¢z = 07 2797 ®7/67u7v7 H)

(55)
750 First we need to compute a formula for po(¢;|¢_;, u,v). First we see that
p(®[u,v)
p ¢Z d)—i?uav —- T - 56
0( ’ ) p(¢_z|u’ U) ( )
751 The numerator can be computed by marginalising over e:
p(@lu0) = [ p(@lep(elu,v)de. (57

752 We denote > 1(¢; =1) =7 and > 1(¢; =1) =79 = 1 — 71. Then it is easy to see that

p(P|u,v) = /p(@]e)p(e\u,v)de

1
— 1_ T1+v—1 T()+U*1d
B(u,v) / (L=e)" ™" e € (58)
_ B(ro+u,m +v)
B B(u,v) '
753 Hence,
B(ro+u,m+v B(u,v
p(¢l = 1|¢—iau7v) = ( ° s ) ’ ( )
B(u,v) B(to+u, 7 +v—1) (59)
. T+ v — 1
n+ut+v—1
754 where n = 7 + 7. In general,
Tovi + 05Ul ™*
_ . A UL 60
P(¢i = sl—iyu,v) = = (60)
755 Now we return to computing p(x;|x_;, Z,0,¢; = 1, P, 5, u,v, H). First we see that
X|Z,0,0;, =1,0,6,u,v, H
p(Xi|X—i72707¢i:17(D7ﬁ7u7v7H): p( | : ’¢ ﬁuv ) (61)

p(x—i|2707¢i = 17®767U7U7H)'

41


https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282269; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

756 Thus if we integrate over the parameters, we would have a ratio of marginal likelihoods
757 giving the posterior predictive which is a non-centred T-distribution:

(1+ Ag)Sk
i —i72797 i:17(1)7 ) Uy 7H = —d 17 9 . 2
p(x;|x ¢ Byu,v, H) =T (vk + 1, my, (e —d+ 1) (62)

75 In the other case that ¢ = 0, we have that

p(i|lx_i, Z,0,0;, = 0,9, B, u,v, H) = T (z;|k, M, V). (63)

750 Thus we can compute:
p(¢l|Xa Z,Q,QS_Z‘,B,U,U,H) (64)
760 and sample from the required distribution. Thus, we can summarise the collapsed Gibbs

1 sampler as follows:

762 1. Update the priors with the labelled data

763 2. For the unlabelled observations, in turn, compute the probability of assigning to each
764 component

765 3. Sample a label according to this probability

766 4. Compute the probability of belonging to this class or the outlier component

767 5. Sample an indicator to a class specific component or the outlier component

768 6. If we assign to the class specific component update the class specific posterior distri-
769 bution with the statistics of this observation

770 7. Update other posteriors as appropriate.

m 8. Once all unlabelled observations have a been assigned, consider the observations se-
772 quentially, removing the statistics from the posteriors and then performing steps 2-7.
773 We repeat this process for all unlabelled observations.

774 9. repeat 7-8 until convergence of the Markov-chain.

775 The computational bottleneck in the algorithm is computing the posterior updates for

776 the parameters

_ MpXg + Ao
my =——H——M——
Ak
A =Ao +
Vp =1y + N (65)
_ o, Aomu _
Se=S+ D0 (%)= %)+ T K ) (X ),

i:zi=k,p;=1
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77z We first note that

Sk=So+ > xXIxi+ Noph o — Aeth (66)
i:zi=k,p;=1
778 Let us denote T = > ., ¢i:1xiTxi. Thus we can derive a set of iterative updates

779 to speed up computation when adding/removing statistics from clusters. More precisely,
750 indicating updated posterior parameters by a prime, if we remove statistics of observation ¢
1 from cluster k, we see that

/ _)\kmk — X

e W
L1
v, = — 1 (67)
T =T —x'x;
Sp =S+ T + Mopd g — Nyl mi.
782 Likewise if we add the statistics of observation ¢ to cluster k, we see that
ml, = DT+ s
A+ 1
e =M+ 1
v, = + 1 (68)
T =T +x!'x;

S]/C :S() + T, + )‘OIJ’g“’O — )\km;ch;C
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# 5.3 Appendix 3: Convergence diagnostics of EM algorithm

The log—posterior at each iteration of the EM algorithm
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Figure 14: Plot of the log-posterior at each iteration of the EM algorithm to demonstrate
monotonicity and convergence
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= 5.4 Appendix 4: Trace plots for assessing MCMC convergence
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Figure 15: Trace plots of the number of proteins allocated to the known components in each
of 6 parallel MCMC runs. Chain 4 is discarded because of lack of convergence. 600 samples
are retained from remaining chains and pooled.
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# 5.5  Appendix 5: F1 t-tests

SVM KNN MAP
KNN 2.7E-03
MAP 3.3E-02 3.4E-01
MCMC 3.4E-01 3.3E-02 2.3E-01

Table 2: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Drosophila dataset

SVM KNN MAP
KNN 1.2E-02
MAP 2.7E-01 1.5E-01
MCMC 4.9E-01 1.9E-03 1.1E-01

Table 3: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 1.0E+00
MAP 1.0E+00 1.0E400
MCMC  3.3E-01 6.0E-02 1.1E-05

Table 4: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.4E-35
MAP 3.3E-06 6.7E-21
MCMC 8.0E-59 3.2E-91 2.4E-70

Table 5: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Hel.a dataset

SVM KNN MAP
KNN 1.3E-02
MAP 4.3E-04 3.3E-09
MCMC 5.8E-01 3.5E-03 3.1E-03

Table 6: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the U2-OS dataset
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SVM KNN MAP
KNN 2.2E-08
MAP 1.0E-34 6.8E-14
MCMC T7.4E-05 5.3E-02 1.0E-20

Table 7: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN 5.3E-02
MAP 1.7E-23 7.9E-27
MCMC 9.1E-02 5.8E-04 1.8E-19

Table 8: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 1.3E-01
MAP 1.1E-55 1.1E-55
MCMC 1.0E-18 6.3E-22 2.0E-26

Table 9: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 9.6E-02
MAP 4.1E-07 1.1E-09
MCMC 2.8E-27 1.0E-28 6.3E-10

Table 10: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 24hpi dataset

SVM KNN MAP
KNN  6.6E-07
MAP 1.3E-10 2.0E-01
MCMC 1.6E-05 2.0E-01 6.2E-03

Table 11: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 48hpi dataset

47


https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282269; this version posted August 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

SVM KNN MAP
KNN 3.9E-03
MAP 9.5E-01 8.6E-03
MCMC 6.4E-02 3.0E-01 8.6E-02

Table 12: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 8.6E-03
MAP 1.1E-02 8.6E-01
MCMC 3.7E-06 1.6E-02 3.3E-02

Table 13: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 1.9E-23
MAP 1.4E-02 2.3E-34
MCMC 3.8E-07 1.6E-81 2.0E-02

Table 14: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 4.6E-01
MAP 2.6E-05 1.7E-04
MCMC 1.7E-04 1.3E-03 5.5E-01

Table 15: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 24hpi dataset

SVM KNN MAP
KNN 1.0E-02
MAP 4.6E-01 1.5E-03
MCMC 1.2E-02 T7.3E-01 1.5E-03

Table 16: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 48hpi dataset
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SVM KNN MAP
KNN 5.5E-02
MAP 9.5E-06 3.4E-02
MCMC 1.1E-01 6.2E-01 6.4E-03

Table 17: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 2.8E-01
MAP 2.6E-09 7.2E-08
MCMC 4.2E-10 5.6E-09 5.7E-01

Table 18: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 2.3E-04
MAP 7.1E-04 3.8E-10
MCMC 1.4E-01 5.7E-02 6.0E-05

Table 19: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 6.7E-06
MAP 6.3E-05 4.4E-01
MCMC 4.4E-01 6.7E-06 8.3E-05

Table 20: Adjusted P-values for pairwise T-tests for Macro F-1 score classifier evaluation on
the E14TG2a dataset
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# 5.6 Appendix 6: Quadratic loss t-tests

SVM KNN MAP
KNN 59E-13
MAP 1.1E-04 9.6E-124
MCMC 2.2E-23  3.3E-58 5.9E-171

Table 21: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Drosphila dataset

SVM KNN MAP
KNN 3.2E-08
MAP 1.7E-26 1.3E-128
MCMC 4.2E-13  8.8E-37 T7.0E-135

Table 22: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 5.5E-14
MAP 3.0E-25 6.3E-128
MCMC T7.4E-26 1.7E-129 1.6E-14

Table 23: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.2E-02
MAP 9.4E-07 7.4E-86
MCMC 5.5E-08 2.7E-89 2.4E-12

Table 24: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Hel.a dataset

SVM KNN MAP
KNN 6.8E-02
MAP 74E-17 1.1E-73
MCMC 1.4E-20 6.7E-81 8.3E-41

Table 25: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the U2-OS dataset
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SVM KNN MAP
KNN 2.3E-92
MAP 9.0E-13 2.4E-83
MCMC 6.6E-19 3.0E-81 1.1E-01

Table 26: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN  5.2E-97
MAP 1.4E-02 1.2E-90
MCMC 2.3E-09 7.0E-95 2.2E-02

Table 27: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 8.9E-93
MAP 3.1E-01 8.1E-91
MCMC 9.0E-06 1.5E-83 8.9E-05

Table 28: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 6.1E-13
MAP 1.4E-18 4.4E-81
MCMC 3.2E-18 T7.2E-77 5.9E-03

Table 29: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 24hpi dataset

SVM KNN MAP
KNN 6.1E-18
MAP 3.6E-24 22E-57
MCMC 1.4E-24 3.6E-61 3.6E-04

Table 30: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 48hpi dataset
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SVM KNN MAP
KNN 1.2E-15
MAP 4.5E-23 2.5E-89
MCMC 4.2E-23 5.1E-91 4.4E-01

Table 31: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 1.8E-13
MAP 14E-20 3.6E-126
MCMC 5.0E-20 1.5E-109 5.3E-07

Table 32: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 6.7E-14
MAP 1.0E-19 2.6E-45
MCMC 8.0E-20 2.4E-45 2.5E-02

Table 33: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 6.0E-22
MAP 2.8E-27 6.4E-53
MCMC 1.4E-27 1.5E-56 3.0E-03

Table 34: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 24hpi dataset

SVM KNN MAP
KNN 1.9E-26
MAP 1.3E-33 2.7E-84
MCMC 1.3E-33 2.7TE-84 6.0E-01

Table 35: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 48hpi dataset
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SVM KNN MAP
KNN 6.3E-20
MAP 1.9E-25 2.7E-57
MCMC 1.2E-25 3.4E-58 1.5E-02

Table 36: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 1.7E-25
MAP 9.3E-32 1.9E-56
MCMC 9.3E-32 1.2E-54 7.1E-01

Table 37: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 6.5E-25
MAP 5.3E-32 1.1E-71
MCMC T7.1E-32 8.4E-71 5.7E-02

Table 38: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 4.7E-04
MAP 4.7E-21 1.5E-103
MCMC 3.3E-12  1.8E-57 1.3E-137

Table 39: Adjusted P-values for pairwise T-tests for Quadratic Loss classifier evaluation on
the E14TG2a dataset
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# 9.7 Appendix 7: GO enrichment analysis figures
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Figure 16: Gene Ontology over representation analysis on outlier proteins - that is proteins
allocated with less than probability 0.95. We analyse the enrichment of terms in the cellular
compartment, biological process, and molecular function ontologies. We display the top 10
significant results in the dotplots.
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# 5.8 Appendix 8: Comparison of MCMC and MAP allocations
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Figure 17: A heatmap representation of a contingency table comparing allocation produced
by MCMC and MAP methods with posterior probability threshold set at 0.99 for both
methods. The scale ranges from 0 to 1 with values indicating the proportion of assigned
proteins to that sub-cellular location. Values along the diagonal represent agreement between
classifiers whilst other values represent disagreement. The allocations of proteins by both
methods are in strong agreement.
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