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Abstract1

Analysis of the spatial sub-cellular distribution of proteins is of vital importance2

to fully understand context speci�c protein function. Some proteins can be found3

with a single location within a cell, but up to half of proteins may reside in multiple4

locations, can dynamically re-localise, or reside within an unknown functional com-5

partment. These considerations lead to uncertainty in associating a protein to a single6

location. Currently, mass spectrometry (MS) based spatial proteomics relies on super-7

vised machine learning algorithms to assign proteins to sub-cellular locations based on8

common gradient pro�les. However, such methods fail to quantify uncertainty associ-9

ated with sub-cellular class assignment. Here we reformulate the framework on which10

we perform statistical analysis. We propose a Bayesian generative classi�er based on11

Gaussian mixture models to assign proteins probabilistically to sub-cellular niches, thus12

proteins have a probability distribution over sub-cellular locations, with Bayesian com-13

putation performed using the expectation-maximisation (EM) algorithm, as well as14

Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide uncer-15

tainty quanti�cation, thus adding a further layer to the analysis of spatial proteomics.16

Our framework is �exible, allowing many di�erent systems to be analysed and reveals17

new modelling opportunities for spatial proteomics. We �nd our methods perform18

competitively with current state-of-the art machine learning methods, whilst simulta-19

neously providing more information. We highlight several examples where classi�cation20

based on the support vector machine is unable to make any conclusions, while uncer-21

tainty quanti�cation using our approach provides biologically intriguing results. To our22

knowledge this is the �rst Bayesian model of MS-based spatial proteomics data.23

∗omc25@cam.ac.uk
†lg390@cam.ac.uk

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

omc25@cam.ac.uk
lg390@cam.ac.uk
https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


Author summary24

Sub-cellular localisation of proteins provides insights into sub-cellular biological processes.25

For a protein to carry out its intended function it must be localised to the correct sub-26

cellular environment, whether that be organelles, vesicles or any sub-cellular niche. Correct27

sub-cellular localisation ensures the biochemical conditions for the protein to carry out its28

molecular function are met, as well as being near its intended interaction partners. Therefore,29

mis-localisation of proteins alters cell biochemistry and can disrupt, for example, signalling30

pathways or inhibit the tra�cking of material around the cell. The sub-cellular distribution31

of proteins is complicated by proteins that can reside in multiple micro-environments, or32

those that move dynamically within the cell. Methods that predict protein sub-cellular33

localisation often fail to quantify the uncertainty that arises from the complex and dynamic34

nature of the sub-cellular environment. Here we present a Bayesian methodology to analyse35

protein sub-cellular localisation. We explicitly model our data and use Bayesian inference to36

quantify uncertainty in our predictions. We �nd our method is competitive with state-of-the-37

art machine learning methods and additionally provides uncertainty quanti�cation. We show38

that, with this additional information, we can make deeper insights into the fundamental39

biochemistry of the cell.40

1 Introduction41

Spatial proteomics is an interdisciplinary �eld studying the localisation of proteins on a large-42

scale. Where a protein is localised in a cell is a fundamental question, since a protein must be43

localised to its required sub-cellular compartment to interact with its binding partners (for44

example, proteins, nucleic acids, metabolic substrates) and carry out its function (Gibson,45

2009). Furthermore, mis-localisations of proteins are also critical to our understanding of46

biology, as aberrant protein localisation have been implicated in many pathologies (Olkkonen47

and Ikonen, 2006; Luheshi et al., 2008; Laurila and Vihinen, 2009; De Matteis and Luini,48

2011; Cody et al., 2013), including cancer (Kau et al., 2004; Rodriguez et al., 2004; Latorre49

et al., 2005; Shin et al., 2013) and obesity (Siljee et al., 2018).50

Sub-cellular localisations of proteins can be studied by high-throughput mass spectrom-51

etry (MS) (Gatto et al., 2010). MS-based spatial proteomics experiments enable us to con-52

�dently determine the sub-cellular localisation of thousands of proteins within in a cell53

(Christoforou et al., 2016), given the availability of rigorous data analysis and interpretation54

(Gatto et al., 2010).55

In a typical MS-based spatial proteomics experiment, cells �rst undergo lysis in a fashion56

which maintains the integrity of their organelles. The cell content is then separated using57

a variety of methods, such as density separation (Dunkley et al., 2006; Christoforou et al.,58

2016), di�erential centrifugation (Itzhak et al., 2016), free-�ow electrophoresis (Parsons et al.,59

2014), or a�nity puri�cation (Heard et al., 2015). In LOPIT (Dunkley et al., 2004, 2006;60

Sadowski et al., 2006) and hyperLOPIT (Christoforou et al., 2016; Mulvey et al., 2017),61

cell lysis is proceeded by separation of the content along a density gradient. Organelles62

and macro-molecular complexes are thus characterised by density-speci�c pro�les along the63

gradient (De Duve and Beaufay, 1981). Discrete fractions along the continuous density64
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gradient are then collected, and quantitative protein pro�les that match the organelle pro�les65

along the gradient, are measured using high accuracy mass spectrometry (Mulvey et al.,66

2017).67

The data are �rst visualised using principal component analysis (PCA) and known sub-68

cellular compartments are annotated (Breckels et al., 2016a). Supervised machine learning69

algorithms are then typically employed to create classi�ers that associate un-annotated pro-70

teins to speci�c organelles (Gatto et al., 2014a), as well as semi-supervised methods that de-71

tect novel sub-cellular clusters using both labelled and un-labelled features (Breckels et al.,72

2013). More recently, a state-of-the-art transfer learning (TL) algorithm has been shown73

to improve the quantity and reliability of sub-cellular protein assignments (Breckels et al.,74

2016b). Applications of such methods have led to organelle-speci�c localisation information75

of proteins in plants (Dunkley et al., 2006), Drosophila (Tan et al., 2009), chicken (Hall76

et al., 2009), human cell lines (Breckels et al., 2013), mouse pluripotent embryonic stem cells77

(Christoforou et al., 2016) and cancer cell lines (Thul et al., 2017).78

Classi�cation methods which have previously been used include partial least squares79

discriminate analysis (Dunkley et al., 2006), K nearest neighbours (Groen et al., 2014),80

random forests (Ohta et al., 2010), naive Bayes (Nikolovski et al., 2012), neural networks81

(Tardif et al., 2012) and the support vector machine amongst others (see Gatto et al. (2014a)82

for an overview). Although these methods have proved successful within the �eld they have83

limitations. Typically, such classi�ers output an assignment of proteins to discrete pre-84

annotated sub-cellular locations. However, it is important to note that half the proteome85

cannot be robustly assigned to a single sub-cellular location, which may be a manifestation of86

proteins in so far uncharaterised organelles or proteins that are distributed amongst multiple87

locations. These factors lead to uncertainty in the assignment of proteins to sub-cellular88

localisations, and thus quantifying this uncertainty is of vital importance (Kirk et al., 2015).89

To overcome the task of uncertainty quanti�cation, this article presents a probabilistic90

generative model for MS-based spatial proteomics data. Our model posits that each anno-91

tated sub-cellular niche can be modelled by a multivariate Gaussian distribution. Thus, the92

full complement of annotated proteins is captured by a mixture of multivariate Gaussian93

distributions. With the prior knowledge that many proteins are not captured by known94

sub-cellular niches, we augment our model with an outlier component. Outliers are often95

dispersed and thus this additional component is described by a heavy-tailed distribution:96

the multivariate Student's t-distribution, leading us to a T Augmented Gaussian Mixture97

model (TAGM).98

Given our model and proteins with known location, we can probabilistically infer the99

sub-cellular localisation of thousands of proteins. We can perform inference in our model by100

�ndingmaximum a posteriori (MAP) estimates of the parameters. This approach returns the101

probability of each protein belonging to each annotated sub-cellular niche. These posterior102

localisation probabilities can then be the basis for classi�cation. In a more sophisticated, fully103

Bayesian approach to uncertainty quanti�cation, we can additionally infer the entire posterior104

distribution of localisation probabilities. This allows the uncertainty in the parameters in our105

model to be re�ected in the posterior localisation probabilities. We perform this inference106

using Markov-chain Monte-Carlo methods; in particular, we provide an e�cient collapsed107

Gibbs sampler to perform inference.108

We perform a comprehensive comparison to state-of-the-art classi�ers to demonstrate109
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that our method is reliable across 19 di�erent spatial proteomics datasets and �nd that110

all classi�ers we considered perform competitively. To demonstrate the additional biological111

advantages our method can provide, we apply our method to a hyperLOPIT dataset on mouse112

pluripotent embryonic stem cells (Christoforou et al., 2016). We consider several examples113

of proteins that were unable to be assigned using traditional machine-learning classi�ers114

and show that, by considering the full posterior distribution of localisation probabilities,115

we can draw meaningful biological results and make powerful conclusions. We then turn116

our hand to a more global perspective, visualising uncertainty quanti�cation for over 5,000117

proteins, simultaneously. This approach reveals global patterns of protein organisation and118

their distribution across sub-cellular compartments.119

We make extensive use of the R programming language (R Core Team, 2017) and existing120

MS and proteomics packages (Gatto and Lilley, 2012; Gatto et al., 2014b). We are highly121

committed to creating open software tools for high quality processing, visualisation, and122

analysis of spatial proteomics data. We build upon an already extensive set of open software123

tools (Gatto et al., 2014b) as part of the Bioconductor project (Gentleman et al., 2004;124

Huber et al., 2015) and our methods are made available as part of this project.125

2 Results126

2.1 Application to mouse pluripotent embryonic stem cell data127

We model mouse pluripotent embryonic stem cell (E14TG2a) data (Christoforou et al.,128

2016), which contains quantitation data for 5032 proteins. This high-resolution map was129

produced using the hyperLOPIT work�ow (Mulvey et al., 2017), which uses a sophisticated130

sub-cellular fractionation scheme. This fractionation scheme is made possible by the use of131

Tandem Mass Tag (TMT) 10-plex and high accuracy TMT quanti�cation was facilitated132

by using synchronous precursor selection MS3 (SPS-MS3) (McAlister et al., 2014), which133

reduces well documented issues with ratio distortion in isobaric multiplexed quantitative134

proteomics (Ting et al., 2011). The data resolves 14 sub-cellular niches with an additional135

chromatin preparation resolving the nuclear chromatin and non-chromatin components. Two136

biological replicates of the data are concatenated, each with 10 fractions along the density137

gradient. We de�ned gold standard organelle markers as those with unambiguous single138

annotation (Gatto et al., 2014a). A protein marker list for the mouse pluripotent embryonic139

stem cells was manually curated using information from the UniProt database, the Gene140

Ontology and the literature, as was performed in Christoforou et al. (2016). The following141

section applies our statistical methodology to these data and we explore the results.142

2.1.1 Maximum a posteriori prediction of protein localisation143

This section applies the TAGM model to the mouse pluripotent embryonic stem cell data,144

by deriving MAP estimates for the model parameters and using these for prediction. Visual-145

isation is important for data analysis and exploration. A simple way to visualise our model146

is to project probability ellipses onto a PCA plot. Each ellipse contains a proportion of total147

probability of a particular multivariate Gaussian density. The outer ellipse contains 99% of148

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


the total probability whilst the middle and inner ellipses contain 95% and 90% of the prob-149

ability respectively. Visualising only the �rst two principal components can be misleading,150

since proteins can be more (or less) separated in subsequent principal components. We visu-151

alise the �rst two principal components along with the �rst and fourth principal components152

as a representative example. For the TAGM model, we derive probability ellipses from the153

MAP estimates of the parameters.154
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Figure 1: (a) PCA plot of the 1st and 2nd principal components for the curated marker
proteins of the mouse stem cell data. The organelles are, in general, well separated. Though
some organelles overlap, they are separated along di�erent principal components. The densi-
ties used to produce the ellipses are derived from the MAP estimates. (b) Marker resolution
along the 1st and 4th principal components show that the mitochondrion and peroxisome
markers are well resolved, despite overlapping in the 1st and 2nd component. We also see
that the ER/Golgi apparatus markers are better separated from the extracellular matrix
markers.

We now apply the statistical methodology described in section 4, to predict the local-155

isation of proteins to organelles and sub-cellular components. In brief, we produce MAP156

estimates of the parameters by using the expectation-maximisation algorithm, to form the157

basis of a Bayesian analysis (TAGM-MAP). We run the algorithm for 200 iterations and158

inspect a plot of the log-posterior to assess convergence of the algorithm (see appendix 5.3).159

We con�rm that the di�erence of the log posterior between the �nal two iterations is less160

than 10−6 and we conclude that our algorithm has converged. The results can be seen in161

�gure 2 (left), where the posterior localisation probability is visualised by scaling the pointer162

for each protein.163

Figure 2 (right) demonstrates a range of probabilistic assignments of proteins to organelles164

and sub-cellular niches. We additionally consider a full, sampling-based Bayesian analysis165

using Markov-chain Monte Carlo (MCMC) to characterise the uncertainty in the localisation166
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probabilities. In our case a collapsed Gibbs sampler is used to sample from the posterior of167

localisation probabilities. The remainder of this article focus on analysis of spatial proteomics168

in this fully Bayesian framework.169
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Figure 2: PCA plot of the protein quantitation data with colours representing the pre-
dicted class (5032 proteins) illustrating protein localisation preductions using TAGM-MAP
(left) and TAGM-MCMC (right) respectively. The pointer size of a protein is scaled to the
probability that particular protein was assigned to that organelle. Markers, proteins whose
localisations are already known, are automatically assigned a probability of 1 and the size
of the pointer re�ects this.

2.1.2 Uncertainty in the posterior localisation probabilities170

This section applies the TAGM model to the mouse pluripotent embryonic stem cell data, by171

considering the uncertainty in the parameters and exploring how this uncertainty propogates172

to the uncertainty in protein localisation prediction. In �gure 3 we visualise the model as173

before using the �rst two principal components along with the �rst and fourth principal174

component as a representive example. For the TAGM model, we derive probability ellipses175

from the expected value of the posterior normal-inverse-Wishart (NIW) distribution.176

We apply the statistical methodology detailed in section 4. We perform posterior com-177

putation in the Bayesian setting using standard MCMC methods (TAGM-MCMC). We run178

6 chains of our Gibbs sampler in parallel for 15, 000 iterations, throwing away the �rst 4, 000179

iterations for burn-in and retain every 10th sample for thinning. Thus 1,100 sample are180

retained from each chain. We then visualise the trace plots of our chains; in particular, we181

monitor the number of proteins allocated to the known components (see appendix 5.4). We182

discard 1 chain because we do not consider it to have converged. For the remaining 5 chains183

we further discard the �rst 500 samples by visual inspection. We then have 600 retained184
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samples from 5 separate chains. For further analysis, we compute the Gelman-Rubin conver-185

gence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998), which is computed186

as R̂ ≈ 1.05. Values of R̂ far from 1 indicate non-convergence and since our statistic is less187

than 1.1, we conclude our chains have converged. The remaining samples are then pooled to188

produce a single chain containing 3000 samples.189

We produce point estimates of the posterior localisation probabilities by summarising190

samples by their Monte-Carlo average. These summmaries are then visualised in �gure 2191

(right panel), where the pointer is scaled according to the localisation probabilities of the192

sub-cellular niche with the largest posterior probability. Monte-Carlo based inference also193

provides us with additional information; in particular, we can interrogate individual proteins194

and their posterior probability distribution over sub-cellular locations.195

Figure 4 illustrates one example of the importance of capturing uncertainty. The E3196

ubiquitin-protein ligase TRIP12 (G5E870) is an integral part of ubiquitin fusion degrada-197

tion pathway and is a protein of great interest in cancer because it regulates DNA repair198

pathways. The SVM failed to assign this protein to any location, with assigment to the 60S199

Ribosome falling below a 5% FDR and the MAP estimate assigned the protein to the nucleus200

non-chromatin with posterior probability < 0.95. The posterior distribution of localisation201

probabilities inferred from the TAGM-MCMC model, shown in �gure 4, demonstrates that202

this protein is most probably localised to the nucleus non-chromatin. However, there is some203

uncertainty about whether it localises to the 40S ribosome. This could suggest a dynamic204

role for this protein, which could be further explored with a more targeted experiment.205
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Figure 3: (a) Probability ellipses produced from using the MCMC method. The density is
the expected value from the NIW distribution. (b) Probability ellipses visualised along the
1st and 4th principal component also from the MCMC method.
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Figure 4: Violin plot revealing the posterior distribution of localisation probabilities of pro-
tein E3 ubiquitin-protein ligase (G5E870) to organelles and sub-cellular niches. The most
probable localisation is nucleus non-chromatin, however there is uncertainty associated with
this assignment.
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2.1.3 Enrichment analysis of outlier proteins206

In previous sections, we demonstrated that we can assign proteins probabilitically to sub-207

cellular compartment and quantify the uncertainty in these assignments. Some proteins208

cannot be well described as belonging to any known component and we model this using an209

additional T-distribution outlier component (see Section 4).210

It is biologically interesting to decipher what functional role proteins that are far away211

from known components play. We perform an over-representation analysis of gene ontology212

(GO) terms to asses the biological relevance of the outlier component (Boyle et al., 2004;213

Yu et al., 2012). We take 1111 proteins that were allocated to known components with214

probability less than 0.95. Note that these 1111 proteins exclude proteins that are likely215

to belong to a known location, but we are uncertain about which localisation. We then216

perform enrichment analysis against the set of all proteins quanti�ed in the hyperLOPIT217

experiment. We search against the cellular compartment, biological process and molecular218

function ontologies.219

Supplementary �gure 16 shows this outlier component is enriched for cytoskeletal part220

(p < 10−7) and microtuble cytoskeleton (p < 10−7). Cytoskeleton proteins are found221

throughout the cell and therefore we would expect them to be found in every fraction along222

the density gradient. We also observe enrichment for highly dynamic sub-cellular processes223

such as cell division (p < 10−6) and cell cycle processes (p < 10−6), again these proteins are224

unlikely to have steady-state locations within a single component. We also see enrichment for225

molecular functions such as tranferase activity (p < 0.005), another highly dynamic process.226

These observations justify including an additional outlier component in our mixture model.227
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2.2 Comparison with other classi�ers228

In this section, we assess the generalisation performance of our methods on several datasets,229

by computing performance metrics associated with each classi�er as detailed in section 4.4.230

We compare the SVM and KNN classi�ers alongside the MAP and MCMC approaches231

detailed in the methods section. We compute the F1 score and quadratic loss over 100232

rounds of strati�ed 5-fold cross-validation. The hyperparameter for the KNN algorithm, the233

number of nearest neighbours, is optimised via an additional internal 5-fold cross-validation234

and the hyperparameters for the SVM, sigma and cost, are also optimised via internal 5-fold235

cross validation (Hsu et al., 2010).236

We test our methods on the following datasets Drosophila (Tan et al., 2009), chicken237

(Hall et al., 2009), mouse pluripotent embryonic stem cells from Christoforou et al. (2016)238

and Breckels et al. (2016b), the human bone osteosarcoma epithelial (U2-OS) cell line (Thul239

et al., 2017), the HeLa cell line of Itzhak et al. (2016), the 3 HeLa cell lines from Hirst240

et al. (2018) and 10 primary �broblast datasets from Beltran et al. (2016). These datasets241

represent a great variety of spatial proteomics experiments across many di�erent work�ows.242

The two hyperLOPIT datasets on mouse pluripotent embryonic stem cells and the U2-OS243

cell line use TMT 10-plex labelling and contain the greatest number of proteins. Earlier LO-244

PIT experiments on the Drosophila and chicken use iTRAQ 4-plex labelling, whilst another245

LOPIT mouse pluripotent embryonic stem cell dataset uses iTRAQ 8-plex. The datasets246

of Itzhak et al. (2016) and Hirst et al. (2018) employ a di�erent methodology completely -247

seperating cellular content using di�erential centrifugation (as opposed to along a density-248

gradient). Furthermore, the methods use SILAC rather than iTRAQ or TMT for labelling.249

The experiments of Hirst et al. (2018) were designed to explore the functional role of AP-5 by250

coupling CRISPR-CAS9 knockouts with spatial proteomics methods. We analysed all three251

datasets from Hirst et al. (2018), which includes a wild type HeLa cell line as a control, as252

well as two CRISPR-CAS9 knockouts: AP5Z1-KO1 and AP5Z1-KO2 respectively.253

In addition, we analyse the spatio-temporal proteomics experiments of Beltran et al.254

(2016), which uses TMT-based MS quanti�cation. This experiment explored infecting pri-255

mary �broblasts with Human cytomegalovirus (HMCV) and the goal of these experiments256

was to explore the dynamic perturbation of host proteins during infection, as well as the sub-257

cellular localisation of viral proteins throught the HCMV life-cycle. They produced spatial258

maps at di�erent time points: 24, 48, 72, 96, 120 hours post infection (hpi), as well as mock259

maps at these same time points to serve as a control - this results in 10 di�erent spatial260

proteomics maps.261

In each case, a dataset speci�c marker list was used, which is curated speci�cally for262

the each cell line. We removed "high-curvature ER" annotations from the HeLa dataset263

(Itzhak et al., 2016), as well as the "ER Tubular", "Nuclear pore complex" and "Peroxisome"264

annotations from the HeLa CRISPR-CAS9 knockout experiments (Hirst et al., 2018) as265

there are too few proteins to correctly perform cross-validation. Table 1 summarises these266

datasets, including information about number of quanti�ed proteins, the work�ow used and267

the number of fractions.268

Figure 5 compares the Macro-F1 scores across the datasets for all classi�ers and demon-269

strates that no single classi�er consistently outperforms any other across all datasets, with270

results being highly consistent across all methods, as well as across datasets. We perform271
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MS-based Spatial Proteomics datasets
Cell line or or-
ganism

Work�ow Labelling Fractions
(including
combined
replicates)

Proteins

Drosophila LOPIT iTRAQ 4 888
Chicken DT40 LOPIT iTRAQ 16 1090
Mouse pluripo-
tent E14TG2a
stem cell

HyperLOPIT TMT 20 5032

HeLa (Itzhak et
al.)

Organeller Maps SILAC 30 3766

HeLa (Hirst et
al.)

Organeller Maps SILAC 15 2046

U2-OS cell line HyperLOPIT TMT 37 5020
Primary Fibrob-
last

Spatio-
Temporal
Methods

TMT 6 2196

E14TG2a
(Breckels et
al.)

LOPIT iTRAQ 8 2031

Table 1: Summary of spatial proteomics datasets used for comparisons

a pairwise unpaired t-test with multiple testing correction applied using the Benjamini-272

Höchberg procedure (Benjamini and Hochberg, 1995) to detect di�erences between classi�er273

performance.274

In the Drosophila dataset only the KNN algorithm outpeforms the SVM at signi�cance275

level of 0.01, whilst no other signi�cant di�erences exist between the classi�ers. In the chicken276

DT40 dataset only the MCMC method outperforms the KNN classi�er at signi�cance level277

of 0.01, no other signi�cant conclusion can be drawn. In the mouse dataset the MAP based278

method outperforms the MCMC method at signi�cance level of 0.01, no other signi�cant279

conclusions can be drawn. In the HeLa dataset all classi�ers are signi�cantly di�erent at280

a 0.01 level. These di�erences may exist because the dataset does not �t well with our281

modelling assumptions; in particular, this dataset set has been curated to have a class282

called "Large Protein Complex", which likely describes several sub-cellular structures. These283

might include nuclear compartments and ribosomes, as well as any cytosolic complex and284

large protein complex which pellets during the centrifugation conditions used to capture285

this mixed sub-cellular fraction. Moreover, the cytosolic and nuclear fraction were processed286

separately leading to possible imbalance with comparisions with other datasets. Thus, the287

large protein complex component might be better described as itself a mixture model or288

more detailed curation of these data may be required. We do not consider further modelling289

of this dataset in this manuscript. For the U2-OS all classi�ers are signi�cantly di�erent at a290

signi�cance level of 0.01 except for the SVM classi�er and the MCMC method, with the MAP291
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method performing the best. Figure 5 shows that for this dataset all classi�ers are performing292

extremely well. In the three Hirst datasets the MAP method signi�cantly outperforms all293

other methods (p < 0.01), whilst in the wild type HeLa and in the CRISPR-CAS9 KO1294

there is no signi�cant di�erence between the KNN and MCMC method. In the CRISPR-295

CAS9 KO2 the MCMC method outperforms the SVM and KNN methods (p < 0.01). In the296

interest of brevity, the remaining results for the t-tests can be found in tables in appendix297

5.5.298

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


●

● ●

●

●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●

●
●
●

●● ●
●

●●●

●●●

●

●●

● ● ●

●●●●

●

●●●●

●●
●
●●
●
●●●●●●●●●
●

●

● ●

● ●

●

●●●●
●

● ●●

●

●
●●

●●

●

●●

●

●● ●
●●●
●●●

●
●● ●

Primary Fibroblast Mock 72hpi Primary Fibroblast Mock 96hpi U2−OS

Primary Fibroblast HCMV 96hpi Primary Fibroblast Mock 120hpi Primary Fibroblast Mock 24hpi Primary Fibroblast Mock 48hpi

Primary Fibroblast HCMV 120hpi Primary Fibroblast HCMV 24hpi Primary Fibroblast HCMV 48hpi Primary Fibroblast HCMV 72hpi

HeLa KO1 (Hirst et al. 2018) HeLa KO2 (Hirst et al. 2018) HeLa Wild type (Hirst et al. 2018) Mouse

Chicken DT40 Drosophila E14TG2aR (Breckels et al. 2016) HeLa

SVM KNN MAP MCMC SVM KNN MAP MCMC SVM KNN MAP MCMC

SVM KNN MAP MCMC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Classifier

M
ac

ro
 F

1−
S

co
re

Boxplot of Macro F1 scores

Figure 5: Boxplots of the distributions of Macro F1 scores for all spatial proteomics datasets.
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The Macro-F1 scores do not take into account that whilst the TAGM model may mis-299

classify, it may do so with low con�dence. We therefore additionally compute the quadratic300

loss, which allows us to make use of the probabilitic information provided by the classi�ers.301

The lower the quadratic loss the closer the probabilitic predicition is to the true value. We302

plot the distributions of quadratic losses for each classi�er in �gure 6. We observe highly303

consitent performance across all classi�ers across all datasets. Again, we perform a pairwise304

unpaired t-test with multiple testing correction.305

We �nd that in 16 out of 19 datasets (all of those except HeLa Wild type, HeLa KO1306

and HeLa KO2) the MCMC methods achieves the lowest quadratic loss at a signi�ance307

level < 0.0001 over the SVM and KNN classi�ers. In 6 out of these 16 datasets there is no308

signi�cant di�erence between the MCMC and the MAP methods. In the three Hirst datasets309

in which the MCMC did not acheive the lowest quadratic loss, the SVM outperformed.310

However, in two of these datasets (HeLa Wild type and KO1) the MAP method and SVM311

classi�er were not signi�cantly di�erent. In the Hirst KO2 dataset there were no signicant312

di�erences between the MAP and MCMC methods.313

In the vast majority of cases, we observe that if the TAGM model, using the MCMC314

methodology, makes an incorrect classi�cation it does so with lower con�dence than the SVM315

classi�er, the KNN classi�er and the MAP based classi�er, whilst if it is correct in its assertion316

it does so with greater con�dence. Additionally, a fully Bayesian methodology provides us317

with not only point estimates of classi�cation probabilities but uncertainty quanti�cation in318

these allocations, and we show in the following section that this provides deeper insights into319

protein localisation.320
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Figure 6: Boxplots of the distributions of Quadratic losses for all spatial proteomics datasets.
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Computing distributions of F1 scores and quadratic losses, which can only be done on the321

marker proteins, can help us understand whether a classi�er might have greater generalised322

performance accuracy. However, we are interested in whether there is a large disagreement323

between classi�ers when prediction is performed on proteins for which we have no withheld324

localisation information. This informs us about a systematic bias for a particular classi�er325

or whether a classi�er ensemble could increase performance. To maintain a common set326

of proteins we set thresholds for each classi�er in turn and compare to the other classi�er327

without thresholding. Firstly, we set a global threshold of 0.95 for the TAGM-MCMC and328

then for these proteins plot a contingency table against the classi�cation results from the329

SVM. Secondly, we set a 5% FDR for the SVM and then for these proteins plot a contingency330

table against the classi�cation results from the TAGM-MCMC. We visualise the contingency331

tables as heat plots in �gure 7.332
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Figure 7: A heatmap representation of a contingency table, where we compare assignment
results for proteins with unknown protein localisation using the TAGM-MCMC and SVM.
The scale ranges from 0 to 1 with values indicating the proportion of assigned proteins to
that sub-cellular location. Values along the diagonal represent agreement between classi�ers
whilst other values represent disagreement. The coherence between the classifers is very
high. (a) In this case we set a probability threshold of 0.95 for the TAGM assignments with
no threshold for the SVM. (b) In this case we set a 5% FDR threshold for the SVM and no
threshold for the TAGM-MCMC.

In general, we see an extremely high level of coherence between the TAGM and the SVM,333

with almost all proteins predicted to concordant sub-cellular compartments. Figure 7 shows334

there is some disagreement between assigning proteins to the lysosome and plasma mem-335

brane, to the cytosol and proteasome, and between the large and small ribosomal subunits.336

However, we have not used the uncertainty in the probabilitic assignments to produce the337

contingency tables above. In the next sections, we explore examples of proteins with uncer-338

tainty in their posterior localisation probabilities. Selecting biologically relevant thresholds339

is important for any classi�er and exploring uncertainty is of vital importance when drawing340

biological conclusions.341
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2.3 Interpreting and exploring uncertainty342

Protein sub-cellular localisation can be uncertain for a number of reasons. Technical varia-343

tions and unknown biological novelty, such as yet uncharacterised functional compartments,344

can be some of the reasons why a protein might have an unknown or uncertain localisation.345

Furthermore many proteins are known to reside in multiple locations with possibly di�erent346

functional duties in each location (Je�ery, 2009). With these considerations in mind, it is347

pertinent to quantify the uncertainty in our allocation of proteins to organelles. This section348

explores several situations where proteins display uncertain localisation and considers the349

biological factors that in�uence uncertainty. We later explore and visualise whole proteome350

uncertainty quanti�cation.351

Exportin 5 (Q924C1) forms part of the micro-RNA export machinery of the nucleus,352

transporting miRNA from the nucleus to the cytoplasm for further processing. It then353

translocates back through the nuclear pore complex to return to the nucleus. Exportin354

5 can then continue to mediate further transport between nucleus and cytoplasm. The355

SVM was unable to assign a localisation of Exportin 5, with its assignment falling below356

a 5% FDR to wrongly assign this protein to the proteasome. This incorrect assertion by357

the SVM was confounded by the similarity between the cytosol and proteasome pro�les.358

Figure 8 demonstrates, according to the TAGM-MCMC model, that Exportin 5 most likely359

localises to the cytosol but there is some uncertainty with this assignment. This uncertainty360

is re�ected in possible assignment of Exportin 5 to the nucleus non-chromatin and this361

uncertainty is a manifestation of the the fact that the function of this protein is to shuttle362

between the cytosol and nucleus.363

The Phenylalanine�tRNA ligase beta subunit protein (Q9WUA2) has an uncertain lo-364

calisation between the 40S ribosome and the nucleus non-chromatin demonstrated in �gure365

9. This protein was left unclassi�ed by the SVM because its score fell below a 5% FDR366

threshold to assign it to the 40S ribosome. Considering that this protein is involved in the367

acylation of transfer RNA (tRNA) with the amino acid phenylalanine to form tRNA�Phe to368

be used in translation of proteins, it is therefore unsurprising that this protein's steady state369

location is ribosomal. Whilst the SVM is unable to make an assignment, TAGM-MCMC is370

able to suggest an assignment and quantify our uncertainty.371

Relatively little is known about the Dedicator of cytokinesis (DOCK) protein 6 (Q8VDR9),372

a guanine nucleotide exchange factor for CDC42 and RAC1 small GTPases. The SVM could373

not assign localisation to the ER/Golgi, since its score fell below a 5% FDR. Furthermore,374

the TAGM-MCMC model assigned this DOCK 6 to the outlier component with posterior375

probability > 0.95. Figure 10 shows possible localisation to several components along the376

secretory pathway. As an activator for CDC42 and RAC1 we may expect to see them with377

similar localisation. CDC42, a plasma membrane associated protein, regulates cell cycle and378

division and is found with many localisations. Furthermore RAC1, a small GTPase, also379

regulates many cellular processes and is found in many locations. Thus the steady-state380

distribution of DOCK6 is unlikely to be in a single location, since its interaction partners381

are found in many locations. This justi�es including an outlier component in our model, else382

we may erroneously assign such proteins to a single location.383

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


0.00

0.25

0.50

0.75

1.00
40

S
 R

ib
os

om
e

60
S

 R
ib

os
om

e

A
ct

in
 c

yt
os

ke
le

to
n

C
yt

os
ol

E
nd

op
la

sm
ic

 r
et

ic
ul

um
/G

ol
gi

 a
pp

ar
at

us

E
nd

os
om

e

E
xt

ra
ce

llu
la

r 
m

at
rix

Ly
so

so
m

e

M
ito

ch
on

dr
io

n

N
uc

le
us

 −
 C

hr
om

at
in

N
uc

le
us

 −
 N

on
−

ch
ro

m
at

in

P
er

ox
is

om
e

P
la

sm
a 

m
em

br
an

e

P
ro

te
as

om
e

M
em

be
rs

hi
p 

P
ro

ba
bi

lit
y

Distribution of Subcellular Membership for Protein Q924C1

(a)
X

12
6.

re
p1

X
12

6.
re

p2

X
12

7N
.r

ep
2

X
12

7N
.r

ep
1

X
12

7C
.r

ep
2

X
12

7C
.r

ep
1

X
12

8N
.r

ep
2

X
12

8N
.r

ep
1

X
12

8C
.r

ep
2

X
12

8C
.r

ep
1

X
12

9N
.r

ep
2

X
12

9N
.r

ep
1

X
12

9C
.r

ep
1

X
12

9C
.r

ep
2

X
13

0N
.r

ep
2

X
13

0N
.r

ep
1

X
13

1.
re

p2

X
13

1.
re

p1

X
13

0C
.r

ep
1

X
13

0C
.r

ep
2

Profile of Protein Q924C1 with marker distributions

Cytosol
Nucleus − Non−chromatin

(b)

0

10

20

30

0.00 0.25 0.50 0.75 1.00

Membership Probability

D
en

si
ty Organelle

Cytosol

Nucleus − Non−chromatin

Density plot of Subcellular Membership for Protein Q924C1

(c)

−6 −4 −2 0 2 4

−
4

−
2

0
2

4

PCA plot with Protein Q924C1 indicated

PC1 (48.41%)

P
C

2 
(2

3.
85

%
)

●

40S Ribosome
60S Ribosome
Actin cytoskeleton
Cytosol
Endoplasmic reticulum/Golgi apparatus
Endosome
Extracellular matrix
Lysosome
Mitochondrion
Nucleus − Chromatin
Nucleus − Non−chromatin
Peroxisome
Plasma membrane
Proteasome
unknown

● Q924C1

(d)

Figure 8: Exportin 5 (Q924C1) showing localisation to the cytosol with some uncertainty
about association to the nucleus non-chromatin. (a) The violin plot shows uncertain lo-
calisation between these two sub-cellular localisations. (b) The quantitative pro�le of this
protein shows mixed pro�le between the pro�les of the organelle markers. (c) The density
plot shows a complex distribution over localisations for this protein. (d) The protein Q924C1
has steady state distribution between the cytosol and nucleus non-chromatin.
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Figure 9: Phenylalanine-tRNA ligase beta subunit protein TRIP12 (Q9WUA2) showing
localisation to the 40S Ribosome with some uncertainty about association to the nucleus
non-chromatin. (a) The violin plot shows uncertain localisation between these two sub-
cellular localisations. (b) The quantitative pro�le of this protein shows mixed pro�le between
the pro�les of the organelle markers. (c) The density plot shows a complex distribution over
localisations for this protein. (d) The protein Q9WUA2 has steady state distribution skewed
towards the 40S Ribosome and close to the nucleus non-chromatin.
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Figure 10: Q8VDR9 showing localisation to the outlier component. (a) The violin plot shows
uncertain localisation between several sub-cellular niches. (b) The quantitative pro�le of this
protein shows mixed pro�le between the pro�les of the organelle markers. (c) The density plot
shows a similar localisation probabilities for both the ER/Golgi and Extracellular matrix. (d)
The protein Q8VDR9 has steady state distribution in the centre of the plot skewed toward
the secretory pathway; in particular, the ER/Golgi and Extracellular matrix components.
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2.4 Visualising whole sub-cellular proteome uncertainty384

The advantage of the TAGM-MCMC model is its ability to provide proteome wide uncer-385

tainy quanti�cation. Regions where organelle assignments overlap are areas were uncertainty386

is expected to be the greatest, as well as areas with no dominant component. We take an387

information theoretic approach to summarising uncertainty in protein localisation by com-388

puting the Shannon entropy (Shannon, 1948) for each Monte-Carlo sample t = 1, ..., T of the389

posterior localisation probabilities of each protein390 {
H(t) = −

K∑
k=1

p
(t)
ik log

(
p

(t)
ik

)}T

t=1

, (1)

where p
(t)
ik denotes the posterior localisation probabilty of protein i to component k at391

iteration t. We then summarise this as a Monte-Carlo averaged Shannon entropy. The greater392

the Shannon entropy the more uncertainty associated with the assignment of this protein.393

The lower the Shannon entropy the lower the uncertainty associated with the assignment394

of this protein. In �gure 11 panel (a), we visualise the Shannon entropy of each protein in395

a PCA plot, by scaling the pointers in accordance to this metric. We also note that while396

localisation probability (of a protein to its most probable location) and the Shannon entropy397

are correlated, �gure 11 panel (c), it is not perfect. Thus it is important to use both the398

localisation probabilities and the uncertainty in these assignments to make conclusions.399

Figure 11 demonstrates that the regions of highest uncertainty are those in regions where400

organelles assignments overlap. The conclusions from this plot are manifold. Firstly, many401

proteins are assigned unambiguously to sub-cellular localisations; that is, not only are some402

proteins assigned to organelles with high probability but also with low uncertainty. Secondly,403

there are well de�ned regions with high uncertainty, for example proteins in the secretory404

pathway or proteins on the boundary between cytosol and proteasome. Finally, some or-405

ganelles, such as the mitochondria, are extremely well resolved. This observed uncertainty in406

the secretory pathway and cytosol could be attributed to the dynamic nature of these parts of407

the cell with numerous examples of proteins that tra�c in and out of these sub-cellular com-408

partments as part of their biological role. Moreover, the organelles of the secretory pathway409

share similar and overlapping physical properties making their separation from one another410

using biochemical fractionation more challenging. Furthermore, there is a region located in411

the centre of the plot where proteins simultaneously have low probability of belonging to412

any organelle and high uncertainty in their localisation probability. This suggests that these413

proteins are poorly described by any single location. These proteins could belong to multiple414

locations or belong to undescribed sub-cellular compartments. The information displayed in415

these plots and the conclusion therein would be extremely challenging to obtain without the416

use of Bayesian methodology.417
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Figure 11: PCA plots of the mouse pluripotent embryonic stem cell data, where each point
represents a protein and is coloured to its (probabilistically-)assigned organelle. (a) In this
plot, the pointer is scaled to the Shannon entropy of this protein, with larger pointers
indicating greater uncertainty. (b) In this plot, the pointer is scaled to the probability of
that protein belonging to its assigned organelle. (c) We plot the localisation probabilities
against the Shannon entropy with each protein.
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3 Discussion418

We have demonstrated that a Bayesian framework, based on Gaussian mixture models, for419

spatial proteomics can provide whole sub-cellular proteome uncertainty quanti�cation on the420

assignment of proteins to organelles and such information is invaluable. Performing MAP421

inference using our generative model provides fast and straightforward approach, which is422

vital for quality control and early data exploration. Full posterior inference using MCMC423

provides not only point estimates of the posterior probability that a protein belongs to a424

particular sub-cellular niche, but uncertainty in this assignment. Then, this uncertainty can425

be summarised in several ways, including, but not limited to, equi-tailed credible intervals426

of the Monte-Carlo samples of posterior localisation probabilities. Posterior distributions427

for indivdual proteins can then be rigorously interrogated to shed light on their biological428

mechanisms; such as, transport, signalling and interactions.429

As well as the local uncertainty seen by exploring individual proteins, we further explored430

using a Monte-Carlo averaged Shannon entropy to visualise global uncertainty. Regions of431

high uncertainty, as measured using this Shannon entropy, re�ect highly dynamics regions432

of the sub-cellular environment. Hence, biologists can now explore uncertainty at di�erent433

levels and then are able to make quanti�able conclusions and insights about their data.434

Furthermore, our Bayesian model is interpretable and our inferences are fully conditional on435

our data, allowing them to be easily modi�ed with changing experimental design.436

In addition, we produced competitive classi�er performance to the state-of-the-art clas-437

si�ers. We considered two traditional machine-learning methods: the SVM and KNN classi-438

�ers; as well as two classi�ers based on our model: a MAP classi�er and classi�cation based439

on MCMC. We compared all methods on 19 di�erent spatial proteomics datasets, across440

four di�erent organisms. When considering the macro-F1 score as a performance metric,441

no single classi�er outperformed another across all datasets. However, using MCMC based442

inference our method signi�cantly outperforms the SVM and KNN classi�ers with respect443

to the quadratic loss in 16 our of 19 datasets. This allows us to have greater con�dence444

in our conclusions when they are draw from our Bayesian inferences. Furthermore, using445

MCMC provides a wealth of additional information, and so becomes the method of choice446

for analysing spatial proteomics data.447

Analysis of a hyperLOPIT experiment applied to mouse pluripotent embryonic stem cells448

demonstrated that the additional layer of information that our model provides is biologically449

relevant and provides further avenues for additional exploration. Moreover, applying our450

method to a biologically signi�cant dataset now provides the scienti�c community with lo-451

calisation information on up to 4000 proteins for the mouse pluripotent stem cell proteome.452

Figure 12 demonstrates that from an initial input of roughly 1000 marker proteins with a453

priori known location and 4000 unknown proteins with unknown location, SVM and TAGM-454

MCMC can provide rigorous localisation information on roughly 2000 proteins. However,455

our methodology, by also considering uncertainty, allows us to obtain information on another456

1000 proteins. Thus, we have augmented this dataset by providing uncertainty quanti�ca-457

tion on the localisation of proteins to their sub-cellular niches, which had been previously458

unavailable. We note that our method is general enough to be applied to many MS-based459

spatial proteomics protocols including: LOPIT, hyperLOPIT, protein correlation pro�ling460

(PCP) (Foster et al., 2006), di�erential centrifugation approaches and spatio-temporal pro-461
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teomics methods. In our �exible software implementation, all hyperparameters for the priors462

can be changed if users have precise priors they wish to specify.463
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Figure 12: The barplot demonstrates the e�ect of applying di�erent methodologies on protein
assignment when applied the mouse pluripotent embryonic stem cell data. Roughly 2000
proteins are classi�ed using either SVM and TAGM-MCMC; however, TAGM-MCMC can
draw additional conclusions about an extra 1000 proteins by quantifying uncertainty.

We have also provided a new set of visualisation methods to accompany our model, which464

allow us to easily interrogate our data. High quality visualisation tools are essential for465

rigorous quality control and sound biological conclusions. Our methods have been developed466

in the R statistical programming language and we continue to contribute to the Bioconductor467

project (Gentleman et al., 2004; Huber et al., 2015) with inclusion of our methods within468

the pRoloc package (>= 1.21.1) (Gatto et al., 2014b). The underlying source code used to469

generate this document is available at https://github.com/lgatto/2018-TAGM-paper.470

Currently, our model does not integrate localisation information from di�erent data471

sources, nor does it explicitly model proteins with multiple localisation. However, one (of472

many) biological explanations for the uncertainty that we model in the allocation probabil-473

ities is provided by multiple localisation. Thus a protein for which it is uncertain to which474

two sub-cellular niches it is resident within it is perhaps resident of both niches. In further475

work, we plan to explicitly model such cases to deconvolute di�erent sources of uncertainty.476

In addition, extensions to semi-supervised non-parametric methods are under consideration477

to detect novel sub-cellular niches. These are the subjects of further work.478
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4 Model and methods479

We describe in this section the probabilistic model that uses the labelled data to associate480

un-annotated proteins to speci�c organelles or sub-cellular compartments.481

4.1 Mixture models for spatial proteomic data482

We observe N protein pro�les each of length L, corresponding to the number of quanti�ed483

fractions along the gradient density, including combining replicates. For i = 1, . . . , N , we484

denote the pro�le of the i-th protein by xi = [x1i, . . . , xLi]. We suppose that there are485

K known sub-cellular compartments to which each protein could localise (e.g. cytoplasm,486

endoplasmic reticulum, mitochondria, . . . ). Henceforth, we refer to these K sub-cellular487

compartments as components, and introduce component labels zi, so that zi = k if the i-488

th protein localises to the k-th component. We denote by XL the set of proteins whose489

component labels are known, and by XU the set of unlabelled proteins. If protein i is in XU ,490

we desire the probability that zi = k for each k = 1, . . . , K. That is, for each unlabelled491

protein, we want the probability of belonging to each component (given a model and the492

observed data).493

We initially model the distribution of pro�les associated with proteins that localise to494

the k-th component as multivariate normal with mean vector µk and covariance matrix Σk,495

so that:496

xi|zi = k ∼ N (µk,Σk). (2)

For any i, we de�ne the prior probability of the i-th protein localising to the k-th com-497

ponent to be p(zi = k) = πk. Letting θ = {µk,Σk}Kk=1 denote the set of all component mean498

and covariance parameters, and π = {πk}Kk=1 denote the set of all mixture weights, it follows499

(from the law of total probability) that:500

p(xi|θ,π) =
K∑
k=1

πkf(xi|µk,Σk), (3)

where f(x|µ,Σ) denotes the density of the multivariate normal with mean vector µ and501

covariance matrix Σ evaluated at x.502

Equation (3) de�nes a generative probabilistic model known as a mixture model. Such503

models are useful for describing populations that are composed of a number of distinct ho-504

mogeneous subpopulations. In our case, we model the full complement of measured proteins505

as being composed of K subpopulations, each corresponding to a di�erent organelle or sub-506

cellular compartment. The literature of mixture model applications to biology is rich and507

some recent example include applications to retroviral integration sites (Kirk et al., 2016),508

genome-wide associations studies (Liley et al., 2017), single-cell transcriptomics (Lönnberg509

et al., 2017) and a�nity puri�cation MS proteomics (Choi et al., 2010).510

Though some proteins are well described as belonging to a single component, many511

proteins multi-localise or might belong to uncharacterised organelles. In order to allow the512
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model to better account for these "outliers" that cannot be straightforwardly allocated to513

any single known component, we extend it by introducing an additional "outlier component".514

To do this, we augment our model by introducing a further indicator latent variable φ. Each515

protein xi is now described by an additional variable φi, with φi = 1 indicating that protein516

xi belongs to a organelle derived component and φi = 0 indicating that protein xi is not well517

described by these known components. This outlier component is modelled as a multivariate518

T distribution with degrees of freedom κ, mean vectorM, and scale matrix V . Thus equation519

(2) becomes520

xi|zi = k, φi ∼ N (µk,Σk)
φiT (κ,M , V )1−φi . (4)

Further let g(x|κ,M,V) denote the density of the multivariate T-distribution so that521

Equation (3) becomes:522

p(xi|θ,π, φi, κ,M, V ) =
K∑
k=1

πk
(
f(xi|µk,Σk)

φig(xi|κ,M , V )1−φi
)
. (5)

For any i, we de�ne the prior probability of the i-th protein belonging to the outlier523

component as p(φi = 0) = ε.524

We can then rewrite equation (5) in the following way:525

p(xi|θ,π, κ, ε,M, V ) =
K∑
k=1

πk ((1− ε)(f(xi|µk,Σk) + εg(xi|κ,M , V )) , (6)

Throughout we take κ = 4, M as the global mean, and V as half the global variance of526

the data, including labelled and unlabelled proteins. The reason for formulating the model527

as in equation (5) is because it leads to a �exible modelling framework. Furthermore, φ has528

an elegant model selection interpretation, since it decides whether xi is better modelled by529

the known components or the outlier component. It is important to note that f and g could530

be replaced by many combinations of distributions and thus could be valuable in modelling531

other datasets. The choice of parameters for the multivariate T-distribution was decided532

so that it mimicked a multivariate normal component with the same mean and variance533

but with heavier tails to better capture dispersed proteins, which we refer to as outlier534

proteins throughout the text. The variance of the multivariate T-distribution is designed to535

be large such that is relatively �at when compared with multivariate Gaussian distributions536

which describe annotated components. Similar approaches for modelling outliers have been537

explored in the literature and often the outlier term is considered constant or as a Poisson538

process, independent of the observation (Ban�eld and Raftery, 1993; Cooke et al., 2011;539

Coretto and Hennig, 2016; Hennig, 2004).540

4.2 Model �tting541

We adopt a Bayesian approach toward inferring the unknown parameters, θ = {µk,Σk}Kk=1,542

π = {πk}Kk=1, and ε of the mixture model presented in Equation (5). For π, we take a543
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conjugate symmetric Dirichlet prior with parameter β, so that π1, . . . , πK ∼ Dirichlet(β);544

and for the component-speci�c parameters µk and Σk we take conjugate normal-inverse-545

Wishart (NIW) priors with parameters {µ0, λ0, ν0, S0}, so that:546

µk,Σk ∼ N
(
µk|µ0,

Σk

λ0

)
IW (Σk|ν0, S0) . (7)

We also place a conjugate Beta prior on ε with parameters u and v, so that ε ∼ B(u, v).547

Allowing ε to be random allows us to infer the number of proteins that are better described548

by an outlier component rather than any known component.549

The full model, which we henceforth refer to as a T-augmented Gaussian Mixture model550

(TAGM), can then be summarised by the plate diagram shown in Figure 13.551

xi

zi

φi

π

ε

M

V

[K]

βu, v µk

[L]

Σ2
k

[LxL]

µ0 λ0 ν0 s0

N

K

Figure 13: Plate diagram for TAGM model. This diagram speci�es the conditional indepen-
dencies and parameters in our model.

To perform inference for the parameters, we make use of both the labelled and unlabelled552

data. For the labelled data XL, since zi and φi are known for these proteins, we can update553

the parameters with their data analytically by exploiting conjugacy of the priors (see, for554

example, Gelman et al., 1995). For the unlabelled data we do not have such information and555

so in the next sections we explain how to make inferences of the latent variables.556

4.3 Prediction of localisation of unlabelled proteins557

Having obtained the posterior distribution of the model parameters analytically using, at558

�rst, the labelled data only, we wish to predict the component to which each of the unlabelled559

proteins belongs. The probability that a protein belongs to any of the K known components,560

that is zi = k and φi = 1, is given by (see appendix 5.1 for derivations):561

p(φi = 1, zi = k|xi,θ,π, ε, κ,M, V ) =
πk(1− ε)f(xi|µk,Σk)∑K

k=1 πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))
, (8)
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whilst on the other hand,562

p(φi = 0, zi = k|xi,θ,π, κ, ε,M, V ) =
πkεg(xi|κ,M, V )∑K

k=1 πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))
. (9)

Processing of the unlabelled data can be done by inferring maximum a posteriori (MAP)563

estimates for the parameters. However, this approach fails to account for the uncertainty in564

the parameters, thus we additionally explore inferring the distribution over these parameters.565

4.3.1 Maximum a posteriori prediction566

We use the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) to �nd maxi-567

mum a posteriori (MAP) estimates for the parameters (see, for example, Murphy, 2012). To568

specify the parameters of the prior distributions, we use a simple set of heuristics provided569

by Fraley and Raftery (2007). By de�ning the following quantities570

aik =p(zi = k, φi = 1|xi), bik = p(zi = k, φi = 0|xi)
wik =p(zi = k|xi) = aik + bik

ak =
n∑
i=1

aik, a =
K∑
k=1

ak

bk =
n∑
i=1

bik, b =
K∑
k=1

bk

rk =
n∑
i=1

wik,

(10)

we can compute571

λk =λ0 + ak,

νk =ν0 + ak,

mk =
akx̄k + λ0µ0

λk
,

S−1
k =S−1

0 +
λ0ak
λk

(x̄k − µ0)T (x̄k − µ0) +
n∑
i=1

aik(xi − x̄k)T (xi − x̄k).

(11)

Then the parameters of the posterior mode are:572

µ̂k =mk

Σ̂k =
1

νk +D + 2
S−1
k .

(12)

We note if xi is a labelled protein then aik = 1 and these parameters can be updated573

without di�culty. The above equation constitutes a backbone of the E-step of the EM574

algorithm, with the entire algorithm speci�ed by the following summary:575
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E-Step: Given the current parameters compute the values given by equations (10), with576

formulae provided in equations (8) and (9).577

M-Step: Compute578

ε =
u+ b− 1

(a+ b) + (u+ v)− 2
,

and579

πk =
rk + βk − 1

N +
∑
βk −K

,

as well as580

x̄k =
1

ak

(
n∑
i=i

aikxi

)
.

Finally, compute the MAP estimates given by equations (12). These estimates are then581

used in the following iteration of the E-step.582

Denoting by Q the expected value of the log-posterior and letting t denote the current583

iteration of the EM algorithm, we iterate until |Q(θ|θt) − Q(θ|θt−1)| < δ for some pre-584

speci�ed δ > 0. Once we have found MAP estimates for the parameters θMAP , πMAP585

and εMAP we proceed to perform prediction. We plug the MAP parameter estimates into586

Equation (8) in order to obtain the posterior probability of protein i localising to component587

k, p(zi = k, φ = 1|xi,θMAP ,πMAP , εMAP , κ,M, V ). To make a �nal assignment, we may588

allocate each protein according to the component that has maximal probability. A full589

technical derivation of the EM algorithm can be found in the appendix (appendix 5.1).590

4.3.2 Uncertainty in the posterior localisation probabilities591

The MAP approach described above provides us with a probabilistic assignment, p(zi =592

k, φ = 1|xi,θMAP ,πMAP , εMAP , κ,M, V ), of each unlabelled protein to each component.593

However, it fails to account for the uncertainty in the parameters θ, π and ε. To address594

this, we can sample parameters from the posterior distribution.595

Let {θ(t),π(t), ε(t)}Tt=1 be a set of T sampled values for the parameters θ, π, ε, drawn from596

the posterior.597

The assignment probabilities can then be summarised by the Monte-Carlo average:598

p(zi = k, φ = 1|xi, ε,M, V ) ≈ T−1

T∑
t=1

p(zi = k, φ = 1|xi,θ(t),π(t), ε(t), κ,M, V ).

Other summaries of the assignment probabilities can be determined in the usual ways599

to obtain, for example, interval-estimates. We summarise interval-estimates using the 95%600

equi-tailed interval, which is de�ned by the 0.025 and 0.975 quantiles of the distribution of601

assignment probabilities, {p(zi = k, φ = 1|xi,θ(t),π(t), ε(t),M, V )}Tt=1.602

Sampling parameter values in our model requires us to compute the required conditional603

probabilities and then a straightforward Gibbs sampler can be used to sample in turn from604

these conditionals. In addition, we can bypass sampling the parameters by exploiting the605

conjugacy of our priors. By marginalising parameters in our model we can obtain an e�cient606
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collapsed Gibbs sampler and therefore only sample the component allocation probabilities607

and the outlier allocation probabilities. The derivations and required conditionals can be608

found in the appendix (appendix 5.2).609

4.4 Classi�er assessment610

We compared the classi�cation performance of the two above learning schemes to the K-611

nearest neighbours (KNN) and the weighted support vector machine (SVM) classi�ers.612

The following schema was used to assess the classi�er performance of all methods. We613

split the marker sets for each experiment into a class-strati�ed training (80%) and test (20%)614

partitions, with the separation formed at random. The true classes of the test pro�les are615

withheld from the classi�er, whilst the algorithm is trained. The algorithm is then assessed616

on its ability to predict the classes of the proteins in the test partition for generalisation617

accuracy. How each classi�er is trained is speci�c to that classi�er. The KNN and SVM618

have hyperparameters optimised using 5-fold cross-validation. This 80/20 data strati�cation619

is performed 100 times in order to produce 100 sets of macro-F1 (He and Garcia, 2009) scores620

and class speci�c F1 scores (Breckels et al., 2016b). The F1 score is the harmonic mean of621

the precision and recall, more precisely:622

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
.

tp denotes the number of true positives; fp the number of false positives and fn the623

number of false negatives. Thus624

F1 = 2× precision× recall

precision + recall
.

High Macro F1 scores indicates that marker proteins in the test dataset are consistently625

correctly assigned by the classi�er. We note that accuracy alone is an inadequate measure626

of performance, since it fails to quantify false positives.627

However, a Bayesian Generative classi�er produces probabilistic assignment of observa-628

tions to classes. Thus while the classi�er may make an incorrect assignment it may do so629

with low probability. The F1 score is unforgiving in this situation and will not use this630

information. To measure this uncertainty, we introduce the quadratic loss which allows us631

to compare probabilistic assignments (Gneiting and Raftery, 2007). For the SVM, a logis-632

tic distribution is �tted using maximum likelihood estimation to the decision values of all633

binary classi�ers. Then, the membership probabilities for the multi-class classi�cation is634

calculated using quadratic optimisation. The logistic regression model assumes errors which635

are distributed according to a centred Laplace distribution for the predictions, where maxi-636

mum likelihood estimation is used to estimate the scale parameter (Meyer et al., 2017). For637

the KNN classi�er, we interpret the proportion of neighbours belonging to each class as a638

non-parametric posterior probability. To avoid non-zero probabilities for classes we perform639

Laplace smoothing; that is, the posterior allocation probability is given by640

p(zi = k|xi) =
Nik + αdkC

K + αC
, (13)
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where Nik is the number of neighbours belonging to class k in the neighbourhood of xi,641

C is the number of classes, K is the number of nearest neighbours (optimised through 5-fold642

cross validation) and dk is the incidence rate of each class in the training set. Finally, α > 0643

is the pseudo-count smoothing parameter. Motivated by a Bayesian interpretation of placing644

a Je�rey's type Dirichlet prior over multinomial counts, we choose α = 0.5 (Hazimeh and645

Zhai, 2015; Valcarce et al., 2016; Manning et al., 2008). The quadratic loss is given by the646

following formula:647

Q2 =
N∑
i=1

‖qi − pi‖2
2, (14)

where ‖·‖2 is the l2 norm and qi is the true classi�cation vector and pi is a vector of648

predicted assignments to each class. It is useful to note that the corresponding risk function649

is the mean square error (MSE), which is the expected value of the quadratic loss.650
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5 Appendices661

5.1 Appendix 1: Derivation of EM algorithm for TAGM model662

This appendix give a formal derivation of the EM algorithm used for our model. Computa-663

tions are standard but useful and similar technical summaries can be found (for example see664

Fraley and Raftery (2005); Murphy (2007)) We let H = {µ0, λ0, ν0, S0} denote the parame-665

ters of the normal-inverse-Wishart prior. More precisely:666

µk,Σk ∼ N
(
µk|µ0,

Σk

λ0

)
IW (Σk|ν0, S0) . (15)

Furthermore, let θk = {µk,Σk}, and let Θ = {κ,M, V } be the parameters of the global667

T distribution. We specify the following hierarchical Bayesian model.668

π|β ∼ Dir(β),

θk|H ∼ NIW(H),

zi|π ∼ cat(π),

ε|u, v ∼ B(u, v)

φi|ε ∼ Ber(1− ε)
xi|zi = k, θ,Φ,Θ ∼ N (xi|µk,Σk)

1(φi=1)T (xi|κ,M, V )1(φi=0)

(16)

Since p(φi = 1) = 1− ε, we can rewrite the last line of the model (16) as the following:669

p(xi|zi = k, θ,Φ,Θ) = (1− ε)N (xi|µk,Σk) + εT (xi|κ,M, V ).

The total joint probability is670

p(θ,Θ, X, Z,Φ) =p(X,Z,Φ|θ, π, ε)p(ε|u, v)p(θ|H)p(π|β)

=
n∏
i=1

K∏
k=1

(
πk((1− ε)N (xi|µk,Σk))

1(φi=1)(εT (xi|κ,M, V ))1(φi=0)
)1(zi=k)

·

(
K∏
k=1

NIW(H)

)
·Dir(β) · B(u, v).

(17)

Before we formally derive an EM algorithm for this model, we derive a few useful quan-671

tities. Let f(x|µ,Σ) denote the density of the multivariate normal with mean vector µ and672

covariance matrix Σ evaluated at x and further let g(x|κ,M, V ) denote the density of the673

multivariate T-distribution. We compute that674
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p(φi = 1|zi = k,xi) =
p(φi = 1,xi|zi = k)

p(xi|zi = k)

=
p(xi|zi = k, φi = 1)P (φi = 1|zi = k)

p(xi|zi = k)

=
(1− ε)f(xi|µk,Σk)

(1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V )
.

(18)

Likewise we see that,675

p(φi = 0|zi = k,xi) =
εf(xi|M,V )

(1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V )
. (19)

Thus676

p(φi = 1, zi = k|xi)
= p(φi = 1|zi = k,xi)p(zi = k|xi)

= p(φi = 1|zi = k,xi)
p(xi|zi = k)p(zi = k)

p(xi)

= p(φi = 1|zi = k,xi)
(p(xi|zi = k, φi = 0)p(φi = 0) + p(xi|zi = k, φi = 1)p(φi = 1)) p(zi = k)

p(xi)
(20)

and then substituting values leads to677

(1− ε)f(xi|µk,Σk)

(1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V )

πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))∑K
k=1 πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))

=

πk(1− ε)f(xi|µk,Σk)∑K
k=1 πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))

.

(21)

We also see that678

p(φi = 0, zi = k|xi) =
πkεg(xi|κ,M, V )∑K

k=1 πk ((1− ε)f(xi|µk,Σk) + εg(xi|κ,M, V ))
. (22)

We can now formally derive the EM algorithm for this model. First, we compute the679

expected value of the log-posterior function with respect to the conditional distribution of680

the latent variable given the observations (under the current estimate of the parameters).681

For notational convenience we suppress the dependence on the parameters.682
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Q(θ|θ̂)

=EZ,Φ|X,θ̂[log p(θ;X,Z,Φ)]

=
n∑
i=1

EZ,Φ|X,θ̂[log p(θ;xi, zi, φi)]

=
n∑
i=1

K∑
k=1

1∑
r=0

p(zi = k, φi = r|xi) log(L(θk|xi, zi = k, φi)) + log(p(π) +
K∑
k=1

log(p(θk))

=
n∑
i=1

K∑
k=1

1∑
r=0

p(zi = k, φi = r|xi) log(p(xi, zi = k, φi|θk)) + log(p(π) +
K∑
k=1

log(p(θk))

=Q′(θ|θ̂) +D(π,θ)

(23)

We note that the equation splits up into a likelihood term Q′ plus the log prior D. The683

coe�cient of the �rst term in the equation above has already been derived and the other684

term is given by:685

p(xi, zi = k, φi)|θk)
= p(xi, φi|θk, zi = k)p(zi = k|θk)
= πkp(xi, φi|θk, zi = k)

= πk (p(xi|θk, zi = k, φi)p(φi|θk, zi = k))

= πk
(
((1− ε)f(xi|µk,Σk))

φi(εg(xi|κ,M, V ))1−φi
)
,

(24)

where we used that φi was a binary random variable. Thus we see that686

Q′(θ|θ̂)

=
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi) log(p(xi, zi = k, φi|θk))

=
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi) log(πk((1− ε)f(xi|µk,Σk))
φi(εg(xi|κ,M, V ))1−φi)

=
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi) (log(πk) + φi log((1− ε)f(xi|µk,Σk)) + (1− φi) log(εg(xi|κ,M, V )))

=(A) + (B) + (C) + (D)

(25)

where687
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(A) =
n∑
i=1

K∑
k=1

p(zi = k|xi) log(πk)

(B) =
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi)(φi log(1− ε) + (1− φi) log(ε))

(C) =
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi)φi log(f(xi|µk,Σk))

(D) =
n∑
i=1

K∑
k=1

∑
Φ

p(zi = k, φi|xi)(1− φi) log(g(xi|κ,M, V )).

(26)

Then again using that φi is binary we can make the following simpli�cations.688

(B) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 1|xi) log(1− ε) + p(zi = k, φi = 0|xi) log(ε)

(C) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 1|xi) log(f(xi|µk,Σk))

(D) =
n∑
i=1

K∑
k=1

p(zi = k, φi = 0|xi) log(g(xi|κ,M, V )).

(27)

Terms can now be maximised by considering terms independently because of linearity.689

Note that the equations 8 and 9 are computed with respect to the current estimated values690

of the parameters. For convenience set the following notation691

aik =p(zi = k, φi = 1|xi)
bik =p(zi = k, φi = 0|xi)
wik =p(zi = k|xi) = aik + bik

ak =
n∑
i=1

aik, a =
K∑
k=1

ak

bk =
n∑
i=1

bik, b =
K∑
k=1

bk

rk =
n∑
i=1

wik

(28)

The maximisation step requires �nding argmaxθQ(θ|θ̂), this can be found for parameter692

separately for each linear term. To �nd ε̂, we need only consider computing the maximisation693

step from equation (B). First set ε1 = 1−ε and ε2 = ε and add the log prior term to equation694

(B). Thus, the required Lagrangian is695
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Lε = a log(ε1) + b log(ε2) + (u− 1) log(ε2) + (v − 1) log((ε1) + λ(ε1 + ε2 − 1) + constant.
(29)

Solving this system leads to696

ε =
u+ b− 1

(a+ b) + (u+ v)− 2
. (30)

To �nd the MAP estimate for π, we examine equation (A) and add the log prior. Fur-697

thermore we must maximise π under the constraint that
∑K

k=1 πk = 1. The Lagrangian for698

this constrained optimisation problem is the following,699

L =
n∑
i=1

K∑
k=1

wik log(πk)− log(B(β)) +
K∑
k=1

(βk − 1) log(πk) + λ

(
K∑
k=1

πk − 1

)
. (31)

The �xed point of this Lagrangian solves the required constrained optimisation problem700

and B(β) denotes the Beta function with parameter β.701

∂L
∂πk

=
rk
πk

+
βk − 1

πk
+ λ = 0

∂L
∂λ

=
K∑
k=1

πk − 1 = 0

(32)

Solving this pair of equations yields702

πk =
rk + βk − 1

N +
∑
βk −K

. (33)

To �nd the posterior mode of the remaining parameters requires some work. First we703

recall that the normal inverse-Wishart prior is proportional to:704

K∏
k=1

|Σk|
ν0+D+2

2 exp

(
−1

2
tr(Σ−1

k S−1
0 )

)
exp

(
−λ0

2
tr(Σ−1

k (µk − µ0)T (µk − µ0))

)
. (34)

The required equation we are interested in is (C).705

n∑
i=1

K∑
k=1

aik log(f(xi|µk,Σk))

=
K∑
k=1

{
−

n∑
i=1

aik
D log(2π)

2
− 1

2

n∑
k=1

aik log |Σk| −
1

2

n∑
i=1

aiktr
(
Σ−1
k (xi − µk)T (xi − µk)

)}

=
K∑
k=1

{
−ak

D log(2π)

2
− 1

2
ak log |Σk| −

1

2
tr

(
Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)

)}
.

(35)
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Now to derive the M-step objective we remove the constant terms and add on the log706

prior. This leads to707

K∑
k=1

{
ν0 +D + 2

2
log |Σk| −

1

2
tr
(
Σ−1
k S−1

0

)
− λ0

2
tr
(
Σ−1
k (µk − µ0)T (µk − µ0)

)}

+
K∑
k=1

{
−1

2
ak log |Σk| −

1

2
tr

(
Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)

)}
.

(36)

This can be rewritten as708

K∑
k=1

{
ν0 +D + 2 + ak

2
log |Σk| −

1

2
tr
(
Σ−1
k S−1

0

)
− λ0

2
tr
(
Σ−1
k (µk − µ0)T (µk − µ0)

)}

+
K∑
k=1

{
−1

2
tr

(
Σ−1
k

n∑
i=1

aik(xi − µk)T (xi − µk)

)}
.

(37)

Now de�ne x̄k = (
∑n

i=i aikxi)/ak and note the following algebraic rearrangements.709

n∑
i=1

aik(xi − µk)T (xi − µk)

=
n∑
i=1

aikx
T
i xi − µTk xi − xTi µk + µTkµk

=
n∑
i=1

aikx
T
i xi − µTk

n∑
i=1

aikxi −

(
n∑
i=1

aikx
T
i

)
µk + akµ

T
kµk

=
n∑
i=1

aikx
T
i xi − akµTk x̄k − akx̄Tkµk + akµ

T
kµk

=
n∑
i=1

aikx
T
i xi − akx̄Tk x̄k + ak(x̄k − µk)T (x̄k − µk)

=
n∑
i=1

aik(xi − x̄k)
T (xi − x̄k) + ak(x̄k − µk)T (x̄k − µk)

(38)

This allows us to rewrite equation 37 as710

K∑
k=1

{
ν0 +D + 2 + ak

2
log |Σk| −

1

2
tr

(
Σ−1
k

(
S−1

0 +
n∑
i=1

aik(xi − x̄k)
T (xi − x̄k)

))}

+
K∑
k=1

{
−1

2
tr
(
Σ−1
k

(
λ0(µk − µ0)T (µk − µ0)

)
+ ak(x̄k − µk)T (x̄k − µk)

)} (39)
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This can be written as:711

K∑
k=1

{
νk +D + 2

2
log |Σk| −

1

2
tr
(
Σ−1
k S−1

k

)
− 1

2
tr
(
Σ−1
k

(
λk(µk −mk)

T (µk −mk)
))}

(40)

where,712

λk =λ0 + ak

νk =ν0 + ak

mk =
akx̄k + λ0µ0

λk

S−1
k =S−1

0 +
λ0ak
λk

(x̄k − µ0)T (x̄k − µ0) +
n∑
i=1

aik(xi − x̄k)
T (xi − x̄k)

(41)

Thus the parameters of the posterior mode are:713

µ̂k =mk

Σ̂k =
1

νk +D + 2
S−1
k

(42)

To summarise the EM algorithm, we iterate between the two steps:714

E-Step: Given the current parameters compute the values given by equations (28), with715

formulas provided in equations (8) and (9).716

M-Step: Compute717

ε =
u+ b− 1

(a+ b) + (u+ v)− 2
,

and718

πk =
rk + βk − 1

N +
∑
βk −K

,

as well as719

x̄k =
1

ak

(
n∑
i=i

aikxi

)
Compute the MAP estimates given by equations (42). These estimates are then used720

in the following iteration of the E-step. Iterate until |Q(θ|θt) − Q(θ|θt−1)| < δ for some721

pre-speci�ed δ > 0.722
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5.2 Appendix 2: Derivation of collapsed Gibbs sampler for TAGM723

model724

To derive the Gibbs sampler we write down all the conditional probabilities. Then, exploiting725

conjugacy, we can marginalise parameters in the model. Recall the total joint probability is726

the following:727

p(θ,Θ, X, Z,Φ) =p(X,Z,Φ|θ,π, ε)p(ε|u, v)p(θ|H)p(π|β)

=
n∏
i=1

K∏
k=1

(
πk((1− ε)N (xi|µk,Σk))

1(φi=1)(εT (xi|κ,M, V ))1(φi=0)
)1(zi=k)

·

(
K∏
k=1

NIW(H)

)
·Dir(β) · B(u, v).

(43)

Suppose we know the hidden latent component allocations zi and outlier allocations φi.728

Then we could sample from the a required normal distribution. The conditional probability729

of the parameters given the allocations is given by:730

p(θk|X,Z,Φ, θ−k, β, u, v,H) ∝ p0(θk)
n∏
i=1

N(xi|µk,Σk)
1(φi=1). (44)

The prior is conjugate and so the posterior belongs to the same parametric family as the731

prior, a NIW distribution, and so the parameters can be updated as follows:732

mk =
nkx̄k + λ0µ0

λk
λk =λ0 + nk

νk =ν0 + nk

Sk =S0 +
∑

i:zi=k,φi=1

(xi − x̄)T (xi − x̄) +
λ0nk
λk

(x̄− µ0)T (x̄− µ0),

(45)

where nk = |{xi|zi = k, φi = 1}|. Now we write down the conditional of the component733

allocations734

p(zi = k|X, z−i,Φ, θ, β, u, v,H) ∝ p0(zi = k|z−i, β)p(xi|x−i, z−i, zi = k,Φ, H). (46)

The �rst term in this equation is735

p0(zi = k|z−i, β) =
p(zi = k, z−i|β)

p(z−i|β)
=

p(Z|β)

p(z−i|β)
. (47)
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To calculate the numerator we proceed by marginalising over π as follows736

p(Z|β) =

∫
p(z|π)p(π|β)dπ =

Γ(β)

Γ(n+ β)

K∏
k=1

Γ(nk + βk)

Γ(βk)
. (48)

Hence, we arrive at the following probability:737

p0(zi = k|z−i, β) =
nk\i + βk

n+
∑
βk − 1

. (49)

The conditional for the second term of 46 is more tricky. First note the following condi-738

tional distributions739

xi|zi = k,Xk\i, φi = 1,Φ, z−i ∼ N (xi|θk)
xi|zi = k,Xk\i, φi = 0,Φ, z−i ∼ T (xi|κ,M, V ),

xi|zi = k,Xk\i, φi,Φ, z−i ∼ N(xi|θk)1(φi=1)T (xi|, κ,M, V )1(φi=0),

(50)

where we denote Xk\i as the observations associated with class k, besides xi. Now, we740

�rst note that:741

p(xi|zi = k,Xk\i, φi,Φ, H, z−i) = p(xi|Xk\i, φi,Φ, H) =
p(xi, Xk\i|φi,Φ, H)

p(Xk\i|φi,Φ, H)
. (51)

Thus, we �nd an equation for the numerator, using the fact that terms associated with742

φi = 0 do not depend on k and thus can be absorbed into the normalising constant.743

p(Xk|φi,Φ, H) ∝
∏
i:φi=1

∫
p(xi|zi = k,Φ, H, θk)p(θk|H)dθk. (52)

This is the marginal likelihood of the data. Thus the ratio in 51 is the posterior predictive744

which is given by the non-centred T-distribution with formula given by:745

T
(
vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
.

Thus, we can compute the following:746

p(zi = k|X, z−i,Φ, θ, β, u, v,H) ∝ p0(zi = k|z−i, β)p(xi|x−i, z−i,Φ, zi = k,H)

=
nk\i + βk

n+
∑
βk − 1

T
(
xi|vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
.

(53)

It remains to compute the conditional for the φi. By �rst recalling that φi is binary we747

see that748
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p(φi|X,Z, θ, β, u, v,H) ∝ p0(φi)
n∏
i=1

N(xi|θzi)1(φi=1)T (xi|κ,M, V )1(φi=0) (54)

can be written as749

p(φi = 1|X,Z, θ, φ−i, β, u, v,H) ∝ p0(φi = 1|φ−i, u, v)p(xi|x−i, φi = 1, Z, θ,Φ, β, u, v,H),

p(φi = 0|X,Z, θ, φ−i, β, u, v,H) ∝ p0(φi = 0|φ−i, u, v)p(xi|x−i, φi = 0, Z, θ,Φ, β, u, v,H).

(55)

First we need to compute a formula for p0(φi|φ−i, u, v). First we see that750

p0(φi|φ−i, u, v) =
p(Φ|u, v)

p(φ−i|u, v)
. (56)

The numerator can be computed by marginalising over ε:751

p(Φ|u, v) =

∫
p(Φ|ε)p(ε|u, v)dε. (57)

We denote
∑

1(φi = 1) = τ1 and
∑

1(φi = 1) = τ0 = 1− τ1. Then it is easy to see that752

p(Φ|u, v) =

∫
p(Φ|ε)p(ε|u, v)dε

=
1

B(u, v)

∫
(1− ε)τ1+v−1ετ0+u−1dε

=
B(τ0 + u, τ1 + v)

B(u, v)
.

(58)

Hence,753

p(φi = 1|φ−i, u, v) =
B(τ0 + u, τ1 + v)

B(u, v)
· B(u, v)

B(τ0 + u, τ1 + v − 1)

=
τ1 + v − 1

n+ u+ v − 1
,

(59)

where n = τ1 + τ2. In general,754

p(φi = s|φ−i, u, v) =
τs\i + vsu1−s

n+ u+ v − 1
. (60)

Now we return to computing p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H). First we see that755

p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H) =
p(X|Z, θ, φi = 1,Φ, β, u, v,H)

p(x−i|Z, θ, φi = 1,Φ, β, u, v,H)
. (61)
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Thus if we integrate over the parameters, we would have a ratio of marginal likelihoods756

giving the posterior predictive which is a non-centred T-distribution:757

p(xi|x−i, Z, θ, φi = 1,Φ, β, u, v,H) = T
(
vk − d+ 1,mk,

(1 + λk)Sk
λk(vk − d+ 1)

)
. (62)

In the other case that φ = 0, we have that758

p(xi|x−i, Z, θ, φi = 0,Φ, β, u, v,H) = T (xi|κ,M, V ). (63)

Thus we can compute:759

p(φi|X,Z, θ, φ−i, β, u, v,H) (64)

and sample from the required distribution. Thus, we can summarise the collapsed Gibbs760

sampler as follows:761

1. Update the priors with the labelled data762

2. For the unlabelled observations, in turn, compute the probability of assigning to each763

component764

3. Sample a label according to this probability765

4. Compute the probability of belonging to this class or the outlier component766

5. Sample an indicator to a class speci�c component or the outlier component767

6. If we assign to the class speci�c component update the class speci�c posterior distri-768

bution with the statistics of this observation769

7. Update other posteriors as appropriate.770

8. Once all unlabelled observations have a been assigned, consider the observations se-771

quentially, removing the statistics from the posteriors and then performing steps 2-7.772

We repeat this process for all unlabelled observations.773

9. repeat 7-8 until convergence of the Markov-chain.774

The computational bottleneck in the algorithm is computing the posterior updates for775

the parameters776

mk =
nkx̄k + λ0µ0

λk
λk =λ0 + nk

νk =ν0 + nk

Sk =S0 +
∑

i:zi=k,φi=1

(xi − x̄)T (xi − x̄) +
λ0nk
λk

(x̄− µ0)T (x̄− µ0),

(65)
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We �rst note that777

Sk =S0 +
∑

i:zi=k,φi=1

xTi xi + λ0µ
T
0µ0 − λkµTkµk (66)

Let us denote T =
∑

i:zi=k,φi=1 x
T
i xi. Thus we can derive a set of iterative updates778

to speed up computation when adding/removing statistics from clusters. More precisely,779

indicating updated posterior parameters by a prime, if we remove statistics of observation i780

from cluster k, we see that781

m′k =
λkmk − xi
λk − 1

λ′k =λk − 1

ν ′k =νk − 1

T ′ =T − xTi xi

S ′k =S0 + T ′ + λ0µ
T
0µ0 − λkm′Tk m′k.

(67)

Likewise if we add the statistics of observation i to cluster k, we see that782

m′k =
λkmk + xi
λk + 1

λ′k =λk + 1

ν ′k =νk + 1

T ′ =T + xTi xi

S ′k =S0 + T ′ + λ0µ
T
0µ0 − λkm′Tk m′k.

(68)
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5.3 Appendix 3: Convergence diagnostics of EM algorithm783
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Figure 14: Plot of the log-posterior at each iteration of the EM algorithm to demonstrate
monotonicity and convergence
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5.4 Appendix 4: Trace plots for assessing MCMC convergence784
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Figure 15: Trace plots of the number of proteins allocated to the known components in each
of 6 parallel MCMC runs. Chain 4 is discarded because of lack of convergence. 600 samples
are retained from remaining chains and pooled.
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5.5 Appendix 5: F1 t-tests785

SVM KNN MAP
KNN 2.7E-03
MAP 3.3E-02 3.4E-01

MCMC 3.4E-01 3.3E-02 2.3E-01

Table 2: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Drosophila dataset

SVM KNN MAP
KNN 1.2E-02
MAP 2.7E-01 1.5E-01

MCMC 4.9E-01 1.9E-03 1.1E-01

Table 3: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 1.0E+00
MAP 1.0E+00 1.0E+00

MCMC 3.3E-01 6.0E-02 1.1E-05

Table 4: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.4E-35
MAP 3.3E-06 6.7E-21

MCMC 8.0E-59 3.2E-91 2.4E-70

Table 5: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the HeLa dataset

SVM KNN MAP
KNN 1.3E-02
MAP 4.3E-04 3.3E-09

MCMC 5.8E-01 3.5E-03 3.1E-03

Table 6: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the U2-OS dataset
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SVM KNN MAP
KNN 2.2E-08
MAP 1.0E-34 6.8E-14

MCMC 7.4E-05 5.3E-02 1.0E-20

Table 7: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN 5.3E-02
MAP 1.7E-23 7.9E-27

MCMC 9.1E-02 5.8E-04 1.8E-19

Table 8: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 1.3E-01
MAP 1.1E-55 1.1E-55

MCMC 1.0E-18 6.3E-22 2.0E-26

Table 9: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 9.6E-02
MAP 4.1E-07 1.1E-09

MCMC 2.8E-27 1.0E-28 6.3E-10

Table 10: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts Mock 24hpi dataset

SVM KNN MAP
KNN 6.6E-07
MAP 1.3E-10 2.0E-01

MCMC 1.6E-05 2.0E-01 6.2E-03

Table 11: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts Mock 48hpi dataset
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SVM KNN MAP
KNN 3.9E-03
MAP 9.5E-01 8.6E-03

MCMC 6.4E-02 3.0E-01 8.6E-02

Table 12: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 8.6E-03
MAP 1.1E-02 8.6E-01

MCMC 3.7E-06 1.6E-02 3.3E-02

Table 13: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 1.9E-23
MAP 1.4E-02 2.3E-34

MCMC 3.8E-07 1.6E-81 2.0E-02

Table 14: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 4.6E-01
MAP 2.6E-05 1.7E-04

MCMC 1.7E-04 1.3E-03 5.5E-01

Table 15: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts HCMV 24hpi dataset

SVM KNN MAP
KNN 1.0E-02
MAP 4.6E-01 1.5E-03

MCMC 1.2E-02 7.3E-01 1.5E-03

Table 16: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts HCMV 48hpi dataset
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SVM KNN MAP
KNN 5.5E-02
MAP 9.5E-06 3.4E-02

MCMC 1.1E-01 6.2E-01 6.4E-03

Table 17: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 2.8E-01
MAP 2.6E-09 7.2E-08

MCMC 4.2E-10 5.6E-09 5.7E-01

Table 18: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 2.3E-04
MAP 7.1E-04 3.8E-10

MCMC 1.4E-01 5.7E-02 6.0E-05

Table 19: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 6.7E-06
MAP 6.3E-05 4.4E-01

MCMC 4.4E-01 6.7E-06 8.3E-05

Table 20: Adjusted P-values for pairwise T-tests for Macro F-1 score classi�er evaluation on
the E14TG2a dataset

49

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


5.6 Appendix 6: Quadratic loss t-tests786

SVM KNN MAP
KNN 5.9E-13
MAP 1.1E-04 9.6E-124

MCMC 2.2E-23 3.3E-58 5.9E-171

Table 21: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Drosphila dataset

SVM KNN MAP
KNN 3.2E-08
MAP 1.7E-26 1.3E-128

MCMC 4.2E-13 8.8E-37 7.0E-135

Table 22: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Chicken DT40 dataset

SVM KNN MAP
KNN 5.5E-14
MAP 3.0E-25 6.3E-128

MCMC 7.4E-26 1.7E-129 1.6E-14

Table 23: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the mouse dataset

SVM KNN MAP
KNN 1.2E-02
MAP 9.4E-07 7.4E-86

MCMC 5.5E-08 2.7E-89 2.4E-12

Table 24: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the HeLa dataset

SVM KNN MAP
KNN 6.8E-02
MAP 7.4E-17 1.1E-73

MCMC 1.4E-20 6.7E-81 8.3E-41

Table 25: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the U2-OS dataset

50

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2018. ; https://doi.org/10.1101/282269doi: bioRxiv preprint 

https://doi.org/10.1101/282269
http://creativecommons.org/licenses/by/4.0/


SVM KNN MAP
KNN 2.3E-92
MAP 9.0E-13 2.4E-83

MCMC 6.6E-19 3.0E-81 1.1E-01

Table 26: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the HeLa wild (Hirst et al.) dataset

SVM KNN MAP
KNN 5.2E-97
MAP 1.4E-02 1.2E-90

MCMC 2.3E-09 7.0E-95 2.2E-02

Table 27: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the HeLa KO1 (Hirst et al.) dataset

SVM KNN MAP
KNN 8.9E-93
MAP 3.1E-01 8.1E-91

MCMC 9.0E-06 1.5E-83 8.9E-05

Table 28: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the HeLa KO2 (Hirst et al.) dataset

SVM KNN MAP
KNN 6.1E-13
MAP 1.4E-18 4.4E-81

MCMC 3.2E-18 7.2E-77 5.9E-03

Table 29: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts Mock 24hpi dataset

SVM KNN MAP
KNN 6.1E-18
MAP 3.6E-24 2.2E-57

MCMC 1.4E-24 3.6E-61 3.6E-04

Table 30: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts Mock 48hpi dataset
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SVM KNN MAP
KNN 1.2E-15
MAP 4.5E-23 2.5E-89

MCMC 4.2E-23 5.1E-91 4.4E-01

Table 31: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts Mock 72hpi dataset

SVM KNN MAP
KNN 1.8E-13
MAP 1.4E-20 3.6E-126

MCMC 5.0E-20 1.5E-109 5.3E-07

Table 32: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts Mock 96hpi dataset

SVM KNN MAP
KNN 6.7E-14
MAP 1.0E-19 2.6E-45

MCMC 8.0E-20 2.4E-45 2.5E-02

Table 33: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts Mock 120hpi dataset

SVM KNN MAP
KNN 6.0E-22
MAP 2.8E-27 6.4E-53

MCMC 1.4E-27 1.5E-56 3.0E-03

Table 34: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts HCMV 24hpi dataset

SVM KNN MAP
KNN 1.9E-26
MAP 1.3E-33 2.7E-84

MCMC 1.3E-33 2.7E-84 6.0E-01

Table 35: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts HCMV 48hpi dataset
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SVM KNN MAP
KNN 6.3E-20
MAP 1.9E-25 2.7E-57

MCMC 1.2E-25 3.4E-58 1.5E-02

Table 36: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts HCMV 72hpi dataset

SVM KNN MAP
KNN 1.7E-25
MAP 9.3E-32 1.9E-56

MCMC 9.3E-32 1.2E-54 7.1E-01

Table 37: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts HCMV 96hpi dataset

SVM KNN MAP
KNN 6.5E-25
MAP 5.3E-32 1.1E-71

MCMC 7.1E-32 8.4E-71 5.7E-02

Table 38: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the Primary Fibroblasts HCMV 120hpi dataset

SVM KNN MAP
KNN 4.7E-04
MAP 4.7E-21 1.5E-103

MCMC 3.3E-12 1.8E-57 1.3E-137

Table 39: Adjusted P-values for pairwise T-tests for Quadratic Loss classi�er evaluation on
the E14TG2a dataset
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5.7 Appendix 7: GO enrichment analysis �gures787
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Figure 16: Gene Ontology over representation analysis on outlier proteins - that is proteins
allocated with less than probability 0.95. We analyse the enrichment of terms in the cellular
compartment, biological process, and molecular function ontologies. We display the top 10
signi�cant results in the dotplots.
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5.8 Appendix 8: Comparison of MCMC and MAP allocations788
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Figure 17: A heatmap representation of a contingency table comparing allocation produced
by MCMC and MAP methods with posterior probability threshold set at 0.99 for both
methods. The scale ranges from 0 to 1 with values indicating the proportion of assigned
proteins to that sub-cellular location. Values along the diagonal represent agreement between
classi�ers whilst other values represent disagreement. The allocations of proteins by both
methods are in strong agreement.
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