bioRxiv preprint doi: https://doi.org/10.1101/281550; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Genotyping Polyploids from Messy Sequencing Data

David Gerard!, Luis Felipe Ventorim Ferrao?,
Antonio Augusto Franco Garcia®, and Matthew Stephens'+*

!Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
2Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
3Department of Genetics, Luiz de Queiroz College of Agriculture, University of Sao Paulo,
Piracicaba, SP, 03178-200, Brazil
4Department of Statistics, University of Chicago, Chicago, IL, 60637, USA

Abstract

Detecting and quantifying the differences in individual genomes (i.e. genotyping), plays a fundamental
role in most modern bioinformatics pipelines. Many scientists now use reduced representation next-
generation sequencing (NGS) approaches for genotyping. Genotyping diploid individuals using NGS is
a well-studied field and similar methods for polyploid individuals are just emerging. However, there are
many aspects of NGS data, particularly in polyploids, that remain unexplored by most methods. Our
contributions in this paper are four-fold: (i) We draw attention to, and then model, common aspects of
NGS data: sequencing error, allelic bias, overdispersion, and outlying observations. (ii) Many datasets
feature related individuals, and so we use the structure of Mendelian segregation to build an empirical
Bayes approach for genotyping polyploid individuals. (iii) We develop novel models to account for
preferential pairing of chromosomes and harness these for genotyping. (iv) We derive oracle genotyping
error rates that may be used for read depth suggestions. We assess the accuracy of our method in
simulations and apply it to a dataset of hexaploid sweet potatoes (Ipomoea batatas). An R package
implementing our method is available at https://cran.r-project.org/package=updog.

1 Introduction

New high-throughput genotyping methods [e.g. Davey et al., 2011] allow scientists to pursue important ge-
netic, ecological and evolutionary questions for any organism, even those for which existing genomic resources
are scarce [Chen et al., 2014]. These methods combine high-throughput sequencing with preparation of a
reduced representation library, to sequence a small subset of the entire genome across many individuals. This
strategy allows both genome-wide single nucleotide polymorphism (SNP) discovery and SNP genotyping at
a reduced cost compared to whole-genome sequencing [Chen et al., 2014, Kim et al., 2016]. Specific examples
of these methods include “restriction site-associated DNA sequencing” (RAD-seq) [Baird et al., 2008] and
“genotyping-by-sequencing” (GBS) [Elshire et al., 2011]. Both of these approaches have been widely used in
recent biological research, including in population-level analyses [Byrne et al., 2013, Schilling et al., 2014],
quantitative trait loci mapping [Spindel et al., 2013], genomic prediction [Spindel et al., 2015], expression
quantitative trait loci discovery [Liu et al., 2017], and genetic mapping studies [Shirasawa et al., 2017].
Statistical methods for SNP detection and genotype calling play a crucial role in these new genotyping
technologies. And, indeed, considerable research has been performed to develop such methods [Nielsen et al.,
2011]. Much of this research has focused on methods for diploid organisms — those with two copies of their
genomes. Here, we focus on developing methods for polyploid organisms — specifically for autopolyploids,
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which are organisms with more than two copies of their genome of the same type and origin, and present
polysomic inheritance [Garcia et al., 2013]. Autopolyploidy is a common feature in plants, including many
important crops (e.g. sugarcane, potato, several forage crops, and some ornamental flowers). More gener-
ally, polyploidy plays a key role in plant evolution [Otto and Whitton, 2000, Soltis et al., 2014] and plant
biodiversity [Soltis and Soltis, 2000], and understanding polyploidy is important when performing genomic
selection and predicting important agronomic traits [Udall and Wendel, 2006]. Consequently there is strong
interest in genotyping polyploid individuals, and indeed the last decade has seen considerable research into
genotyping in both non-NGS data [Voorrips et al., 2011, Serang et al., 2012, Garcia et al., 2013, Bargary
et al., 2014, Mollinari and Serang, 2015, Schmitz Carley et al., 2017] and NGS data [McKenna et al., 2010,
Li, 2011, Garrison and Marth, 2012, Blischak et al., 2016, Maruki and Lynch, 2017, Blischak et al., 2018,
Clark et al., 2018].

Here, we will demonstrate that current analysis methods, though carefully thought out, can be improved
in several ways. Current methods fail to account for the fact that NGS data are inherently messy. Generally,
samples are genotyped at low coverage to reduce cost [Glaubitz et al., 2014, Blischak et al., 2018], increasing
variability. Errors in sequencing from the NGS platforms abound [Li et al., 2011] (Section 2.2). These are
two well-known issues in NGS data. In this paper, we will further show that NGS data also face issues of
systematic biases (e.g. resulting from the read-mapping step) (Section 2.3), added variability beyond the
effects of low-coverage (Section 2.4), and the frequent occurrence of outlying observations (Section 2.5). Our
first contribution in this paper is highlighting these issues on real data and then developing a method to
account for them.

Our second contribution is to consider information from Mendelian segregation in NGS genotyping meth-
ods. Many experimental designs in plant breeding are derived from progeny test data [Li et al., 2014,
Tennessen et al., 2014, McCallum et al., 2016, Shirasawa et al., 2017]. Such progenies often result from a
bi-parental cross, including half and full-sib families, or from selfing. This naturally introduces a hierarchy
that can be exploited to help genotype individuals with low coverage. Here, we implement this idea in the
case of autopolyploids with polysomic inheritance and bivalent non-preferential pairing. Hierarchical model-
ing is a powerful statistical approach, and others have used its power in polyploid NGS SNP genotyping, not
with Mendelian segregation, but in assuming Hardy-Weinberg equilibrium (HWE) or small deviations from
HWE [Li, 2011, Garrison and Marth, 2012, Maruki and Lynch, 2017, Blischak et al., 2018]. Using Mendelian
segregation for SNP genotyping has been used in non-NGS data [Serang et al., 2012, Schmitz Carley et al.,
2017], and in diploid NGS data [Zhou and Whittemore, 2012], but to our knowledge we are the first to
implement this for polyploid NGS data — though others have used deviations from Mendelian segregation
as a way to filter SNPs [Chen et al., 2014, e.g.] or for the related problem of haplotype assembly [Motazedi
et al., 2018].

Though wielding Mendelian segregation in species that exhibit bivalent non-preferential pairing can be a
powerful approach, in some species this assumption can be inaccurate. Chromosomal hom(oe)ologues might
exhibit partial or complete degrees of preferential pairing [Voorrips and Maliepaard, 2012]. Our next contri-
bution is developing a model and inference procedures to account for arbitrary levels of preferential pairing
in bivalent pairing species. In particular, this approach allows us to estimate if a species contains com-
pletely homologous chromosomes (autopolyploids), completely homoeologous chromosomes (allopolyploids),
or some intermediate level of chromosomal pairing [Stift et al., 2008] [“segmental allopolyploids”, Stebbins,
1947]. We harness these estimates of preferential pairing to genotype (auto/allo)polyploids.

Our final contribution concerns the question raised by the development of our new model: “How many
reads are needed to adequately genotype an individual?” This is a complicated by the fact that read depth
calculations depend on many factors: the level of allelic bias, the sequencing error rate, the overdispersion,
the distribution of genotypes in the sample, as well as the requirements of the intended downstream analy-
ses. This last consideration is especially difficult to consider when coming up with general guidelines. For
example, in association studies merely a strong correlation with the true genotype is necessary [Pritchard
and Przeworski, 2001] and a smaller read depth might be adequate. Whereas for mapping studies, a few
errors can inflate genetic maps [Hackett and Broadfoot, 2003] and so a larger read depth might be needed
to improve accuracy. Rather than try to account for all of these contingencies, we took the approach of
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developing functions that a researcher may use to obtain lower bounds on the read depths required based
on (i) the specifics of their data and (ii) the needs of their study. This is in alignment with the strategy in
elementary statistics of not providing general guidelines for the sample size of a t-test, but rather provide
functions to determine sample size based on the variance, effect size, power, and significance level.

Our paper is organized as follows. We develop our method using a real dataset [Shirasawa et al., 2017]
as motivation in Section 2. During this development, we highlight several issues and solutions to genotyping
NGS data, including overdispersion, allelic bias, and outlying observations. We then evaluate the perfor-
mance of our method using Monte Carlo simulations (Sections 3.1 through 3.3) and demonstrate its superior
genotyping accuracy to competing methods in the presence of overdispersion and allelic bias. We then use
our method on a real dataset of hexaploid sweet potato (Ipomoea batatas) in Section 3.4. Oracle genotyping
rates are explored in Sections 2.12 and 3.6. We finish with a discussion and future directions (Section 4).

2 Methods

We now describe models and methods for genotyping polyploid individuals. The models incorporate several
features we have observed in real data. To help highlight these features, and for ease of explanation, we start
with a simple model and gradually incorporate each additional feature. Notation is introduced gradually as
required, and summarized for convenience in Table 1.

To illustrate key features of our model we give examples from a dataset on autohexaploid sweet potato
samples (Ipomoea batatas) (2n = 6x= 90) from a genetic mapping study by Shirasawa et al. [2017]. These
data consist of an S1 population of 142 individuals, genotyped using double-digest RAD-seq technology
[Peterson et al., 2012]. Here and throughout, “S1” refers to a population of individuals produced from the
self-pollination of a single parent. We used the data resulting from the SNP selection and filtering procedures
described in Shirasawa et al. [2017]. These procedures included mapping reads onto a reference genome of
the related Ipomoea trifida to identify putative SNPs and then selecting high-confidence bi-allelic SNPs with
coverage of at least 10 reads for each sample and with less than 25% of samples missing, yielding a total of
94,361 SNPs. Further details of the biological materials, assays, and data filtering may be found in Shirasawa
et al. [2017].

For each SNP, we use A and a to denote the two alleles, with A being the reference allele (defined by the
allele on the reference genome of the related Ipomoea trifida). For each individual the data at each SNP are
summarized as the number of reads carrying the A allele and the number carrying the a allele. For a K-ploid
individual there are K + 1 possible genotypes, corresponding to 0,1,..., K copies of the A allele. We use
pi € {0/K,1/K,..., K/K} to denote the A allele dosage of individual ¢ (so Kp; is the number of copies of
allele A). Genotyping an individual corresponds to estimating p;.

Figure 1 illustrates the basic genotyping problem using data from a single well-behaved SNP. In this
“genotype plot” each point is an individual, with the x and y axes showing the number of a and A reads re-
spectively. The lines in the plot indicate the expected values for possible genotype p; € {0/K,1/K, ..., K/K}
and are defined by

A
A+a

= Di, (1)

where A is the count of A reads and a is the count of a reads. Genotyping each sample effectively corresponds
to determining which line gave rise to the sample’s data. In this case the determination is fairly clear because
the SNP is particularly well-behaved and most samples have good coverage. Later we will see examples where
the determination is harder.

2.1 Naive model

A simple and natural model is that the reads at a given SNP are independent Bernoulli random variables:

x;5|pi ~ Bernoulli(p;), (2)
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Figure 1: Genotype plot of single well-behaved SNP in a hexaploid species. Each point is an individual
with the number of alternative reads along the z-axis and the number of reference reads along the y-axis.
The dashed lines are defined by y/(z +y) = p for p € {0/6,1/6,...,6/6}, which correspond to genotypes
{aaaaaa, Aaaaaa, ..., AAAAAA}.

where z;; is 1 if read j from individual 7 is an A allele and is 0 if the read is an a allele. The total counts of
allele A in individual ¢ then follows a binomial distribution

yi = Z x;; ~ Binomial(n;, p;). ®)

Jj=1

If the individuals are siblings then, by the rules of Mendelian segregation, the p;’s have distribution
[Serang et al., 2012]:

min(@l ,K/2+k§71€2)

Pr(p;i = k/K|p1 = /K, ps = lo/K) = > HG (i, K/2|61, K)HG(k — i, K/2|05, K),  (4)
i=max(l1—K/2,k—£2)

where p; is the A allele dosage of parent j and HG(a, b|c, d) is the hypergeometric probability mass function:

d—
(o) (o —a)
N
()
Equation (4) results from a convolution of two hypergeometric random variables. The distribution (4)
effectively provides a prior distribution for p;, given the parental genotypes. If the parental genotypes are
known then this prior is easily combined with the likelihood (3) to perform Bayesian inference for p;. If the

parental genotypes are not known, then it is straightforward to estimate the parental genotypes by maximum
likelihood, marginalizing out the p;, yielding an empirical Bayes procedure.

HG(a,blc, d) = (5)

2.2 Modeling sequencing error

Though model (2) is a reasonable starting point, it does not account for sequencing error. Even if sequencing
errors rates are low (e.g. 0.5-1% [Li et al., 2011]), it is crucial to model them because a single error can
otherwise dramatically impact genotype calls. In particular, if an individual truly has all reference alleles
(pi = 1) then (in the model without errors) a single non-reference allele observed in error would yield
a likelihood (and hence posterior probability) of 0 for the true genotype. Biologically, this means that a
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Table 1: Summary of Notation.
K The ploidy of the species.
x;;  jth read for ¢th individual. Equal to 1 if a read is an A and 0 if a read is an a.
Yi => ; Tig- The number of A reads in individual 1.
n;  The number of reads in individual 4.
p;  The allele-dosage for individual ¢, p; € {0/K,1/K,...,K/K}.
0; The probability sample 4 is a non-outlier.
y¢  The number of A reads in the ¢th parent.
ny  The number of reads in the ¢th parent.
pe  The allele-dosage for the £th parent.
0,  The probability the sample from parent £ is a non-outlier.
€ The sequencing error rate.
h  The allelic bias parameter. Pr(a observed after selected)/Pr(A observed after selected).
-
T

Overdispersion parameter for the read counts.
The proportion of samples that are non-outliers.

homozygous individual can be erroneously classified as heterozygous, which may impact downstream analyses
[Bourke et al., 2018]. We demonstrate this in Figure 2 where in the right panel we fit the model described
in Section 2.1 to a single SNP. We labeled 6 points on Figure 2 with triangles that we think intuitively have
a genotype of AAAAAA but were classified as having a genotype of AAAAAa due to the occurrence of one
or two a reads.
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Figure 2: Two genotype plots demonstrating the need to model sequencing error. A SNP from hexaploid
sweet potato genotyped in conjunction with estimating the sequencing error rate (left panel) or by setting
the sequencing error rate to 0 (right panel). Triangles are points that we think look mis-classified.

To incorporate sequencing error, we replace (3) with

yi ~ Binomial(n, f(pi,€)), (6)
where
f(pise) =pi(1 =€) + (1 —pi)e, (7)

and e denotes the sequencing error rate. Estimating this error rate in conjunction while fitting the model in
Section 2.1 results in intuitive genotyping for the SNP in Figure 2 (left panel). This approach is also used
by Li [2011] (and seems more principled than the alternative in Li et al. [2014]); see also Maruki and Lynch
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[2017] for extensions to multi-allelic SNPs.

2.3 Modeling allelic bias
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Figure 3: Three genotype plots of SNPs demonstrating common features of the data from Shirasawa et al.
[2017], considering autohexaploid sweet potato: Overdispersion (left), bias (middle), and outlying observa-
tions (right).

We now address another common feature of these data: systematic bias towards one allele or the other.
This is exemplified by the central panel of Figure 3. At first glance, it appears that all offspring have either
5 or 6 copies of the reference allele. However, this is unlikely to be the case: since this is an S1 population, if
the parent had 5 copies of the reference allele, we would expect, under Mendelian segregation, the genotype
proportions to be (0.25, 0.5, 0.25) for 6, 5, and 4 copies of the reference allele, respectively. Indeed, the
proportion of individuals with greater than 95% of their read-counts being the reference allele is 0.197 —
relatively close to the 0.25 expected proportion for genotype AAAAAA (one-sided p-value = 0.085). That
leaves the other points to represent a mixture of AAAAAa and AAAAaa genotypes. Thus, for this SNP there
appears to be bias toward observing an A read compared to an a read.

One possible source of this bias is the read mapping step [Van De Geijn et al., 2015]. For example, if one
allele provides a better match to a different location on the genome than the true location then this decreases
its probability of being mapped correctly. Van De Geijn et al. [2015] describe a clever and simple technique
to adjust for allele-specific bias during the read-mapping step. However, we see three possible problems that
may be encountered in using the approach of Van De Geijn et al. [2015]: (i) in some instances, a researcher
may not have access to the raw data files to perform this procedure; (ii) the procedure requires access to a
reference genome, which is unavailable for many organisms [Lu et al., 2013]; (iii) there could plausibly be
other sources of bias, requiring the development of a method agnostic to the source of bias.

To account for allelic bias, we model sequencing as a two stage procedure: first, reads are chosen to be
sequenced (assumed independent of allele); and, second, chosen reads are either “observed” or “not observed”
with probabilities that may depend on the allele they carry. Let x;; denote the random variable that is 1 if
the chosen read carries an A allele, and 0 otherwise; and let u;; denote the random variable that is 1 if the
chosen read is actually observed and 0 otherwise. To model the first stage we use

[xi;|pi, €] ~ Bernoulli( f(p;,e€)). (8)
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To model the second stage we assume

Bernoulli(c) if z;; =1

9
Bernoulli(d) if x;; = 0. ©)

[uijlzij, ¢, d] ~ {

Allelic bias occurs when ¢ # d. Since we can only determine the alleles of the reads we observe, we are
interested in the distribution of x;; conditioned on u;; = 1, which is given by Bayes rule:

[xij|ui; = 1,pi, € ¢,d] ~ Bernoulli(&(ps, €, ¢, d)), (10)

e ed) = cf(pi,€)
£(pi €, c.d) d(1— f(pi,€)) +cf(pi,e)

Notice that & depends on ¢ and d only through the ratio h := d/c. Specifically:

f(pie)

We refer to h as the “bias parameter”, which represents the relative probability of a read carrying the two
different alleles being observed after being chosen to be sequenced. For example, a value of h = 1/2 means
that an A read is twice as probable to be correctly observed than an a read, while a value of h = 2 means
that an a read is twice as probable to be correctly observed than an A read.

Both the bias parameter h and the sequencing error rate ¢ modify the expected allele proportions for
each genotype. However, they do so in different ways: lower values of A push the means toward the upper
left of the genotype plot, while higher values push the means toward the lower right. Higher values of € tend
to squeeze the means toward each other. These different effects are illustrated in Figure 4.

£(pise,h) = (12)
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Figure 4: Mean counts of the mapped-reads under different levels of sequencing error rates (row facets) and
different levels of allelic bias (column facets), considering an autohexaploid locus. The y-axis is the number
of reference counts and the z-axis is the number of alternative counts.
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2.4 Modeling overdispersion

Overdispersion refers to additional variability than expected under a simple model. Overdispersion is a
common feature in many datasets. In sequencing experiments overdispersion could be introduced by variation
in the processing of a sample, by variations in a sample’s biochemistry, or by added measurement error
introduced by the sequencing machine. These could all result in observed read-counts being more dispersed
than expected under the simple binomial model (3). Figure 5 (which is an annotated version of the left panel
in Figure 3) illustrates overdispersion in these data.

To model overdispersion we replace the binomial model with a beta-binomial model [Skellam, 1948]. The
beta-binomial model assumes that each individual draws their own individual-specific mean probability from
a beta-distribution, then draws their counts conditional on this probability:

1—71 1—71
[qi |pi7 € h, T] ~ Beta (S(pi, €, h) r [1 - g(piv €, h)] j > (13)
[yi|ni, ¢;] ~ Binomial(n;, g;). (14)

Here &(pi,e,h) (12) is the mean of the underlying beta-distribution and 7 € [0,1] is the overdispersion
parameter, with values closer to 0 indicating less overdispersion and values closer to 1 indicating greater
overdispersion. (The parameter 7 can also be interpreted as the “intra class correlation” [Crowder, 1979].)
The ¢;’s are dummy variables representing individual specific probabilities and are integrated out in the
following analyses. We denote the marginal distribution of y; as

[yi'niapi767h77-] ~ BB(ni7£<pia6a h>77-)' (15)
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Figure 5: A genotype plot illustrating overdispersion compared with the simple binomial model. This figure
shows the same SNP as the left panel of Figure 3 but with the points with greater than 95% A reads removed.
Solid lines indicate the 0.025 and 0.975 quantiles for the Binomial distribution with probabilities 4/6 (red)
and 5/6 (blue). Points that lie within these lines are colored black; outside are colored orange. Under the
binomial model only 5% of the points should be orange, but in fact a significantly higher proportion (23.6%;
p-value 1.2 x 10711) are orange.
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2.5 Modeling outliers

The right panel of Figure 3 illustrates another important feature of real data: outliers. Here, most of
the points appear well-behaved, but one point (marked as a triangle) is far from the remaining points.
Furthermore, taking account of the fact that these data came from an S1 population, this outlying point
is inconsistent with the other points. This is because the other points strongly suggest that the parental
genotype is AAAAAa, meaning that the possible genotypes are AAAAAA, AAAAAa, and AAAAaa, and the
triangle lies far from the expectation for any of these genotypes. Indeed, under a fitted beta-binomial model,
if the individual’s genotype were AAAAaa, then the probability of seeing as few or fewer A counts in this
individual as were actually observed is 8.7 x 1076 (Bonferroni-corrected p-value of 0.0012). There are many
possible sources of outliers like this, including individual-specific quirks in the amplification or read-mapping
steps, and sample contamination or mislabeling.

There are several common strategies for dealing with outliers. These include using methods that are
inherently robust to outliers [Huber, 1964]; identifying and removing outliers prior to analysis [Hadi and
Simonoff, 1993]; or modeling the outliers directly [Aitkin and Wilson, 1980]. Here we take this last approach,
which has the advantage of providing measures of uncertainty for each point being an outlier.

Specifically, we model outliers using a mixture model:

[yz‘nuph €, ha T, 71—] ~ ’/TBB(nia g(pﬂ €, h)7 T) + (1 - 7T) BB(TL“ 1/27 1/3)7 (16)

where 7 represents the proportion of points that are not outliers. Here the second component of this mixture
represents the outliers, and the parameters (1/2,1/3) of this outlying distribution were chosen so that the
underlying beta distribution is uniform on [0,1]. (We also tried estimating the underlying beta parameters
for the outlying distribution, but we found that this can overfit the data in some instances; not shown.)

2.6 Prior on sequencing error rate and bias parameter

In some cases we found that maximum likelihood estimation of the bias parameter h and error rate € gave
estimates that were unrealistic, and lead to undesirable results. For example, we often observed this problem
at SNPs where all individuals carry the same genotype (i.e. monomorphic markers).

Figure 6A shows an example of this problem for simulated data from an autotetraploid species in which
an AAAA parent is crossed with an aaaa parent, which results in all offspring having the same genotype
AAaa. Using the model described up to now yields a maximum likelihood estimate of sequencing error rate
¢ = 0.37, which is unrealistically high. This further creates very poor genotype calls (Figure 6B).

To avoid this problem we place priors on € and h to capture the fact that € will usually be small and h
will not deviate from 1 too far. Specifically we use

logit(e) ~ N(uc,0?), and (17)
log(h) ~ N (1tn, 05) (18)

with software defaults pe = —4.7, 02 = 1, puj, = 0, and o7 = 0.72. With these defaults, 95% of the prior mass
is on € € [0.0012,0.061] and h € [0.25,4.1] (see Figure S1 for graphical depictions.). We chose these defaults
based on empirical observations (Figure S7), inflating the variances to make the priors more diffuse (less
informative) than what we observe in practice. Our prior on the sequencing error rate is also consistent with
literature estimates from various platforms [Goodwin et al., 2016], though some sequencing technologies can
have error rates as high as 15% and, if using such technologies, the prior should be adjusted accordingly.

Ideally one would incorporate these prior distributions into a full Bayesian model, and integrate over the
resulting posterior distribution on € and h. However this would require non-trivial computation, and we take
the simpler approach of simply multiplying the likelihood by the priors (17) and (18) and maximizing this
product in place of the likelihood. (Effectively this corresponds to optimizing a penalized likelihood.) See
Section 2.8 for details.

Using both these priors results in accurate genotypes for our simulated example (Figure 6C).
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Figure 6: Three genotype plots illustrating the need to place priors on the bias and sequencing error rate
parameters. Simulated autotetraploid NGS data where all individuals have the AAaa genotype. (A) unlabeled
NGS data, (B) labeled by a fit without any penalties on the bias and sequencing error rate, and (C) labeled
by a fit with penalties on both the bias and the sequencing error rate.

2.7 Incorporating parental reads

In genetic studies involving mating designs researchers almost always have NGS data on parent(s) as well as
offspring. Such data can be easily incorporated into our model.

Specifically we model the number of A reads in parent ¢ (denoted §,) given the total number of reads in
parent ¢ (denoted 7,) and allelic dosage py by:

[Ge|Toe, Doy €, by T, 7] ~ ™ BB(7g, E(De, €, h), ) + (1 — m) BB(7e, 1/2,1/3). (19)

We treat the parental read count data as independent of the offspring count data (given the underlying
genotypes), so the model likelihood is the product of (19) and (6).

2.8 Model

We now summarize our model and fitting procedure.
Our model is:

[yilni,pi = ki/ K, €, h,7,7] ~ 7 BB(n;, {(ki/K,e,h),7) + (1 —7) BB(n;,1/2,1/3), (20)
017,05 = ¢/ K, e, h,7,m| ~ mBB(R;,£(¢;/K,€,h), 7) + (1 —7) BB(7;,1/2,1/3) (21)
min(£1,K/2+ki —€5)
Pr(p; = ki/K|p1 = 1/ K,p2 = {2/ K) = > HG(i, K/2|6, K) HG(k; — i, K/2|62, K), (22)
i=max(£y— K /2,k; —l2)
logit(€) ~ N(pe,07), (23)
log(h) ~ N(tn, 3. (24)

To fit this model for offspring from two shared parents (an F1 cross) we first estimate €, h, 7, 7, ¢1, and
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¢ via maximum likelihood (or, for h, €, the posterior mode):

arg max p(h)p(e)p(gl |’ﬁ‘15 gl/Ka € ha T, 7'(')])(:/}2|77L27 eQ/Ka € h7 T, ﬂ-)
(e,h,7,m,41,£2)€[0,1] xR+ x[0,1] X [0,1] X 0: K X 0: K

(25)

K
X H Z p(y’b|nz7 kZ/K7 €, ha T, ﬂ—)p(kl/Klgl/K7 EQ/K)
i k;=0

We perform this maximization using an expectation maximization (EM) algorithm, presented in Section A.
The M-step (39) involves a quasi-Newton optimization for each possible combination of ¢; and ¢5, which we
implement using the optim function in R [R Core Team, 2017].

Given estimates €, iz, T, T, fl, and fg, we use Bayes’ Theorem to obtain the posterior probability of the
individuals’ genotypes:

2 55 4 iakiKvAaiLaAvAP z:k2K~:g K7~:g K
Pr(pi:ki/K|yi,€,h,'fA_,'fr,€1,€2): Kp(y "I”L / € ATA ? Ar(p / |p1 - 1/A D2 ~ 2/A) )
Zkizop(y”niaki/K7€7haT7ﬂ-)Pr(pi = kl/K|p1 = el/K7p2 = EQ/K)
(26)

From this we can obtain, for example, the posterior mean genotype or a posterior mode genotype for each
individual. The 6;’s from the E-step in (36) may be interpreted as the posterior probability that a point is
a non-outlier.

Modifying the algorithm in Section A to deal with offspring from an S1 (instead of F1) cross is straight-
forward: simply constrain ¢; = ¢5 and remove p(gz2|fia, b2/ K, €, h, 7, 7) from (25).

This procedure is implemented in the R package updog (Using Parental Data for Offspring Genotyping).

2.9 Screening SNPs

No matter the modeling decisions made, there will likely be poorly-behaved SNPs/individuals whose geno-
types are unreliable. Such poorly behaved SNPs/individuals may originate from sequencing artifacts and it
is important to consider identifying and removing them. The Bayesian paradigm we use naturally provides
measures of genotyping quality, both at the individual and SNP levels.

Let ¢; be the maximum posterior probability of individual 7. That is,

gi = max Pr(p; = ki/K|yi, &, h, 7, 7,01, 05), (27)

where the right-hand side of (27) is defined in (26). Then the posterior probability of an individual being
genotyped incorrectly is 1 — ¢;, and individuals may be filtered based on this quantity. That is, if a researcher
wants to have an error rate less than 0.05 then they would remove individuals with 1 —¢; > 0.05. The overall
error rate of a SNP isr :=1— %L >_; @, where n is the number of individuals in the sample. That is, r is the
posterior proportion of individuals genotyped incorrectly at the SNP. Whole SNPs that have a large value
of r may be discarded.

We evaluate the accuracy of r in Section 3.1.

2.10 Accounting for preferential pairing

Up until now, we have used a prior (4) that assumes a particular form of meiotic segregation — autopolyploids
with polysomic inheritance and bivalent non-preferential pairing. If working with a species with different
meiotic behavior — or a species where the meiotic behavior is unknown a priori [Bourke et al., 2017] —
one should adjust this prior accordingly. In this section, we develop a model and inference procedures
that account for one type of deviation from this ideal Mendelian segregation scenario: arbitrary levels of
preferential pairing. Though, there are other ways to deviate from Mendelian segregation that we do not
cover in this section. For example, if multivalent pairing were allowed then we would need to adjust our
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prior to account for the possibility of double reduction [Stift et al., 2010]. However, multivalent pairing can
occur relatively infrequently in many stable autopolyploids [Bomblies et al., 2016], and when it does occur,
the levels of double reduction can be relatively low [Stift et al., 2008], and so the below method might act as
a reasonable approximation in the presence of multivalent pairing. Another example of Mendelian violations
would be distortion resulting from an allele being semi-lethal.

Preferential pairing describes the phenomenon where some homologous chromosomes are more likely to
pair during meiosis. Preferential pairing affects the segregation patterns of haplotypes and, hence, the dis-
tribution of genotypes in a sample. For a good overview of preferential pairing, see Voorrips and Maliepaard
[2012].

To begin, we define a particular set of chromosome pairings to be a “pairing configuration”. Again, we
suppose that all pairing during meiosis is bivalent. Since chromosomes are not labeled (we are only interested
in the counts of reference and alternative alleles and not the specific chromosome carrying these alleles), we
may represent each configuration by a 3-tuple m € N2 where the first element contains the number of aa
pairs, the second element contains the number of Aa pairs, and the third element contains the number of
AA pairs. For example, for the two configurations of a hexaploid parent with three copies of A,

Aa | aa | AA and Aa | Aa| Aa,

we represent the first configuration by m = (1,1, 1) and the second by m = (0, 3,0).

Given a configuration m, a K-ploid parent will segregate K /2 chromosomes to an offspring. The counts
of reference alleles that segregate to the offspring, which we denote by z, will follow a “off-center” binomial
distribution:

[z — m3|m] ~ Bin(mg, 1/2), (28)

since in aa pairs no A alleles segregate, in AA pairs only A alleles segregate, and in Aa pairs an A allele
segregates with probability 1/2. However, the configuration that forms m is a random variable. Suppose
there are g(¢) possible configurations (see Theorem 1 for deriving ¢(¢)) given a parent has ¢ copies of A. Also
suppose configuration m; has probability ; of forming. Then the distribution of z is a mixture of (28), with
density

q(£)
p(zly,¢) = Z%Bm(z — m;3|my2, 1/2). (29)

i=1

The values of the 7;’s in (29) determine the degree and strength of preferential pairing. If there is
no preferential pairing, then the segregation probabilities (29) will equal those from the hypergeometric
distribution (5). We derive the values of v; that result in the hypergeometric distribution in Theorem 5.
Any preferential pairing will result in deviations away from the weights in Theorem 5.

If neither parent in an F1 population exhibits preferential pairing, then the genotype distribution will
follow (4). However, deviations from (4) can occur if some bivalent pairings occur with a higher probability
than random chance would allow (Theorem 5). In which case, the offspring genotype distribution would
be a convolution of two densities of family (29). Specifically, if parent 1 has genotype ¢; and configuration
probabilities v; and parent 2 has genotype ¢2 and configuration probabilities 5, then the offspring genotype
distribution is

K

PT(pi = k/K|£1a71562772) = Zp(l|717€1)p(k - i‘72)€2)' (30)
=0

Allowing for arbitrary levels of preferential pairing is simply replacing prior (4) with (30). We have made
this modification in updog, where we estimate both the parental genotypes (¢; and ¢2) and the degree and
strength of the preferential pairing (v, and -,) by maximum marginal likelihood.

This model for preferential pairing is similar to that of Stift et al. [2008]. Though there are major
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differences: (i) they do not use this model for genotyping, (ii) the chromosomes are not labeled in our setting
and are in theirs, and (iii) we allow for arbitrary ploidy levels while they just allow for tetraploidy.

2.11 Extension to population studies

We have focused here on data from an F1 (or S1) experimental design, using parental information to improve
genotype calls. However, a similar approach can also be applied to other samples (e.g. outbred populations)
by replacing the prior on offspring genotypes (4) with another suitable prior. For example, previous studies
have used a discrete uniform distribution [McKenna et al., 2010], a binomial distribution that results from
assuming HWE [Li, 2011, Garrison and Marth, 2012], and a Balding-Nichols beta-binomial model on the
genotypes [Balding and Nichols, 1995, 1997] that assumes an individual contains the same overdispersion
parameter across loci [Blischak et al., 2018]. (All of these previous methods use models that are more limited
than the one we present here: none of them account for allelic bias, outliers, or locus-specific overdispersion;
and most implementations assume the sequencing error rate is known.)

In our software we have implemented both the uniform and binomial (HWE) priors on genotypes. The
former is very straightforward. The latter involves modifying the algorithm in Section A by replacing ax,¢, ¢,
in (35) with the binomial probability Pr(k;|n,, a), where « is the allele frequency of A, and then optimizing
over (o, 7, h,€) in (39).

Though the uniform distribution might seem like a reasonable “non-informative” prior distribution, in
practice it can result in unintuitive genotyping estimates. This is because the maximum marginal likelihood
approach effectively estimates the allelic bias h and sequencing error rate € in such a way that the estimated
genotypes approximate the assumed prior distribution. As most populations do not exhibit a uniform
genotype distribution, this can result in extreme estimates of the bias and sequencing error rates, resulting
in poor genotype estimates. We thus strongly recommend against using the uniform prior in practice and
suggest researchers use more flexible prior distributions, such as the binomial prior.

2.12 Using oracle results for sampling depth guidelines

In this section, we develop oracle rates for incorrectly genotyping individuals based on our new likelihood
(20). These rates are “oracle” in that they are the lowest achievable by an ideal estimator of genotypes.
Using these oracle rates, we provide a method that returns a lower bound on read depths required to get an
error rate less than some threshold. This method also returns the correlation of the oracle estimator with
the true genotype, which might be useful when choosing the read depths for association studies.

To begin, we suppose that the sequencing error rate €, bias h, overdispersion 7, and genotype distribution
m(k/K) are all known. That is, the probability of dosage p; = k/K is w(k/K). Developing read depth
suggestions when these quantities are known will provide lower bounds on the read depths required when they
are not known. However, standard maximum likelihood theory guarantees that the following approximations
will be accurate for a large enough sample of individuals (even for low read depth).

Given that these quantities are known, we have a simplified model with a likelihood p(y;|p; = k/K)
(defined in (20)) and a prior 7(p;), where the only unknown quantity is the allele dosage p;. Under 0/1 loss,
the best estimator of p; is the maximum a posteriori (MAP) estimator
bi = argpmaxp(yi\pi)ﬂ(pi)- (31)
Notice that p; is only a function of y; and not p;. Thus, under this simplified model, one can derive the joint
distribution of p; and p; by summing over the possible counts ;.

Pripi=k/K,pi=0/K)= > plylk/K)w(k/K). (32)
yi:pi(yi)=L/K
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Given this joint distribution (32), one can calculate the oracle misclassification error rate

K

Pr(p; #pi) =1=Y_ Pr(pi = k/K,p; = k/K). (33)
k=0

One can also calculate the oracle misclassification error rate conditioned on the individual’s genotype
Pr(p; # pilpi = k/K)=1— Pr(p, =k/K,p; = k/K)/m(k/K). (34)

Also possible is calculating the correlation between the MAP estimator and the true genotype. All of these
calculations have been implemented in the updog R package.

For sample size calculations, a researcher could specify the largest levels of bias, overdispersion, and
sequencing error that they expect in their data. They could then specify a few genotype distributions that
they expect (which is a finite number if the sample is from an F1 population), and then find the read depths
required to obtain the oracle sequencing error rate (33) below some threshold that depends on their domain
of application. We provide an example of this in Section 3.6.

In the machine learning community, equation (33) is often called the Bayes error rate [Hastie et al., 2009,
Section 2.4].

2.13 Data availability

The methods implemented in this paper are available in the updog R package available on the Comprehensive
R Archive Network at

https://cran.r-project.org/package=updog.

Code and instructions to reproduce all of the results of this paper (doi: 10.5281 /zenodo.1203697) are available
at

https://github.com/dcgerard/reproduce_genotyping.

3 Results

3.1 Simulation comparisons to other methods

We ran simulations to evaluate updog’s ability to estimate model parameters and genotype individuals in
hexaploid species. Since most competing methods do not allow for an F1 population of individuals (though
see Serang et al. [2012] implemented at https://bitbucket.org/orserang/supermassa.git), we compared
the HWE version of updog (Section 2.11), a GATK-like method (from now on, just referred to as “GATK”)
[McKenna et al., 2010] as implemented by updog (by using a discrete uniform prior on the genotypes,
fixing h to 1 and 7 to 0, while specifying €), £itPoly [Voorrips et al., 2011], and the method of Li [2011]
as implemented by Blischak et al. [2018]. Other methods are either specific to tetraploids, or only have
implementations for tetraploids [Schmitz Carley et al., 2017, Maruki and Lynch, 2017], so we did not explore
their performances.

Specifically, we simulated 142 unrelated individuals (the number of individuals in the dataset from Shi-
rasawa et al. [2017]) under the updog model with sequencing error rate ¢ = 0.005, overdispersion parameter
7 € {0,0.01,0.02}, and bias parameter h € {0.5,0.75,1} (with h = 1 indicating no bias). These parameter
values were motivated by features in real data (Figure S7). We did not allow for outliers, neither in the
simulated data nor in the fit. For each combination of 7 and h, we simulated 1000 datasets. The n;’s
were obtained from the 1000 SNPs in the Shirasawa et al. [2017] dataset with the largest read-counts. The
distribution of the genotypes for each locus was binomially distributed using an allele frequency chosen from
a uniform grid from 0.05 to 0.95.
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Figure 7 contains boxplots for parameter estimates from the updog model. In general, the parameter
estimates are highly accurate for small values of overdispersion and become less accurate, though still ap-
proximately unbiased, for larger values of overdispersion. The accuracy of the parameter estimates vary
gradually for different levels of allele frequencies (Figures S3, S4, and S5). We note that in real data only a
small fraction of estimates of the overdispersion parameter are higher than 0.02 (Figure S7).

We then compared the genotyping accuracy of updog with the method from Li [2011], GATK [McKenna
et al., 2010], and fitPoly [Voorrips et al., 2011]. In Figure 8 we have boxplots of the proportion of samples
genotyped correctly stratified by bins of the allele frequency, color coding by method. We have the following
conclusions:

1. All methods show similar performance when there is no bias (h = 1) and no overdispersion (7 = 0).

These are the (unstated) assumptions of GATK and the method of Li [2011].

2. Overdispersion generally makes estimating genotypes much more difficult and accurate genotyping can
only be guaranteed for small levels of overdispersion.

3. When there is any bias, updog has much superior performance to GATK and the method of Li [2011].

4. £itPoly performs well when there is no overdispersion, even for large levels of bias. However, in the
presence of small amounts of overdispersion, fitPoly provides unstable genotype estimates.

5. Even when there is no bias, updog performs as well as the GATK and the method of Li [2011], except
for some datasets where the allele frequency is close to 0.5 and the overdispersion is large. This is
because GATK and the method of Li [2011] both effectively assume the bias parameter h is known at
1, while updog is using a degree of freedom to estimate the bias parameter. In the case where there is
actually no bias, this can make updog’s estimates somewhat more unstable.

Even though the genotyping results are not encouraging for large amounts of overdispersion, updog has some
ability to estimate this level of overdispersion to provide information to researchers on the quality of a SNP
(Figure 7).

We compared the allele frequency estimates from updog and the method of Li [2011]. Here, the results are
more encouraging (Figure S2). Even for large levels of overdispersion and bias, updog accurately estimates
the allele frequency (though less accurately than with small overdispersion). As expected, the method of Li
[2011] is adversely affected by bias, which it does not model, and tends to overestimate the allele frequency
in the direction of the bias.

Also encouraging are the resulting correlations between the true and estimated genotypes. Figure S2
contains boxplots of the correlation of the true genotypes with the posterior means of each method — except
for the method of Li [2011] where we calculate the correlation with the posterior mode as the software of
Blischak et al. [2018] does not return posterior means. We used the posterior means because the posterior
mode minimizes 0/1 loss, and so would be suboptimal for other, continuous metrics. We also included the
naive method of returning the proportion of reference reads as the estimated genotype [Grandke et al., 2016].
From Figure 52, we see that updog outperforms all other methods in every scenario we explored. We see the
largest gains over the naive method when there is no overdispersion and some bias, while the largest gains
over fitPoly occur in high bias and high overdispersion scenarios. These results indicate that using updog’s
posterior means could improve the results of association studies.

Finally, we compared the ability of updog and fitPoly to estimate the proportion of individuals geno-
typed incorrectly. Accurate estimates of this quantity can aid researchers when filtering for high-quality SNPs
(Section 2.9). The software implementation of updog returns this quantity by default, while we derived this
quantity from fitPoly using the output of the posterior probabilities on the genotypes. We subtracted the
true proportion of individuals genotyped incorrectly from the estimated proportion and provide boxplots of
these quantities in Figure 9. Generally, updog provides more accurate estimates for this proportion than
fitPoly, particularly for small levels of overdispersion and allele frequencies close to 0.5.

3.2 Simulation comparing use of S1 prior and HWE prior

We ran simulations to evaluate the gains in sharing information between siblings in an S1 population. We
drew the genotypes of an S1 population of 142 individuals where the parent contains either 3, 4, or 5 copies
of the reference allele. We then simulated these individuals’ read-counts under the updog model using the
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Figure 7: Left: Box plots of estimated overdispersion parameter (y-axis) stratified by the value of overdisper-
sion (z-axis). The horizontal lines are at 0, 0.01, and 0.02. Center: Box plots of logy-transformed estimates
of the bias parameter (y-axis) stratified by the value of overdispersion (z-axis). The column facets distin-
guish different levels of the true bias parameter (with 1 indicating no bias). The horizontal lines are at the
true bias parameter. Right: Box plots of estimated sequencing error rate (y-axis) stratified by the value of
overdispersion (z-axis). The horizontal line is at the true sequencing error rate of 0.005.

same parameter settings as in Section 3.1: ¢ = 0.005, 7 € {0,0.01,0.02}, and h € {0.5,0.75,1} (with h =1
indicating no bias). For each combination of parental genotype, overdispersion, and allelic bias, we simulated
1000 datasets. The n;’s were again obtained from the 1000 SNPs in the Shirasawa et al. [2017] dataset with
the largest read-counts.

For each dataset, we fit updog using a prior that either assumes the individuals were from an S1 population
(Section 2.8) or were in HWE (Section 2.11). We plot summaries of the proportion of individuals genotyped
correctly across datasets on Figure 10. In every combination of parameters, correctly assuming an S1 prior
improves performance, particularly when there is a small amount of overdispersion (7 = 0.01). Box plots of
the proportion of individuals genotyped correctly may be found in Figure S6.

3.3 Simulations on preferential pairing

In Section 2.10 we developed a procedure to account for arbitrary levels of preferential pairing. In this
section, we evaluate the accuracy of updog in the presence of preferential pairing.

We consider a tetraploid S1 population of individuals. In such a population, preferential pairing only
affects the segregation probabilities when the parent has two copies of the reference allele (because this
is the only scenario in a tetraploid population where there is more than one pairing configuration — see
Theorem 1). In this setting, the two possible pairing configurations are m = (1,0,1) and m = (0,2,0).
Under a non-preferential pairing setting, the weights of each configuration would be v; = 1/3 for the first
configuration and 7, = 2/3 for the second (Theorem 5).

To explore the performance of updog in the case of the most extreme levels of preferential pairing possible
in a tetraploid species, we simulated offspring genotypes by setting either v; = 0 or y; = 1. We did this while
setting e = 0.005, 7 € {0,0.01,0.02}, and h € {0.5,0.75,1}. Figure 11 contains boxplots of the estimated
levels of ;1 against the true values of ;. updog can estimate v, reasonably accurately, though these estimates
become less stable as the overdispersion increases.

We compared the preferential-pairing version of updog to fitPoly and the non-preferential pairing version
of updog. Figure 12 contains boxplots of the proportion of individuals genotyped correctly stratified by ;.
The preferential pairing version of updog performs better than fitPoly and the non-preferential pairing
version of updog, particularly in the presence of large amounts of overdispersion, and when ~; is large.
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3.4 Sweet potato

We fit the Balding-Nichols version of the method of Blischak et al. [2018], the method of Serang et al. [2012]
(implemented in the SuperMASSA software at http://statgen.esalq.usp.br/SuperMASSA/), fitPoly
[Voorrips et al., 2011], and updog to the SNPs presented in Figure 3. The Balding-Nichols model that
Blischak et al. [2018] uses has parameters that are shared across loci to estimate the genotype distributions
of the SNPs, so we actually fit the method of Blischak et al. [2018] on the 1000 SNPs with the most read-
counts and just present the results for the three SNPs from Figure 3. As the method of Blischak et al.
[2018] requires the sequencing error rate to be known, we use the sequencing error rate estimates provided
by updog.

FitPoly allows for F1, but not S1, populations, and seemingly only when parental counts are provided.
To account for this, we copied the read-counts data from the parent and specified this duplicated point as a
second parent. As recommended by the authors’ documentation, we fit these data using the try.HW = TRUE
setting.

The fits for all four methods can be seen in Figure 13. Our conclusions are:

1. Serang et al. [2012] and Blischak et al. [2018] provide unintuitive results for SNP2. As we know this is
an S1 population, the genotype distribution should be closer to a 1:2:1 ratio for genotypes AAAAAA,
AAAAAa, and AAAAaa. Both updog and fitPoly correctly accounts for this. Updog does so by
estimating an extreme bias while fitPoly does so by allowing the mean proportion of reference counts
for each genotype to depend only linearly or quadratically on the dosage level.

2. The method of Serang et al. [2012] was designed for Gaussian, not count, data and as such provides
some unintuitive genotyping. In particular, for SNPs 1 and 2 we see a few points on the left end of the
AAAAAa genotypes that are coded AAAAAA when these could probably only result from an extreme
sequencing error rate given that genotype.

3. The point in SNP3 that we have described as an outlier is removed by updog. The other methods are
not able to cope with outliers.

Generally, fitPoly returns more similar genotyping estimates to updog on these data than other methods.
However, their posterior measures of uncertainty differ, and sometimes substantially. Figure S8 plots the
estimates for the proportion of individuals genotyped incorrectly by both updog and fitPoly. Updog usually
returns larger levels of uncertainty, though there are some datasets where fitPoly estimates that a much
larger proportion of individuals are genotyped incorrectly than updog. To us, these seem like anomalous
results by fitPoly, as these SNPs seem mostly well-behaved (Figure S9).

3.5 Computation time

We measured the computation time required to fit updog to the 1000 SNPs with the highest read depth from
the dataset of Shirasawa et al. [2017]. These computations were run on a 4.0 GHz quad-core PC running
Linux with 32 GB of memory. It took on average 3.3 seconds per SNP to fit updog, with 95% of the runs
taking between 1.81 and 6.56 seconds. This is much larger than the total time of 121 seconds it took for the
software of Blischak et al. [2018] to fit their model on all 1000 SNPs. But it is almost exactly equal to the
computation time of fitPoly, where 95% of the runs took between 1.77 and 6.55 seconds. Also, since the
SNPs in updog are fitted independently, this allows us to easily parallelize this computation over the SNPs.

3.6 Sampling depth suggestions

In Section 2.12, we derived the oracle genotyping error rates given that the sequencing error rate, the allelic
bias, the overdispersion, and the genotype distributions are all known. In this section, we explore these
functions in the particular case when a SNP is in HWE with an allele frequency of 0.8.

We found the minimum read depths needed to obtain an error rate (33) less than 0.05 under different
levels of ploidy K € {2,4,6}, bias h € {0.5,0.55,0.6, ..., 1}, and overdispersion 7 € {0,0.002,0.004, ...,0.02}
while fixing the sequencing error rate at ¢ = 0.001. A heatmap of the minimum read depths required for the
different ploidy levels may be found in Figures S10-S12. We have the following conclusions: (i) For diploid
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individuals, the levels of bias and overdispersion matter relatively little in terms of genotyping accuracy, and
accurate genotyping may be made with an extremely small read depth. (ii) Read depth requirements seem
to grow exponentially with the ploidy. (iii) The levels of bias and overdispersion greatly impact the read
depth requirements in higher ploidy species. For reasonable levels of bias and overdispersion (Figure S7),
the read depth requirements can be many times larger to obtain the same error rates as when there is no
bias and no overdispersion.

Though the read depth requirements to obtain a small error rate seem depressing under reasonable levels
of bias and overdispersion, the results are much more optimistic to obtain high correlation with the true
genotypes. In Figures S13-S15, we calculated the minimum read depths required to obtain a correlation with
the true genotypes of greater than 0.9 under the same parameter settings as Figures S10-S12. There, we
see that the read depth requirements are much more reasonable, where for hexaploid species a read depth
of 90 is adequate to obtain this correlation under large levels of bias and overdispersion. Correspondingly,
for tetraploids a read depth of 25 seems adequate to obtain high correlation under large levels of bias and
overdispersion.

Once again, we would like to stress that these are lower bounds on the read depth requirements. Actual
read depths should be slightly larger than these, based on how many individuals are in the study.

4 Discussion

We have developed an empirical Bayes genotyping procedure that takes into account common aspects of NGS
data: sequencing error, allelic bias, overdispersion, and outlying points. We have shown that accounting for
allelic bias is vital for accurate genotyping, and that that our posterior measures of uncertainty (automatically
taking into account the estimated levels of overdispersion) are well calibrated and may be used as quality
metrics for SNPs/individuals. We confirmed the validity of our method on simulated and real data.

We have focused on a dataset that has a relatively large read-coverage and contains a large amount
of known structure (via Mendelian segregation). In many datasets, one would expect to have much lower
coverage of SNPs and less structure [Blischak et al., 2018]. For such data, we do not expect the problems
of allelic bias, overdispersion, and outlying points to disappear. From our simulations, the most insidious of
these issues to ignore is the allelic bias. If a reference genome is available, then it might be possible to correct
for the read-mapping bias by using the methods from Van De Geijn et al. [2015]. However, this might not be
the total cause of allelic bias. And without a reference genome, it is important to model this bias directly.
We do not expect small coverage SNPs to contain enough information to accurately estimate the bias using
our methods. For such SNPs, more work is needed. It might be possible to borrow strength between SNPs
to develop accurate genotyping methods.

We have assumed that the ploidy is known and constant between individuals. However, some species
(e.g. sugarcane) can have different ploidies per individual [Garcia et al., 2013]. If one has access to good
cytological information on the ploidy of each individual, it would not be conceptually difficult to modify
updog to allow for different (and known) ploidies of the individuals. However, estimating the ploidy might
be more difficult, particularly in the presence of allelic bias. In the presence of such bias, one can imagine
that it would be difficult to discern if a sample’s location on a genotype plot was due to bias or due to a
higher or lower ploidy level. More work would be needed to develop an approach that works with individuals
having unknown ploidy levels. Serang et al. [2012] attempts to estimate the ploidy level in Gaussian data,
but they do not jointly account for allelic bias, which we hypothesize would bias their genotyping results.

Garrison and Marth [2012] uses a multinomial likelihood to model multiallelic haplotypes. This allows
for more complex genotyping beyond SNPs. The models presented here could be easily extended to a
multinomial likelihood. For example, to model bias with k possible alleles, one could introduce k — 1 bias
parameters which measure the bias of each allele relative to a reference allele. One could use a Dirichlet-
multinomial distribution to model overdispersion and a uniform-multinomial distribution (uniform on the
standard k — 1 simplex) to model outliers. Modeling allele-detection errors (corresponding to sequencing
errors in our NGS setup) would be context-specific.

The methods developed here may also be useful for genotyping diploid individuals. We are not aware
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of diploid genotyping methods that account for allelic bias, overdispersion, and outlying points. However,
considering our oracle results in Section 3.6, accounting for these features is probably more important for poly-
ploid species, as determining allele dosage is more difficult than determining heterozygosity /homozygosity.

Genotyping is typically only one part of a large analysis pipeline. It is known that genotyping errors can
inflate genetic maps [Hackett and Broadfoot, 2003], but it remains to determine the impact of dosage esti-
mates on other downstream analyses. In principle one would want to integrate out uncertainty in estimated
dosages, but in diploid analyses it is much more common to ignore uncertainty in genotypes and simply use
the posterior mean genotype — for example, in GWAS analyses [Guan and Stephens, 2008]. It may be that
similar ideas could work well for GWAS in polyploid species (see also Grandke et al. [2016]).
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Figure 8: Boxplots of the proportion of individuals correctly genotyped (y-axis) for updog (black), fitPoly
(orange), GATK (blue), and the method of Li [2011] (green) versus the true allele frequency (z-axis).
The column facets distinguish between different levels of the overdispersion parameter and the row facets
distinguish between different levels of the bias parameter (with 1 indicating no bias).
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Figure 13: Genotype plots as in Figure 3 but color-coded by the estimated genotypes from the method of
Blischak et al. [2018], the method of Serang et al. [2012], £itPoly [Voorrips et al., 2011}, or updog (column
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A EM algorithm for an F1 cross
1: Let (see (4))

ag,e0, '= Pr(pi = ki/K|p1 = 01/ K, p2 = {2/ K). (35)

2: E-Step: Set

_ ﬂZkKizo BB<yi|ni7£(ki/Kaevh)77—)aki€1€2
™ EZ:O BB(yl|nz7 g(kz/Kv €, h)a T)akiflfz + (1 - 7T) BB(yl|nz7 1/2? 1/3)
n WBB(gj‘ﬁjvf(gj/Kvﬁvh)vT)

%= BB (G, 7y €0,/ €, h),7) + (1 — m) BB, iy, 1/2,1/3) o

3: M-Step: Set
1 o N
T=Ns 91+92+;0i (38)
N K
(617‘62»7—7}176) = arg max Zei IOg Z BB(yi|ni»£(ki/KaG,h)vT)aki&fz
(01,02,7,h,e)€1: K x1: K x[0,1] xR+ x[0,1] i—1 k=0
+ 01 10g BB(ja|fin, §(¢1/ K, €, h), 7) + 03 1og BB(Jalite, &2/ K. €, h), 7) (39)
1 1 .
L (10g(h) — n)? — Tog(h) — = (logit(€) — 1)* — log(e) — log(1 — )|,
20, 20?2
where
f(plv 6)
g Di, €, h) = 5 40
P& = e+ h(1 = Fpe) 1)
fpise) = (1 —€e)pi +e(1 —pi). (41)
B Theorems relating to preferential pairing
See Section 2.10 for notational definitions.
Theorem 1. The number of configurations m given a K -ploid parent has £ copies of A are
K ¢ .
S—|s5|+1 f2u>K,
s - 14 "

4] +1 if 2 < K,
where [-] and |-| are the ceiling and floor functions, respectively.

Proof. We begin by placing as many A’s into an AA pair as possible. This is [£/2] AA pairs. In this
configuration, there are K/2 — [£/2] aa pairs. We then navigate to a new configuration by subtracting 1
from my and m3 and adding 2 to mo. We do this until either m; = 0 or m3 = 0. Proceeding in this way, we
reach all possible configurations. Counting the number of configurations we obtained, we get (42). O

Summing over ¢, we can also get a result for the total number of possible values of m not conditional on
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Theorem 2. The total number of possible values of m is

4 K+4
(K +4)(K +2) () (43)
8 2
Proof. The proof involves summing (42) over ¢ under the two cases where K/2 is even and K/2 is odd.
We begin with the case where K/2 is even. Then the total number of elements is
K;Z
2 Z (l¢/2] +1) + |K/4] + 1 (by symmetry) (44)
=0
K/4
=4 Zz + K/4 41 (counting each element in summand twice) (45)
i=1
= K(K +4)/8+ K/4+ 1 (equation for sum of ) (46)
K+4)(K+2
8
For the case where K/2 is odd, we have the total number of elements is
K2—2
2 Z (L¢/2] +1) + | K/4] +1 (by symmetry) (48)
£=0

=2 i (le/2] +1) — |K/4] -1 (49)

=0
K42
. K -2
=4 Z i— — 1 (counting each element in summand twice) (50)
i=1
K+2)(K+6 K -2
= (K + )8( +6) _ Yl 1 (equation for sum of ) (51)
(K +4)(K +2)
=2 = 52
: (52)
O

Theorem 3. The total possible number of pairings where chromosomes are labeled but pairings are mnot

labeled is
() (7)) (3)! (53)

Proof. The proof is very similar the proof for the derivation of combinations. First, choosing 2 chromosomes
from K is (I;), then choosing 2 chromosomes from K — 2 is (Kfz). We continue in this manner until we
exhaust all of the chromosomes. We then need to divide by the number of orderings for iteratively choosing

2 chromosomes, which is just (%)' O

Theorem 4. Let

1 if m=0,

(5) (652) . (Hg"“) /m!  otherwise. (54)

f(&m)Z{

Then the number of pairings that result in a configuration m where the chromosomes are labeled but the
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pairings are not labeled is
f(K - éa ml)f(ga m3)m2! (55)

Proof. First, we select the number of pairings resulting in aa and we obtain f(K — ¢, m1). The proof of this
is very similar to the proof in Theorem 3 so we omit the details. Similarly, the number of pairings that result
in AAis f(¢, m3). The number of ways we can pair the leftovers into Aa is ms! because we first choose one of
mg A’s to pair with the first a, then mo — 1 of the remaining A’s to pair with the second a, and continue in
this way until all A’s and a’s are paired. We then simply multiply these counts together to obtain (55). O

Theorem 5. If there is no preferential pairing, then the probability of configuration m is

f(K — f, ml)f(f, mg)mgl(%)'

()% 6)

(56)

where f(£,m) is defined in (54).

Proof. There are (12( ) (K; 2) e (g) / (%)' possible configurations where the chromosomes are labeled but the
pairings are not labeled (Theorem 3). Of those, f(K — £, m1)f(¢, m3)ms! contain configuration m (Theorem
4). 1If each configuration, where the chromosomes are labeled but the pairings are not, have an equal
probability, then the probability of configuration m is just the ratio of these two quantities, (56). O
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Figure S1: Considering an autohexaploid loci, -2 standard deviations of the bias parameter under our default
prior (with a sequencing error rate of 0.01) (top left), +2 standard deviations of the bias parameter under
our default prior (with a sequencing error rate of 0.01) (top right), -2 standard deviations of the sequencing
error rate under our default prior (with a bias parameter of 1) (bottom left), +2 standard deviations of the
sequencing error rate under our default prior (with a bias parameter of 1) (bottom right). The z-axis is the
number of alternative reads and the y-axis is the number of reference reads.
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Figure S2: Estimated allele frequency (y-axis) for the updog method (black) and the method of Li [2011]
(orange) versus true allele frequency (z-axis). An unbiased method would result in most points lying along
the y = x line. A smooth generalized additive model was fit to the results of both methods (blue lines).
The column facets distinguish between different levels of the overdispersion parameter and the row facets
distinguish between different levels of the bias parameter (with 1 indicating no bias).
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Figure S2: Boxplots of the correlation between the true and estimated genotypes (y-axis) stratified by
the binned values of the major allele frequency (z-axis). The boxplots are color-coded by method: updog
(black), fitPoly (orange), the naive method (blue), GATK (green), and the method of Li [2011] (yellow).
The column facets distinguish between different levels of the overdispersion parameter and the row facets
distinguish between different levels of the bias parameter (with 1 indicating no bias).
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Figure S3: Allele frequency (z-axis) versus log, of the estimated bias (y-axis). The row facets distinguish
different levels of bias (with 1 indicating no bias) and the column facets distinguish different levels of overdis-
persion.
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Figure S4: Allele frequency (z-axis) versus estimated overdispersion level (y-axis). The row facets distin-
guish different levels of bias (with 1 indicating no bias) and the column facets distinguish different levels of
overdispersion.
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Figure S5: Allele frequency (x-axis) versus estimated sequencing error rate (y-axis). The row facets distin-
guish different levels of bias (with 1 indicating no bias) and the column facets distinguish different levels of
overdispersion.
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Figure S6: Box plots of the proportion of individuals genotyped correctly in an updog fit (y-axis) stratified
by parent genotype (z-axis). Column facets distinguish different levels of overdispersion while row facets

distinguish different levels of bias (with 1 indicating no bias).

Orange box plots correctly assume the

individuals are from an S1 population while black box plots incorrectly assume the population is in Hardy-

Weinberg equilibrium.
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Figure S7: Histograms of updog estimates of parameters in 1000 SNPs from the data from Shirasawa et al.
[2017].
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Figure S8: Updog’s estimated proportion of individuals genotyped incorrectly (z-axis) versus fitPoly’s
estimated proportion of individuals genotyped incorrectly (y-axis) for the 1000 SNPs in the dataset from
Shirasawa et al. [2017] with the largest read depth. The dashed horizontal line is the y = x line. Updog has
a larger estimate of incorrectly genotyped individuals for points below this line, and a smaller estimate for
points above this line.
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Figure S9: A genotype plot of the SNP from the dataset of Shirasawa et al. [2017] where updog estimated
that 4.5% of the individuals were genotyped incorrectly and fitPoly estimated that 28.5% of the individuals
were genotyped incorrectly. The figure is annotated by an updog fit.
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Figure S10: The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under
different levels of overdispersion (y-axis) and allelic bias (z-axis) while the sequencing error rate is fixed at
0.001. This is for a diploid population under Hardy-Weinberg equilibrium with a major allele frequency of
0.8.
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Figure S11: The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under
different levels of overdispersion (y-axis) and allelic bias (z-axis) while the sequencing error rate is fixed at
0.001. This is for a tetraploid population under Hardy-Weinberg equilibrium with a major allele frequency
of 0.8.
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Figure S12: The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under
different levels of overdispersion (y-axis) and allelic bias (z-axis) while the sequencing error rate is fixed at
0.001. This is for a hexaploid population under Hardy-Weinberg equilibrium with a major allele frequency
of 0.8. Grey regions require a read depth greater than 3000.

40


https://doi.org/10.1101/281550
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/281550; this version posted August 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Ploidy: 2, Allele Freq: 0.8

0.020+

0.015+

0.010+

Overdispersion

0.005+

N N I - S N L

A A D DD DM D D D D
A A D DD DD DD DD D D Db
A DD D DD DM D D Db
A D DD DM DM D D D D
A A D DD DM DD D DD
A A DD DM D DD D D Db
A D D D DD DD DD D D Db
A A DD DM DM D D D D
e N N . - N - N SN N - S N

0.000+

0.6 0.8 1.0
Bias

Figure S13: The minimum read depth required to obtain a correlation of over 0.9 between the true and
oracly estimated genotypes under different levels of overdispersion (y-axis) and allelic bias (z-axis) while the
sequencing error rate is fixed at 0.001. This is for a diploid population under Hardy-Weinberg equilibrium
with a major allele frequency of 0.8.
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Figure S14: The minimum read depth required to obtain a correlation of over 0.9 between the true and
oracly estimated genotypes under different levels of overdispersion (y-axis) and allelic bias (z-axis) while the
sequencing error rate is fixed at 0.001. This is for a tetraploid population under Hardy-Weinberg equilibrium
with a major allele frequency of 0.8.
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Figure S15: The minimum read depth required to obtain a correlation of over 0.9 between the true and
oracly estimated genotypes under different levels of overdispersion (y-axis) and allelic bias (z-axis) while the
sequencing error rate is fixed at 0.001. This is for a hexaploid population under Hardy-Weinberg equilibrium
with a major allele frequency of 0.8.
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