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Abstract 
Neurons in primary visual cortex (V1) are strongly modulated both by stimulus contrast and by 

fluctuations of internal inputs. An important question is whether population codes are preserved 

under these conditions. Changes in stimulus contrast are thought to leave population codes 

invariant, whereas the effect of internal gain modulations remains unknown. To address these 

questions we studied how the direction-of-motion of oriented gratings is encoded in layer 2/3 of 

mouse V1. Surprisingly, we found that, because contrast gain responses across cells are 

heterogeneous, a change in contrast alters the information distribution profile across cells leading 

to the failure of contrast invariance. Remarkably, internal input fluctuations that cause 

commensurate firing rate modulations at the single-cell level, do respect population code 

invariance. These observations have important implications for visual information encoding, and 

argue that the brain strives to maintain the stability of the neural code in the face of fluctuating 

internal inputs. 
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Introduction 
Contrast invariance of orientation or direction tuning functions, i.e., the preservation of tuning 

function shape across contrasts, is a fundamental property of visual neurons (Sclar G and RD 

Freeman 1982; Skottun BC et al. 1987). This suggests that the brain may use the same groups of 

cells to extract orientation or direction information across different visual contrasts. Accordingly, 

Busse et al. (2009) compared population responses across contrasts after averaging cell responses 

according to preferred orientation (Busse L et al. 2009) and concluded that the population code 

for orientation is preserved across contrasts. Later studies (Graf AB et al. 2011; Berens P et al. 

2012) similarly found that neuronal pooling weights for orientation/direction decoding across 

contrasts are substantially preserved. A consensus has therefore been reached that the population 

code is preserved across contrasts. However, some other recent studies (Peirce JW 2007; Sani I et 

al. 2013) have reported that some cortical cells show larger responses to a range of intermediate 

contrasts than at 100% contrast; these intermediate-contrast selective cells may in theory encode 

more information at intermediate contrasts. These observations suggest that it is worth revisiting 

the concept of contrast invariance to ask specifically whether the population of cells that convey 

information about orientation or direction of motion remains identical across visual contrasts.  

Neural responses are not modulated only by external stimuli. Internal inputs also modulate neural 

responses under identical external stimulation (Zohary E et al. 1994; Shadlen MN and WT 

Newsome 1998) changing neural population activity (Niell CM and MP Stryker 2010; Polack PO 

et al. 2013; Ecker AS et al. 2014; Reimer J et al. 2014; McGinley MJ, SV David, et al. 2015; 

McGinley MJ, M Vinck, et al. 2015; Vinck M et al. 2015). In fact, Fiser et al. have argued that 

most variability in the brain is due to internal activity, while sensory inputs evoke relatively small 
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modulations superimposed on internally driven activity (Fiser J et al. 2004). Similarly, changes in 

behavior and brain state are known to modulate neuronal responses to identical stimuli (Niell CM 

and MP Stryker 2010; Polack PO et al. 2013; Ecker AS et al. 2014; Fu Y et al. 2014; Reimer J et 

al. 2014). These observations raise the question how the brain is able to maintain a stable 

representation of sensory information in the face of large internal fluctuations of neuronal activity. 

In particular, how internal fluctuations affect the population code for orientation or direction of 

motion remains an open question.  

Below, we addressed these questions by studying the neural population code for moving oriented 

gratings in layer 2/3 of mouse area V1. We found that the performance of decoders remains 

essentially unchanged when they are trained and tested across different levels of spontaneously 

fluctuating internal input, whereas it degrades substantially when they are trained and tested 

across different stimulus contrasts. The substantial degradation of direction-of-motion decoders 

trained at different contrasts results primarily because the identity of cells that contribute most to 

direction decoding is not contrast invariant, but instead changes with contrast. We conclude that: 

1) cortical circuits are optimized to maintain the stability of the neural code in the face of 

spontaneously fluctuating internal inputs, and 2) contrast invariance of the neural code fails 

substantially at the population level. 
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Materials and Methods 

Animal preparation 

All experiments and animal procedures were performed in accordance with guidelines of the 

National Institutes of Health for the care and use of laboratory animals and were approved by the 

IACUC at Baylor College of Medicine.  

In our study, 9 C57/BL6 wild-type and 7 Thy1-GCaMP(Thy1-GCaMP6s 4.3(Dana H et al. 2014)) 

mice were used, which were 4-8 weeks old. During surgery, mice were anaesthetized with 1-1.5% 

isoflurane, and Baytril (5mg/kg), Carprofen (5mg/kg) and Dexamethasone (1.5mg/kg) were 

administered subcutaneously to minimize brain swelling (Holtmaat A et al. 2009). After attaching 

a headpost on the skull, a 3‑mm diameter craniotomy was made on the center of visual cortex — 

2.7mm lateral to the midline and 1.5mm posterior to the bregma. For the 9 wild-type mice, 

GCaMP6s virus (AAV5.Syn.Flex.GCaMP6s.WPRE.SV40, Penn Vector Core) was injected 

within the craniotomy by using a Drummond Nanojector (~90 nl per site) after diluting 4-8 times 

with sterile saline. Then, the craniotomy was covered with a glass window. 

 

Imaging 

Two-photon experiments were performed 3-4 weeks after the surgery, when GCamp6s expression 

is optimal. For Thy1-GCaMP mice, the experiments were conducted at 1-2 and/or 10 days after 

surgery without viral injection.   

Populations of 50-200 cells located 150-250 µm below the pia were imaged with water-

immersion objective lenses, either 20x, 0.95 NA (Olympus), or 16x, 0.8 NA (Nikon), in a 

modified Prairie Ultima IV two-photon laser scanning microscope (Bruker, Billerica, MA), fed by 

a Chameleon Ultra II laser (Coherent, Santa Clara, CA). Cell populations were imaged at frame 

rates of ~7 Hz. Depending on imaging depth, the laser power was kept between 20 mW at the 

surface and 50 mW at depths below 200 µm, at 910 nm wavelength.  
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For experiments (n=19) with sedated animals (n=11), 1.5mg/kg of fentanyl and 0.5mg/kg 

dexmetetomidine were injected 0.5-1hr before the recording. Out of 28 main imaging sessions in 

different FOVs, 14 sessions (6 sessions from sedated animals) were performed with a time break 

(0.5-1 hours) between two sub-sessions with visual stimulation. During the time break, the screen 

was turned off and about 5-10 minutes before start of the second sub-session the screen was 

turned on again. During pre-/post- imaging sub-sessions, visual stimulation of 50-100 

trials/condition was presented to mice. All the experiments were performed after verifying that 

neuronal population imaged responded to our visual stimulation though a brief retinotopy.  

 
Visual stimulation 

Visual stimuli were generated in MATLAB and displayed using Psychtoolbox (Brainard DH 

1997). Drifting at 2Hz, square-wave gratings at 0.04 cycles/degree were presented for 500 ms 

followed by an inter-stimulus interval of 1.5 seconds during which a full-field gray screen at the 

same mean luminance was presented. All trials (100-200 trials/condition) were pseudo-randomly 

interleaved. The stimuli were presented on an LCD monitor (Koolertron, Shenzhen, China) at 60 

Hz frame rate, positioned 8 cm in front of the right eye, centered at 45 degrees clockwise from the 

mouse’s body axis. The visual angle of the screen spanned 560 elevation and 860 azimuth. The 

screen was gamma-corrected, and the mean luminance level used was 85 cd/m2. In some early 

experiments (n=8), another screen (DELL 2408WFP, Dell, Texas, USA) was used, of which 

visual angle spanned 540 (elevation) x 780, at the mean luminance level of 80 cd/m2 after gamma 

correction.  

For 28 imaging sessions gratings moving to 4 directions (-150 or -100, 00, 300, and 900) were 

presented randomly interleaved at 100%, 40% contrast, 100-200 trials per condition per session. 

For 12 sessions out of 28 sessions, 20% contrast was also used.  

To assess contrast-dependent population codes for a small stimulus size, we performed 9 imaging 

sessions from additional 5 sedated animals. For these experiments, a small grating stimuli (i.e., 15 
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degrees in radius) moving to 3 directions (-300, 300, and 600) were presented randomly 

interleaved at 100%, 30% contrast. The grating stimuli were presented on the aggregate receptive 

centers of cells imaged within an FOV.  

Occasional experiments included grating stimuli spanning the full range of directions (0 to 330 

degrees) at 30-degree intervals presented pseudo-randomly interleaved at 100% or 40% 

Michelson contrast (Michelson A 1927). Under these conditions, which were used to calculate 

full tuning functions, each stimulus was presented 30 times.  

 

Monitoring animal behavior 

Animal behavior was monitored during awake experiments by tracking wheel rotation and 

recording ipsi-lateral eye movements (Suppl. Fig. 1). While the mouse head was restrained, the 

mouse was free to move forward or backward on the rotating wheel during experiments. The 

wheel rotations were measured with an incremental encoder with a resolution of 8000 

cycles/revolution (Model 15T, www.encoder.com). Eye movements were monitored through a 

dichroic mirror (FM02, www.thorlabs.com), which was placed between the visual stimulation 

screen and the mouse eye, using an infrared camera (GC660, Allied Vision Technologies) at 30 

frames/second (Suppl. Fig. 1A).  Behavioral data acquisition was synchronized with the 

presentation of the visual stimulus and the acquisition of imaging frames.    

Data analysis 

Preprocessing 

Movies were x-y-motion-corrected by comparing image frames to the reference image with a sub-

pixel registration method (Guizar-Sicairos M et al. 2008). For data from sedated animals, the 

average of the first 100 image frames was used as the reference image. For the awake data, 100 

image frames for which no wheel movements appeared were used. For cell selection, a circular 

disk or annulus was manually defined to cover the viral expression over a cell body (Chen TW et 
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al. 2013). After high-pass filtering to get rid of slow signal drifts (cutoff freq=0.05Hz), we 

corrected the neuropil contamination of the fluorescence signal (F) at the soma by subtracting the 

mean fluorescence of an adjacent neuropil patch annulus (extending from 7-20 ㎛ away from the 

cell body center), Fn, as follows: Fcorrect = F - S*Fn (Kerlin AM et al. 2010; Chen TW et al. 2013; 

Lee S et al. 2017), where S=0.65 similar to other studies (Chen TW et al. 2013; Dana H et al. 

2014) using GCamP6 virus.    

For awake experiments, sessions were first screened by the experimenter to exclude segments 

with obvious artifacts, such as eye squinting or inappropriate eye opening, excessive stress 

indicated by the restlessness of the animal. Data selected had to have successful monitoring of eye 

movements under good eye conditions (e.g., neither eye squinting nor inappropriate eye opening) 

for at least 30 minutes of visual stimulation. Then, a second pass of quantitative screening was 

performed. All trials with large movements were excluded from data analysis. Large movements 

were defined by either recording the instantaneous rotation speed of the wheel > 1cm/sec or the x-

y movement of the image frame >2µm from the reference frame of each movie.  When the movies 

in each experiment session show substantial z-drift, resulting in more than 10% cells identified in 

the first movie to disappear in the last movie, the entire session was excluded from analysis.  

Eye position information was analyzed within the quiet awake state. Pupil size and location (x- 

and y-coordinate) were tracked with an automated custom-built program. Frame-by-frame 

supervised inspection of the eye traces followed by statistical analysis was then performed. In the 

following, statistical thresholds at each step were calculated within trials that survived in the prior 

steps. First, trials with eye movements whose velocity exceeded 2 standard deviations from the 

mean were excluded from analysis.  Second, trials with large eye position deviations from the 

median were excluded from analysis. Specifically, trials were excluded when the X or Y 

coordinate was < 1st quartile coordinate - interquartile range (IQR), or > 3rd quartile coordinate + 

IQR. Typically, 90% of trials that survived this criterion showed less than 10.2° eye excursions 
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from fixation (see example in Suppl. Fig. 1B; median excursion = 4.5° at this dataset), 

commensurate with ~10% of the stimulus size (~100° in diameter). This was consistent across 

sessions. Similarly, trials for which pupil size deviated more than the IQR away from the 1st or 

3rd quartile were excluded from analysis, as they might correspond to relatively extreme states of 

arousal. Note that pupil size was not modulated as a function of stimulus contrast (Suppl. Fig. 1C-

D), ensuring that contrast dependence of pupil size is not a confounding factor in our conclusions.  

Importantly, results obtained were consistent across awake and sedated animals, further ensuring 

that differences in eye movement profiles cannot explain our results. 

 

Estimation of spike rates 

To estimate the spike rate of each cell, the pre-processed fluorescence signal was normalized 

within that cell body, pixel by pixel, by calculating (F-F0)/F0 (i.e., ΔF/F). For each pixel, F0 was 

defined as the mean fluorescence values over the time-series of that pixel. Spike rates were then 

estimated by applying a method (Lee S et al. 2017) we recently developed. Briefly, this method 

was based on a sparse non-negative linear regression model to estimate spike rates associated 

with the calcium fluorescence ΔF/F signal by assuming linear calcium dynamics with a time 

constant, which was adapted from (Chen TW et al. 2013), to represent the decay time of 

fluorescence signal in the cell body expressing GCaMP6s.  

The linear relationship between fluorescence signal reflecting calcium dynamics and estimated 

spike was given as: 

� � ���� ,  

where � is a multi-pixel Matrix of [time-samples x pixels] of ΔF/F signals, � is a convolution 

matrix of [time-samples x time-samples] that generate the typical calcium dynamics from an 

spike-rate vector of [time-samples x 1], �, and � is a spatial filter vector of [pixels x 1] that 

applies to across pixels used in the cell body. The superscript, T, represent the transpose of vector. 
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The convolution matrix was constructed by using the time constant (Chen TW et al. 2013) for 

GCaMP6s signal (i.e., τ=0.85 seconds) (see Lee et al.(Lee S et al. 2017)  for more detail). 

With constraining � � � for the spatial filter and � � �  for spike rates, the objective function was 

given as:  

� � 	� 
 ����	
�

� � ��	�	
� � ��	�	

�     s.t. � � � and � � �, 

where ��  and ��  are the parameters that were automatically optimized while minimizing the 

objective function (see Lee et al.(Lee S et al. 2017) for more detail). We then find optimal � and � 

that minimize the cost function, where � yields the estimated spike rates for that cell.  

 

Measuring Visual Responses 

For each cell, visual response was calculated trial-by-trial as the increase of the mean ΔF/F signal 

across pixels corresponding to the cell-body that occurs within the first 500ms of visual 

stimulation (compared to the 500ms immediately preceding the onset of the stimulus). The mean 

contrast-evoked responses of each cell were calculated by averaging all trial responses for that 

cell in each contrast, for 100% and 40% contrasts, respectively. To be included in subsequent 

analysis, the contrast-evoked response of a cell had to be greater than 5% at either contrast. In the 

results we present, ‘all cells’ refers to all the visually responsive cells that pass this criterion.   

For selected cells, single trial responses were calculated for each trial as the average spike 

response from a 4-frame window closely matching the visual stimulus duration. For awake 

animals, the window computed for the trial response was the same as the window for visual 

stimulation. For sedated animals, it was centered to the peak of the average visual response (see 

Fig. 1D), as the time course of visually evoked responses were somewhat prolonged in sedated 

animals (Haider B et al. 2013).  

 

Decoding stimulus direction from population activity. 
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To discriminate the visual stimulus direction from cell population responses within versus across 

contrasts, we used a regularized logistic regression model (RLRM) with the L2-norm 

regularization (Krishnapuram B et al. 2005; Bishop CM 2006). In this model, the cells’ trial-

response vector was fed into an input vector � �  ���, ��, 
 , ���� of RLRM, where �� is the i-th 

cell trial-response in the given trial.  

Then, the input vector was classified with the RLRM model as follows: 

 �
� � ��|�, �� � �
��
� � ����    
Here, �
�� � 1/
1 � exp
����,  � is stimulus direction, � is a weight vector, and 

�� � � �P
�|��P
θ�d�d�. 

For the binary classification with equal number of trials per condition, �� � �	
����	
��



, where 

�
�� � � �P
�|��d�. 

We performed a mean response subtraction (i.e., � � ��) to achieve an unbiased decoder (i.e., 

� ��
� � ���P
�|��P
θ�d�d�=0). Our unbiased decoder is comparable to Graf et al. (Graf AB et 

al. 2011) that applied contrast-response-offset correction. Note also that our conclusions shown in 

the present study remained the same without this bias correction and for z-normalization of 

individual cell responses. 

The L2-norm regularization on � was applied to achieve a maximum a posteriori (MAP) estimate 

as follows: 

                  � ��� � !�"#!��$Σ�log �)��*�, ��+ �  log�
��,  

                          = !�"#!��$Σ�log �)��*�, ��+ �   -.�.��, 

Here, - is a free parameter searched in a logarithmically linear space between 10-10 and 10 to find 

the optimal value that results in the maximum decoding performance, using a separate set of data 

from the training and testing data (see below).  

The decoding performance of cell populations for a pair of stimulus directions were assessed and 

cross-validated by 100 random sub-sampling tests (80% for training, 10% for optimal - 
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searching, 10% for testing). The decoding tests were performed: 1) within the same contrast as the 

training contrast to assess decoding performance for within-contrast direction decoders, or 2) 

within a contrast different from the training contrast for cross-contrast direction decoders. The 

same method was also applied to compare decoding performance within versus between 

population-activity-levels (PALs). To this end, trials within each stimulus direction and within 

each contrast were separated into two sub-groups, one with high (50%-highest, “H”), the other 

with low (50%-lowest, “L”) average population activity. The average population activity for each 

trial was computed as the mean response across all cells included within each FOV.  

The logistic regression model (LRM) was also used for selecting the most informative cells in 

stimulus-direction decoding. This was achieved by using an L1-norm regularization technique 

(instead of the L2-norm) to increase the sparseness of the weight vector (sparse LRM). We then 

re-evaluated the decoding performance with L2-norm RLRMs through cross-validation for the 

selected cells. Specifically, we trained a sparse LRM from 80%, randomly selected, training data 

trials using 10% distinct data trials for - optimization. A number (n) of cells with the n-highest 

magnitude of weights were then selected. The contribution of each cell to the output value of 

LRM before the nonlinear function (i.e., ��
� � ���) was determined by two factors: 1) the 

overall response modulation of the cell between conditions used, and 2) its corresponding weight 

value,  /� . The different response modulations across cells were normalized by setting the 

response variance for each cell across trials to unity prior to training in order to fully reflect the 

extent of cell’s contribution to the decoder. Following cell selection, an L2-norm regularized 

RLRM was trained to find the optimal - and re-optimize the weights of the selected n-cells using 

new randomly selected training data (80% trial), as well as distinct - optimization (10% of trials), 

and distinct testing (10% of trials) data. This process was repeated 100 times. Note that the data 

for cell selection and decoder training with an optimal - were kept strictly separate from the 

testing data.    

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/281444doi: bioRxiv preprint 

https://doi.org/10.1101/281444
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Linear Direction Tuning Function Fits across contrasts or different population activity 

levels 

To obtain the response gain of direction tuning functions of each cell between 100% and 40% 

contrast, we used a linear fit as follows: 

0��
1� � 20���
1� � 3, 

where 0��
1� and  0���
1� represent the tuning functions of a cell at 40% and 100% contrast 

respectively, 1 refers a stimulus direction, and 2 and 3 represent a gain and a bias. 

To prevent an arbitrary non-physiological fitting (e.g., a negative 2 or a large positive 2 with a 

large negative 3), we constrained the fitting as follows: 

4
2, 3; 6� � 1
7 8 9:��� � )2:���� � 3+9

�

�
�

�

� 6
2 � .3.�� 

    ;. =. 2 > 0 

To minimize the cost function with the non-negative constraints, we adapted a log-barrier 

technique (Boyd SP and L Vandenberghe 2004; Kim S-J et al. 2007).  

Here, :���  and :����  represent a vector composed of the mean evoked responses, 0��� 
1�  and 

0���� 
1�, from the ith sub-sampled set of trials of each cell to stimulus direction (1) at 40% and 

100% contrast, respectively, and 6 is a free parameter that constrains the magnitude of 2 and 3. In 

the ith sub-sampling, 50% trials randomly selected within stimulus direction=d and contrast=c 

were averaged to generate 0��,�����
1� and the remaining 50% trials to generate0��,����
1�. This 

random subsampling was performed N=1000 times, i.e., i=1,…,N. Then, the training set 

composed of :���,�����s and :����,�����s was used to search for the optimal 6 in a logarithmically linear 

space between 10-5 and 10 and to estimate the parameters 2 and 3. The testing set of :���,���� and 

:����,����was used to evaluate the fit’s performance.  The same strategy was also applied to obtain 
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the response gains when comparing between different population-activity-levels by conditioning 

trials based on population-activity-level as well as contrast (e.g., :���� � 2:���� � 3). 

 For within-contrast fits (e.g., :��� � 2:��� � 3 ), training trials obtained from the ith sub-

sampling shown above were further divided into two subsets  to construct Y, X (i.e., Y � 2X � 3) 

by averaging 50% trials randomly selected from training trials within each stimulus condition for 

Y and the remaining 50% trials for X. The same method was applied for testing data.  

The bias 3  was normalized to the maximum response at 100% contrast before plotting in Fig. 

2B-C and 5E. 

 

Identifying which Cells Contribute to Direction Decoding Across Conditions 

�
B�|BCD=�!;=, D�  was defined as the probability that the cell  B�  belongs to the n “most 

informative” cells, i.e. the cells whose output can discriminate best between the stimulus 

conditions at the given contrast. Practically, �
B�|BCD=�!;=, D� was calculated by counting how 

many times out of 100 cross-validation tests, the cell B�  was selected as one of the n “most 

informative” cells. Then, the probability for the cell to belong to the n most informative cells at 

both 100% and 40% contrast was given as: 
�

�
∑ �
B�|100%, D��
B�|40%, D�� . We considered cells 

to be reliably selected among the n “most informative” cells, if either �
B�|100%, D� or 


B�|40%, D� H 0.7 . The probability for a cell to reliably belong to the n “most informative” cells 

at both contrasts is then: 

 �
��

∑ ��������	|100%, �����������	|40%, ��	 �, where �� � ����� ����

, ��
�, and  ��

 , ��
 represent 

the number of cells with ���	|�!�"#$�", �� % 0.7 at contrasts 100% and 40% respectively. 

 

Decoding Performance in Control Data Constructed to have identical SNR across different 

contrasts  
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To rule out the possibility that contrast-dependent difference in SNR affects the comparison 

between within-contrast versus cross-contrast decoders, we generated artificial control data by 

modifying relative noise levels (i.e., the SNR) of 100%-contrast data to be the same as the one of 

40%-contrast data within each stimulus direction for each cell. At the same time we held the mean 

response within stimulus conditions the same in order to maintain original direction tuning 

functions and contrast response gains. We then compared the decoding performance of within-

contrast versus cross-contrast decoders derived from these control data.  

To generate spike-rate responses, we employed the Gamma distribution. We chose the Gamma 

distribution rather than Poisson distribution because spike response variance on repeated identical 

stimulus presentation is often larger than predicted by the Poisson distribution, whose relative 

dispersion is constant (i.e., variance/mean = 1) This is supported by a recent study, which found 

the negative binomial distribution (NBD) to be a better model of real spike fluctuations (Goris RL 

et al. 2014) (the Gamma distribution resembles the behavior of NBD for estimated relative spike-

rates). The mean and variance of the response of each cell within each stimulus condition was 

calculated at 100% and 40% contrast, respectively. These values from each contrast were then 

used to create a gamma distribution for each cell, contrast as follows: 

�
�� � �

 	!�"�
��#�J#
�, 

where Γ
�� � � L!#�J#$1L %

�
, where x represents the firing rate. The two free parameters, ! and 

M, determine the mean and the variance as !M and !M�  respectively. Using this relationship, we 

generated 1000 random samples for each contrast, with !  and M given by !��  and 
����"���

���
 for 

100% contrast and !�� and M�� for 40% contrast, respectively. The subscript indicates the contrast 

used to estimate the corresponding parameter. For 40% contrast, this process generates artificial 

data that have the same mean and variance as the original data, and for 100% contrast it generates 

data that have the same original mean obtained at 100% contrast, but signal to noise ratio that 

matched the signal to noise ratio obtained at 40% contrast. This was performed cell-by-cell across 
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all cells. The entire process was performed 10 times to generate data for cross-validation. The 

usual procedure was then applied to evaluate decoder performance within- and across contrasts, as 

described above.  

Statistical Analysis 

All statistical tests were performed with non-parametric, MATLAB built-in functions. Post-hoc 

Tukey test refers the ‘tukey-kramer’ method in the function called ‘multcompare’. FWE and SEM 

in figure legends represent the Bonferroni family-wise-error correction and the standard error of 

the mean.  

 

 
Results 
 

Contrast gain responses are heterogeneous 

We imaged neurons in layer 2/3 of mouse V1 via 2-photon microscopy (Fig. 1B) while presenting 

oriented gratings drifting in one of 12 different directions, at 100% or 40% contrast. Direction 

tuning functions were calculated per contrast condition after deconvolving the calcium 

fluorescence (ΔF/F) signal (Figs. 1A-D). Tuning function shape is preserved across contrasts (Fig. 

1E), as shown previously in cats (Hubel DH and TN Wiesel 1959; Sclar G and RD Freeman 

1982) and monkeys (Hubel DH and TN Wiesel 1968). However, response gains vary 

considerably across cells as a function of contrast (Fig. 1E; Suppl. Fig. 2). Some neurons even 

exhibit larger preferred orientation responses at 40% versus 100% contrast (Fig. 1E; cells #3, 4). 

The heterogeneity of contrast gain responses across cells raises the possibility that different 

optimal population codes for direction-of-motion are implemented at different contrasts.  

 

 

[Figure 1] 
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Population codes for direction depend on visual contrast 

To test whether population codes for direction-of-motion are contrast-invariant, we collected 100-

200 trials per stimulus condition for stimuli spanning 4 directions. Twenty eight imaging sessions 

from different fields-of-view (FOVs) were performed in 11 sedated and 6 awake animals (50-150 

neurons/FOV; see Methods). All sessions (18, 10 FOVs from sedated, awake animals 

respectively) were grouped together, as sedated and awake animals gave similar results. A 

fraction of the trials was used to train a decoder to classify stimulus direction from population 

responses trial-by-trial. The mean decoding accuracy was then obtained from 100 cross-validation 

tests, in which all training and testing data were exclusively separated. Decoding accuracy across 

FOV’s ranged from 88% (100%-contrast) to 80% (40%-contrast), confirming data quality (Suppl. 

Fig. 3A). 

To examine whether population codes are preserved across contrasts, we compared how the 

decoder performed when training and testing trial sets were taken from the same versus across 

different contrasts. Contrast invariance predicts that decoding performance should be independent 

of training contrast. In contrast, we found that decoding accuracy was better within than across 

contrasts (Fig. 2A and Suppl. Fig. 3B).  Specifically, when testing with 100%-contrast data, 

training the decoder with 100%-contrast data outperformed training with 40%-contrast data (Fig. 

2A left; P<1e-9). Conversely, when testing with 40%-contrast data, training with 40%-contrast 

data outperformed training with 100%-contrast data (Fig. 2A right; P<2e-3). This was not due to 

data overfitting or differences in signal to noise ratio, as the decoders obtained remained robust 

across acquisition time shifts in the training/testing data sets (Suppl. Fig. 3C) confirming the 

robustness of our decoding strategy. The fact that within-contrast decoders outperform cross-

contrast decoders is a signature of the limits of invariance of the population direction code across 
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contrasts, and suggests that contrast-specific codes might be the underlying rule for optimal 

population coding.  

 

Different cell ensembles contribute to direction encoding at different contrasts  

The degradation of cross-contrast direction decoding performance has its roots in the 

heterogeneity of contrast gain responses across neurons (Fig. 2B). We fit the direction tuning 

function, :��, at 40% contrast to the one, :���, at 100% contrast as: :�� � 2:��� � 3 (methods). 

The gain parameter (2) shows large variability (0-2) across cells, even when fits have high 

explained variance (> 0.5; Fig. 2B left), whereas the bias parameter (3) remains concentrated near 

0 (Fig. 2B right). This was consistent with the fits from full tuning curves (Suppl. Fig. 2). The 

much tighter dispersion of both the parameters seen within contrast persists when fitting data 

from distinct time periods but the same contrast (Fig. 2C), as well as when applying a more 

conservative cell selection (Suppl. Fig. 3D). The marked heterogeneity of response gains and, to a 

lesser degree, biases across contrasts argues that different cells contribute differently to direction-

of-motion encoding across contrasts, suggesting a change in the population code. 

 

 

 

[Figure 2] 
 

 

   In order to test this directly, we used a sparse logistic regression model (LRM) to decode the 

stimulus direction of motion from the neuronal population activity in layer 2/3 of area V1. Cells 

were ranked from most to least “informative” depending on the magnitude of the weight with 

which they contributed (see Methods). There was only 25% chance that the same cell would be 

selected as “most informative” at both 100% and 40% contrast (Fig. 3A and Suppl. Fig. 4). Fig. 
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3A plots the probability that a cell is selected as one of the n “most informative” cells for both 

contrasts as a function of n. Although this probability naturally increases with n, it still remains 

<50% at n=20, although decoding performance is nearly plateaued (Fig. 3D). Figs. 3B-C show an 

example of contributing cells and their corresponding tuning functions for decoding gratings 

moving at 0° versus 30°, when n=3. This example shows that cell 2, which was almost 

exclusively selected at 40% contrast (Fig. 3B), responds stronger to 40% contrast than to 100% 

contrast at direction=30° (Fig. 3C). These observations suggest that direction-of-motion 

information across contrasts is carried by substantially different populations of cells.  

We further compared the amount of information encoded by the most informative cells for 

within-contrast (WC) versus cross-contrast (CC) direction decoding. Briefly, from the most 

informative ‘n’ cells at a given contrast, a regularized LRM was trained to re-optimize the 

weights only within the cells selected, and then used to test decoding performance within versus 

across contrast (see Methods; distinct data were used for testing, cell-selection, and classifier-

training). As expected, decoding performance increases with number of cells (n) but, consistent 

with Fig. 2, remains significantly better within versus across contrasts for all n (Fig. 3D).  

 
 
 
[Figure 3] 
 
 
Contrast-dependent differences in noise characteristics do not explain away contrast-

specific codes 

To ensure that different noise levels at 40% vs 100% contrast are not the source of the decoding 

differences observed, we modified the data cell by cell, keeping the original mean responses, but 

adjusting noise levels so that SNR remains invariant across contrasts. We again found that within-

contrast decoders outperform cross-contrast decoders, reinforcing the conclusion that this effect 

(Fig. 4A) is not due to different SNR levels across contrasts, but rather to the heterogeneity of 

contrast gain responses across the population of cells (Figs. 2B-C). Neither does destroying noise-
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correlation structure by randomly shuffling trials, cell by cell, within each stimulus condition 

influence our result (Fig. 4B). 

 

 
 

 

[Figure 4] 
 

Contrast-specific decoders still outperform cross-contrast ones for a small stimulus 

Neuronal response decreases as stimulus size increases beyond their receptive field size (Allman J 

et al. 1985). This effect is more obvious for high contrast (Sceniak MP et al. 1999) and thus 

intermediate contrast stimulation may evoke stronger responses than high contrast stimulation in 

some cells. Therefore, one may wonder whether our finding is only valid when the large stimulus 

size was used. To this end, we stimulated cells by presenting on the aggregate center of their 

receptive fields a small stimulus (i.e., 15 degrees in radius), which was only slightly larger than 

the typical receptive field size (i.e., ~10-12 degrees; Smith and Hausser (Smith SL and M Hausser 

2010)) of mouse V1 cells.  We also lowered the low contrast condition to 30% to increase the 

number of cells that do not exhibit surround suppression. We found that contrast-specific 

decoders outperformed cross-contrast ones (Suppl. Fig. 5), as they had with the full field stimulus. 

Therefore contrast-dependent surround suppression effects do not explain away out observations.  

 

Contrast-specific decoders outperform contrast-independent decoders 

Finally, to test whether a universal pooling rule (decoder) could perform well across contrasts, we 

trained classifiers using data from all contrasts together then tested them at one of the contrasts. 

Our analysis again showed that contrast-specific decoders outperform contrast-independent 

decoders (Suppl. Fig. 6).  
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These observations strongly suggest that the population code for the direction-of-motion of 

moving gratings is not strictly invariant across modulations of stimulus contrast. We argue that 

this is due to the heterogeneity of contrast gain responses across cells (Fig. 2B, C). An important 

question is whether the code is better preserved during internal input fluctuations, which often 

result in similar or even greater modulations of firing rate and are ubiquitous across the brain 

(Fiser J et al. 2004). 

 

Spontaneous internal modulations leave population codes invariant 

To probe whether the population code for direction-of-motion changes with internal input 

modulations that occur spontaneously, we separated the data trial-by-trial based on aggregate 

population activity levels (PALs). Within each stimulus condition trials were separated into two 

sub-categories: One with high (50%-highest, “H”), the other with low (50%-lowest, “L”) average 

population activity (see Methods). Surprisingly, decoding accuracies were essentially identical 

when the decoder was trained/tested within versus across these sub-categories. This was true for 

trials at both 100% and 40% contrast (Figs. 5A-D). Significant changes in decoding accuracy 

were only seen across changes of stimulus contrast, not when aggregate population response 

changed due to the spontaneous fluctuation of internal inputs (Figs. 5A-D). This was further 

corroborated by comparing the pattern of cells that contributed significantly to direction decoding 

across i) changes of stimulus contrast, and ii) different population activity levels (PALs). As 

expected, the pattern of cells contributing significantly to decoding was more similar between 

high and low PALs than between 100% and 40% stimulus contrast (Suppl. Fig. 7). The relative 

preservation of population codes across spontaneous fluctuations of population activity is closely 

related to the fact that response gain modulations across V1 L2/3 cells are considerably more 

uniform under this condition (Fig. 5E). 
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Note that, individual cell firing rate fluctuations from trial to trial within each stimulus condition 

are more extreme during spontaneous internal input modulations than across changes in stimulus 

contrast (Fig. 5F). In descending order population response activity levels were: (100%-contrast; 

H) > (40%-contrast; H) >> (100%-contrast; L) > (40%-contrast; L). Therefore the differences 

noted cannot be attributed to potentially weaker modulations occurring during the spontaneous 

fluctuation condition. In addition, the mean signal-to-noise ratio across cells was preserved 

regardless of global internal modulation within each contrast (Fig. 5G). Therefore these factors do 

not alter our basic conclusions. 

 

 

[Figure 5] 
 
 
 
 
In brief, spontaneous internal input fluctuations result in more homogeneous gain fluctuations 

across L2/3 V1 cells thereby preserving the population code invariance for direction-of-motion.  

 

We further compared decoding performance by the n most informative cells as a function of n, 

similar to Fig. 3D. Decoding performance by the cross-condition decoder was degraded more 

strongly by modulations of stimulus contrast compared to spontaneous modulations of internal 

input (Figs. 6A-D). Interestingly, cells selected as 10 most informative at 40% contrast show on 

average ~22% higher contrast gain at 40% contrast compared to cells that were selected as most 

informative at 100% contrast (Suppl. Fig. 8 and see also the accompanying text in the 

supplementary material). This again confirms that significantly different populations of cells 

contribute to direction-decoding at the two different contrast levels. In contrast, cells selected as 

most informative at low population activity levels (PALs) showed on average only ~5-6% higher 

gain compared to cells selected as most informative at high PALs within each contrast condition.  
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[Figure 6] 

 
 
Discussion  

Changes in Stimulus Contrast do not Leave Population Codes Invariant  

We chose to compare 100% to 40% contrast because mouse V1 neurons respond well and mice 

discriminate orientations successfully (Long M et al. 2015) at these contrasts. The functional 

properties of mouse V1 neurons observed in the present study agree with earlier studies (Albrecht 

DG and DB Hamilton 1982; Ohzawa I et al. 1982; Sclar G and RD Freeman 1982; Ohzawa I et al. 

1985; Skottun BC et al. 1987; Geisler WS and DG Albrecht 1992). First, the shape of direction 

tuning functions was contrast invariant (Sclar G and RD Freeman 1982; Skottun BC et al. 1987; 

Finn IM et al. 2007) preserving the preferred direction (Fig. 1E and Suppl. Fig. 2). Second, 

contrast gain modulations vary widely with contrast across cells (Fig. 2B and Suppl. Fig. 2B) as 

shown in previous studies (Albrecht DG and DB Hamilton 1982; Ohzawa I et al. 1982, 1985; 

Ledgeway T et al. 2005; Peirce JW 2007; Sani I et al. 2013). This is underscored by the fact that 

~28% cells responded stronger to 40% contrast than 100% contrast (( % 1) in our data (Fig. 2B, 

left panel). This is commensurate to prior reports (Peirce JW 2007; Sani I et al. 2013), including 

20-28% such cells identified in monkey V1/2 (Peirce JW 2007) and V4 (Sani I et al. 2013).  

Our study demonstrated that the population code for grating direction-of-motion deviates 

significantly from invariance when stimulus contrast is changed. This is manifested i) by the 

degradation of decoding performance when training/testing decoders from trials taken across 

contrasts (Fig. 2A) and ii) by the relatively large fraction of distinct cells that contribute to 

direction-decoding at different contrasts (Fig. 3). Furthermore, controlling for different noise 

levels and noise correlations across contrasts preserved these conclusions (Fig. 4). Finally, our 
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results were consistent across different stimulus sizes, suggesting they were not a trivial by-

product of differences in contrast-dependent spatial integration (Suppl. Fig. 5).    

  

The fact that optimal population codes vary with visual contrast raises the question whether the 

brain need implement a different code depending on contrast. It is likely that the population code 

changes continuously with contrast, following a trajectory in a high-dimensional space 

determined by the cells’ contrast gain response functions. We argue that the heterogeneity of 

contrast gain response functions across the cell population is the main reason behind the failure of 

contrast invariance (Fig. 2 and Suppl. Fig. 1). Similar to May and Zhaoping (May KA and L 

Zhaoping 2011), we hypothesize that the diversity of contrast gain responses across cells may 

confer an advantage as the same group of neurons is able to encode stimulus orientation/direction 

and contrast simultaneously. Alternatively, strict contrast invariance would imply that a different 

group of cells is needed to encode visual contrast itself. To our best knowledge, no cells have 

been found that are exclusively contrast selective in visual cortex. 

 

Reconciliation with Prior Results 

Prior studies concluded that neuronal populations encode orientation/direction in a contrast-

invariant manner. Busse et al. claimed that the population orientation tuning functions (POTF) 

were contrast invariant (Busse L et al. 2009).  However, POTFs were calculated by averaging the 

responses of cell groups with similar orientation preference after normalizing individual cell 

responses. This method quenches the large diversity of contrast gain responses across cells, which 

we argue is the source of failure of contrast invariance, and is therefore in no direct conflict with 

our results. Similarly, Berens et al.(Berens P et al. 2012) reported that pooling weights, which 

were used for linear population decoding, are preserved across contrasts. However, pooling 
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weights are again averaged across cells with similar orientation preference, thereby smoothing out 

potential heterogeneities.    

Another study (Graf AB et al. 2011) suggests that neural population direction code is invariant 

across contrasts even though they report substantial degradation for cross-contrast linear 

population decoding, a result similar to that shown in our study. To justify this conclusion they 

assumed that some cells responding vigorously to high contrast do not respond at low contrast, 

degrading decoding performance at low contrast when the high contrast data were used to train 

decoders. Although this phenomenon inevitably happens at low enough contrast, it actually does 

not explain the observations we make here: 1) We observed degradation in cross-contrast 

performance even when training at low and testing at high contrast, which cannot be readily 

explained by the above mechanism, 2) we explicitly chose to compare cross-contrast decoding 

across a smaller contrast transition (100% to 40% and vice versa), thus minimizing the potential 

problem discussed in (Graf AB et al. 2011), 3) we did in fact observe a substantial number of 

cells that do respond stronger at lower contrast , and therefore contribute more substantially to 

decoding at lower versus higher contrasts (Figs 1-3), and finally 4) controlling for the signal to 

noise ratio of responses preserved out conclusions (Fig. 4). 

 

Spontaneous fluctuations in population activity preserve the population code 

 Neural responses vary during the repeated presentation of identical stimuli because they are 

modulated by internal inputs. Such inputs could represent changes of brain state (Niell CM and 

MP Stryker 2010; Polack PO et al. 2013; Fu Y et al. 2014; Reimer J et al. 2014; McGinley MJ, 

SV David, et al. 2015; Vinck M et al. 2015) or simply reflect spontaneous modulations occurring 

within a stable brain state. Internal inputs that cause modulations reflected in global population 

activity and correlation structure (Lin IC et al. 2015; Okun M et al. 2015; Rabinowitz NC et al. 

2015; Scholvinck ML et al. 2015) may impact population coding (Arandia-Romero I et al. 2016). 
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This raises the question of how population codes “survive” the ever-present modulations driven 

by internal inputs that may have little to do with the “external” stimulus being encoded.  

Our study investigated this question and found that "internal” and “external” inputs have different 

effect on population codes. Specifically, we found that the population code for direction-of-

motion is largely preserved across spontaneous internal input modulations (Figs. 5A-D), but not 

across changes in stimulus contrast that produce commensurate or smaller firing rate variations 

(Fig. 5F). We suggest that the reason for this difference is that internal input fluctuations appear 

to modulate gain more homogeneously across the population of layer 2/3 area V1 cells (Fig. 5E). 

This is also reflected in the mean signal-to-noise ratio across cells, which is preserved regardless 

of the different population-activity-levels induced by internal state (Fig. 5G).  Further analysis on 

the most informative cells also revealed that changes in spontaneous population activity preserve 

population codes (Fig. 6). Cells selected as most informative at a different contrast had much 

larger gain changes than the ones selected at a different PAL (Suppl. Fig. 8). Our results are in 

general agreement with two recent studies, which found that: 1) with spontaneous fluctuation of 

population activity does neuronal activity co-modulate, which does not depend on the similarity 

of the cells’ preferred orientation (Okun M et al. 2015), and 2) brain-state related neuronal 

fluctuations that occur spontaneously and are thereby uncorrelated with the stimulus do not 

impact decoding performance (Moreno-Bote R et al. 2014). Given that the cells’ contribution to 

direction decoding was highly correlated across different PALs (Suppl. Fig. 7), these results 

suggest that population codes may be largely shared across internal states that modulate neuronal 

responses along multi-dimensional trajectories uncorrelated with the signal change.  

Overall, a spontaneous change in population activity level (i.e., from the upper to the lower 50th 

percentile) affects the population code much less than a change in stimulus contrast from 100% to 

40% (see Figs. 5-6). This occurs even though L2/3 aggregate firing rates change more in the 

former case. We stress that we do not necessarily imply that internal modulations leave 
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population codes perfectly invariant. In fact, we report that population codes between high and 

low PALs show a small but significant difference (Suppl. Fig. 7). Furthermore, we cannot exclude 

the possibility that there may be a small sub-population of cells that behave differently under 

internal fluctuations, as argued recently by Arandia-Romero et al. (Arandia-Romero I et al. 2016). 

However, when considering all neurons differently behaving with population activity, the neural 

code is robust to spontaneous modulation in population activity (Fig. 6). 

We note that population activity level, though it is known to reflect certain behavioral and brain-

state changes (Niell CM and MP Stryker 2010; Lee SH and Y Dan 2012; Polack PO et al. 2013; 

Fu Y et al. 2014; Reimer J et al. 2014), may have limitations as a surrogate measure of the 

internal input state. However, we believe that it is sufficient to support our claims. We base this 

on prior results showing that spontaneous neuronal population activity levels (PAL) co-modulate 

strongly with simultaneously recorded neighboring neuropil activity as well as EEG and EcoG 

activity (Kerr JN et al. 2005; Lee S et al. 2017), often used to assess brain state (Lee SH and Y 

Dan 2012).  It is also important to note that we investigated the effect of internal input 

fluctuations occurring spontaneously, while animals are sedated or in the quiet-wakefulness state. 

It is interesting to consider in the future how active changes in brain state, such as modulations of 

attention, impact the conclusions we have drawn here. 

 

 Conclusion 

The present study demonstrates how two different neuronal gain modulation mechanisms, one 

“external” and the other internal, influence population coding. Gain responses induced by changes 

in stimulus-contrast as an example of external input are heterogeneous across cells and reshape 

population codes, whereas gain responses induced via the fluctuation of internal inputs are more 

homogeneous and do not. The heterogeneous gain modulation works particularly for contrast-

specific population codes by increasing response gains for informative cells selected at a contrast, 
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but not at another contrast. This observation has implications for visual information encoding, and 

argues that the brain strives to maintain stability of neural encoding in the face of markedly 

fluctuating internal inputs. 
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Figure Legends 
 
 

 
Figure 1. Direction tuning functions across cells scale differently with contrast. (A) Stimulation paradigm: In each trial, a 
grating drifting in one of twelve directions was presented for 500 milliseconds followed with 1.5 sec of uniform illumination at the 
same mean luminance.  Direction of motion and contrast conditions were randomly interleaved across trials.  (B) Mean 
fluorescence image from a Field-of-View that expresses GCaMP6s.  Inset: enlarged view from the indicated rectangle.  (C) 
Examples of fluorescence traces (top) and corresponding deconvolved spike train activity (bottom). (D) Mean visual spike 
responses across all stimulus directions (n=12) and all cells (n=102) analyzed in this FOV. Black bar: period of visual stimulation. 
Yellow shade: frames used for the calculation of trial responses. Mean±SEM. (E) Direction tuning curves normalized by the 
maximum response at 100% contrast for each cell separately. Cells 1-5 correspond to the traces shown in (C). Mean±SEM (n=30 
trials/direction). Note that while the preferred direction of cells is well preserved across contrasts, the relative scale of the response 
(gain) varies widely across cells. See for example cells 3, 4 whose responses to lower contrast are higher than to 100% contrast. 
Note that this is not the result of poor signal to noise ratio (as shown by the good quality of the recording traces in C). 
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Figure 2. Direction population code violates contrast invariance.  (A) Within-contrast decoders (X-axis) versus cross-contrast 
(Y-axis) decoders tested at 100% (left panel; P<1e-9, Friedman Test) and 40% contrast (right panel; P<2e-3). Each dot represents 
decoding accuracy from a single FOV (n=28). Colors represent the difference between decoded directions of stimulus motion (in 
degrees). (B) Distribution of gain (�) and bias (�) across FOVs (n=28) in the linear fit of ��� � ����� � �: � (left panel) and � 
(right panel).  � was normalized to the maximum tuning response at 100% contrast. Large dispersion of contrast gain parameters 
(�) occurs across cells. (C) The mean variance of the extracted parameters across FOVs (n=27) when fitted within (f100-f100, f40-
f40) versus across contrasts (f100-f40). Only cells whose fits had explained variance >0.5 were included (one FOV whose cells 
showed lower explained variance than the threshold was excluded). � was normalized to the maximum tuning response at  100% 
contrast. These plots show that the large dispersion of parameters across cells for the f100-f40 contrast transitions represents a 
physiological effect and does not arise as a result of variability of sampling. Error bar: SEM. P<1e-10, Kruskall-Wallis Test for � 
(left panel) and � (right panel). *,**: P<0.01, P<5e-5 in post-hoc Tukey tests. 
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Figure 3. Cells that participate in direction decoding at different contrasts are substantially different. (A) Probability for a 
cell to belong to the first n “most informative” cells both at 100% and at 40% contrast. (B) Example: number out of 100 cross-
validation tests for which cells belong to the first 3 “most informative” cells for decoding a change of direction =30°. (C) 
Direction tuning functions of cells selected in (B), normalized to the maximum response of cell #3. Mean± SEM. The two vertical 
dash lines represent the two directions decoded. (D) Decoding accuracy within (100%->100%; 40%->40%) versus across (40%-
>100%; 100%->40%) contrasts using only the first “n” most informative cells as a function of n. Friedman Test P<1e-10 (left 
panel), P<1e-5 (right panel). For (A) and (D), solid lines and shadows represent mean (n=28) and 95% confidence intervals, 
respectively. 
 
 

 
Figure 4. Better performance of within-contrast decoders does not result from contrast-dependent noise characteristics. 
(A) Decoding performance of within-contrast (X-axis) versus cross-contrast (Y-axis) decoders after adjusting the signal to noise 
ratio of 100%-contrast data to match that of 40%-contrast data. Left panel (Y-axis): 100% contrast data are used for testing, 40% 
for training. Right panel (Y-axis): 40% for testing, 100% for training. (B) Decoding performance of within-contrast (X-axis) versus 
cross-contrast (Y-axis) decoders after we destroy the noise correlation structure across neurons. Left panel: testing contrast 100%. 
Right panel: Testing contrast 40%. To destroy noise correlations trials were shuffled within stimulus conditions and within cells 
(see Methods). Each dot indicates average decoding accuracy across all pairs of stimulus directions. Statistical test: Wilcoxon 
signed-rank test. 
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Figure 5.  Internal gain modulations preserve the population code for stimulus direction-of-motion. (A-D) Decoding 
accuracy comparisons when training/testing data are taken across different stimulus contrasts and population-activity-levels 
(PALs). Inset: Cross-condition decoding accuracy minus within-condition decoding accuracy. **: P<1e-3, ***: P<1e-4 (FWE, 
Wilcoxon signed-rank test). Note that population code is preserved across H��� 	 Low internal gain modulations occurring at 
fixed stimulus contrast, but not across different contrasts.  (E) Variance of gain (left panel) and bias (right panel) modulations 
across L2/3 cells, arising as a result of a change in population activity level (i.e., f100H-f100L, f40H-f40L) versus stimulus contrast (Crs. 
Cont.). ‘Crs. Cont.’ refers to the average variance derived from cross-contrast-fits (i.e., f100H-f40H, f100H-f40L, f100L-f40H, f100L-f40L). 
Cells with explained variance >0.5 were included in the calculation of variance. One FOV was excluded in the analysis due to low 
explained variance. P<1e-10, Kruskall-Wallis Test for � and �. ***: P<1e-7 in post-hoc Tukey tests. Note that H��� 	 Low 
internal activity fluctuations lead to more homogeneous gain modulations across the L2/3 cell population than changes in stimulus 
contrast. (F) Mean population response amplitudes (arbitraty units) as a function of contrast (100% vs 40%) and population 
response level (High vs Low). P<5e-10 in Kruskall-Wallis Test after averaging across stimulus directions. *: P<1e-2 in post-hoc 
Tukey tests. (G) Corresponding Signal-to-Noise Ratios (i.e., mean/standard deviation). Signal to noise ratios do not vary across 
internal modulation states, within a given stimulus contrast: P=0.84, 0.31 for 100H vs 100L, 40H vs 40L respectively. ***: P<5e-6 
across stimulus contrasts: i.e., mean(100H,100L) vs mean(40H,40L); Wilcoxon signed-rank test after averaging across stimulus 
directions. NS: Not Significant. Mean ± SEM (n=28) for all error-bar plots except E (n =27). 
 
 

 
Figure 6. Decoding performance degrades in changes in contrast, but not in population activity. (A-D): Relative 
performance of cross-condition decoders generated using the first “n” most informative cells, as a function of “n.” Y-axis plots 
change in decoding accuracy: (cross-condition – within-condition)/within-condition. Illustrated differences are significant for all n, 
except for n=1,3 in panel (c): Kruskall-Wallis Test P<1e-7 (A-B), P<0.05 (C-D). *P<0.05, ***P<1e-5 by post-hoc Tukey tests.  
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