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Abstract 

Objective: Obtain estimates of the causal relationship between different levels of body mass index (BMI) 

and mortality. 

Methods: Mendelian randomization (MR) was conducted using genotypic variation reliably associated 

with BMI to test the causal effect of increasing BMI on all-cause and cause-specific mortality in 

participants of White British ancestry in UK Biobank. 

Results: MR analyses supported existing evidence for a causal association between higher levels of BMI 

and greater risk of all-cause mortality (hazard ratio (HR) per 1kg/m2: 1.02; 95% CI: 0.97,1.06) and 

mortality from cardiovascular diseases (HR: 1.12; 95% CI: 1.02, 1.23), specifically coronary heart disease 

(HR: 1.19; 95% CI: 1.05, 1.35) and those other than stroke/aortic aneurysm (HR: 1.13; 95% CI: 0.93, 

1.38), stomach cancer (HR: 1.30; 95% CI: 0.91, 1.86) and oesophageal cancer (HR: 1.08; 95% CI: 0.84, 

1.38), and with decreased risk of lung cancer mortality (HR: 0.97; 95% CI: 0.84, 1.11). Sex-stratified 

analyses supported a causal role of higher BMI in increasing the risk of mortality from bladder cancer in 

males and other causes in females, but in decreasing the risk of respiratory disease mortality in males. 

The characteristic J-shaped observational association between BMI and mortality was visible with MR 

analyses but with a smaller value of BMI at which mortality risk was lowest and apparently flatter over a 

larger range of BMI. 

Conclusion: Results support a causal role of higher BMI in increasing the risk of all-cause mortality and 

mortality from other causes. However, studies with greater numbers of deaths are needed to confirm the 

current findings. 

Key words: Body mass index, mortality, Mendelian randomization, UK Biobank 
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INTRODUCTION 

Whilst severe obesity (a body mass index [BMI] ≥35kg/m2) clearly increases the risk of death, 

having a BMI above 25kg/m2 has been shown to increase the risk of all-cause mortality and mortality 

specifically from vascular diseases, diabetes, respiratory diseases and neoplastic (cancer) in a dose-

response manner1-7. For example, each 5kg/m2 increase in BMI (or a transition between BMI categories 

for normal weight, overweight and obese, for example) has been shown to  be associated with an 

increased risk of overall mortality by >30%, vascular mortality by 40% and the risk of diabetic, renal and 

hepatic mortality by 60-120%1, 8. It was also estimated that 3.6% (N~481,000) of all new adult cancer 

cases in 2012 (aged >30 after a 10-year lag period) were estimated to be attributable to high BMI, a 

quarter of which could be attributed to the rise in BMI since 19829. Furthermore, having excess weight 

from early life over the lifecourse increases the risk of later mortality10-12.  

However, there have been inconsistencies within the current literature relating to the “obesity 

paradox”, whereby being overweight can appear seemingly protective13-16. Most prominently, in a 

systematic review and meta-analysis (providing a combined sample size of more than 2.88 million 

individuals), Flegal et al. showed a ~6% lower risk of all-cause mortality in overweight individuals (i.e., a 

BMI of 25-30kg/m2) compared to normal weight individuals (i.e., a BMI of 18.5-25kg/m2)13. However, 

controversial findings like this are not without limitation, as confounding by age, ill-health and lifestyle 

factors plus selection bias (among other forms of bias) are likely17-19. Furthermore, many studies report a 

characteristic J-shaped curve in the association between BMI and the risk of mortality from varying 

causes1, 2, 4, 6, 8, 16, 20-24. In this context, individuals at the lower tail of the BMI distribution (i.e., underweight 

or below ~22.5-25kg/m2) have an increased risk of mortality along with those above the ‘normal weight’ 

threshold1, 2, 6, 8. However, there are discrepancies in the reporting of this pattern, specifically between 

condition-specific mortality and populations of varying ancestries4, 5, 25-27.  

Studies have used instrumental variable (IV) approaches to improve causal inference in the effect 

of exposures such as BMI, height and blood pressure (BP) on mortality using an intergenerational study 

design28-30. Using offspring exposures as IVs for the exposure of the parents in this context, whose 

mortality risk is being examined, provides a valid test as to whether an exposure (for example, BMI) has a 

causal effect on an outcome (for example, all-cause mortality) and allows the estimation of the magnitude 

of such an effect. Whilst this method has proved useful, there are caveats including, intergenerational 
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confounding between the instrument (offspring exposure) and outcome (parental mortality) may lead to 

biased causal estimates. 

Mendelian randomization (MR) is a well-documented extension of IV methodology that uses 

genetic variants (most commonly, single nucleotide polymorphisms [SNPs]) as IVs to provide a relatively 

unbiased causal estimate of the effect of an exposure (here, BMI) on an outcome (here, mortality)31-34. The 

use of MR has provided evidence to support a causal effect of higher BMI increasing the risk of coronary 

heart disease (CHD), stroke, aortic aneurysm and type-2 diabetes35-39; cardiometabolic traits such as BP, 

fasting glucose and insulin, C-reactive protein, interleukin-6 and cholesterol levels40-42 and various types 

of cancer including oesophageal, ovarian, lung, stomach, kidney, endometrial and colorectal cancer43-52, 

whilst decreasing the risk of Parkinson disease53 and breast cancer43, 54. However, there are 

inconsistencies within the field (for example, evidence suggesting no causal role of higher BMI in stroke55 

or cancer risk56) and no study has explicitly used this technique to explore the causal role of BMI in all-

cause and cause-specific mortality. Here, data from the UK Biobank study, a powerful and large resource 

of comprehensive phenotypic, genetic and death registry data from the UK, were used to generate 

estimates of causal role of BMI in both all-cause and cause-specific mortality, avoiding many of the 

problems of confounding and bias seen elsewhere.  
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METHODS 

The UK Biobank study 

 The UK Biobank study recruited over 500,000 people aged 37-73 years (99.5% were between 40 

and 69 years) from across the country in 2006-2010. Particularly focused on identifying determinants of 

human diseases in middle-aged and older individuals, participants provided a range of information (such 

as demographics, health status, lifestyle measures, cognitive testing, personality, self-report and 

physical/mental health measures) via questionnaires and interviews; anthropometric measures, BP 

readings and samples of blood, urine and saliva were taken. A full description of the study design, 

participants and quality control (QC) methods has been described in detail previously57-59. UK Biobank 

received ethical approval from the Research Ethics Committee (REC reference: 11/NW/0382). 

 Details of patient and public involvement in the UK Biobank are available online 

(www.ukbiobank.ac.uk/about-biobank-uk/ and https://www.ukbiobank.ac.uk/wp-

content/uploads/2011/07/Summary-EGF-consultation.pdf?phpMyAdmin=trmKQlYdjj-nQIgj%2C-

fAzikMhEnx6) and is available in a pre-print version58. No patients were specifically involved in setting 

the research question or the outcome measures, nor were they involved in developing plans for 

recruitment, design or implementation of this study. No patients were asked to advise on the 

interpretation or writing up of the results. There are no specific plans to disseminate the results of the 

research to study participants, but the UK Biobank disseminates key findings from the projects on its 

websites. At the time of this study, phenotypic data were available for 502,619 participants. 

 

Measures of body mass index 

 Weight and height were collected at baseline when participants attended the initial assessment 

centre. Height (cm) was measured using a Seca 202 device in all participants in the UK Biobank along 

with sitting height. Weight (kg) was measured by a variety of means during the initial Assessment Centre 

visit, which was amalgamated into a single weight variable on the UK Biobank release data.   

A total of 13 participants had a height measurement more than 4.56 standard deviations (SDs) 

away from the mean and one person had a sitting to standing height ratio of greater than 0.75, which is 

not compatible with normal growth and development60. These participants were excluded, leaving 

500,066 valid height measurements. Of these, 499,504 participants had weight measurements available 

(no weight values were excluded).  
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The UK Biobank currently has two different measures of adiposity – BMI calculated as weight 

divided by height squared (kg/m2) measured at the initial Assessment Centre visit and mass quantified 

using electrical impedance (in increments of 0.1kg), which was used to calculate a second measure of 

BMI. If BMI measured at the initial Assessment Centre visit was not available, the electrical impedance 

measure was used (n=255). Participants with substantial differences (>4.56SD) between impedance and 

normal BMI measures were excluded (n=1,164), if both measures were available. After these preliminary 

steps, 498,595 participants had a valid BMI measurement (see Figure 1 for flow-chart of the participants 

used in this analysis). 

 

All-cause and cause-specific mortality 

 Data from death certificates were sent to UK Biobank on a quarterly basis provided by the 

National Health Service (NHS) Information Centre for participants from England and Wales and by NHS 

Central Register, Scotland for participants from Scotland. More detailed information on mortality are 

available at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=115559. The death certificates include the 

disease or condition stated to be the underlying cause of death, as well as other conditions, diseases, 

injuries or events contributing to death but not related to the disease or condition causing it. Data were 

provided as date of death (DoD), an integer value for age of death (AoD) and underlying (primary) cause 

of death in International Classification of Diseases (ICD)-10 codes for all deaths that occurred between 

the 10/05/2006 and 16/02/2016.  Rather than using the integer value of AoD from the death certificate, 

a more precise measure of AoD was derived by adding the time interval between date of initial 

assessment and DoD (in days) to the participant’s age at initial assessment. All participants who were not 

recorded as dead by the 16th of February 2016 were assumed to still be alive. The ICD-10 codes were 

categorised into all-cause and cause-specific mortality as presented in Table S1a. As of August 2017 (date 

of extraction for all data), there were 14,417 total deaths in the entire UK Biobank dataset (Table S1a), 

which remains to be the most updated data on mortality. 

 

Covariables 

 At the initial UK Biobank Assessment Centre, participants were given a touchscreen 

questionnaire, which included questions about sociodemographic status, early life, sex-specific factors, 

lifestyle and environment, family history, health and medical history and psychosocial factors. Of the 
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sociodemographic questions, participants were asked whether they had any of the following 

qualifications or equivalent: i) college or university degree, ii) A/AS-levels, iii) O-levels/GCSEs, iv) CSEs, 

v) NVQ or HND or HNC, vi) other professional qualifications eg. nursing or teaching, vii) none of the listed. 

Additionally, participants were asked which of the following described their current employment 

situation: i) in paid employment or self-employed, ii) retired, iii) looking after family home and/or family, 

iv) unable to work because of sickness or disability, v) unemployed, vi) doing unpaid or voluntary work, 

vii) full or part-time student, viii) none of the listed. Answers to these questions were used to derive 

variables the represented the participants’ highest qualification level and current employment status, 

respectively.  

Of the lifestyle and environment questions, participants were asked their smoking and alcohol 

drinking status, categorised into ‘never’, ‘former or ‘current’. Participants were also asked how many days 

in a typical week they would do 10 or more minutes of vigorous physical activity (“activities that make 

you sweat or breathe hard such as fast cycling, aerobic exercise and heavy lifting”).  

 

Genotyping 

 Pre-imputation, QC, phasing and imputation of UK Biobank have been described elsewhere58, 61. 

The genetic variants used were extracted genotypes from the UK Biobank imputation dataset (using only 

genetic variants imputed to the Haplotype Reference Consortium (HRC) reference panel), which had 

extensive QC performed including exclusion of the majority of third degree or closer relatives from a 

genetic kinship analysis of 96% of participants. For more details, see http://biobank.ctsu.ox.ac.uk. A total 

of 77 common genetic variants associated with BMI within people of only European ancestry (and 

excluding those that reached genome-wide levels of statistical confidence in only one sex or one stratum) 

in the most updated genome-wide association study (GWAS) conducted by the GIANT consortium 

(comprising up to 339,224 people) were extracted for MR analyses (Table S2)60, 62. One SNP from the 

GWAS (rs12016871) was not present in the UK Biobank imputed genetic data, so a proxy SNP (i.e., one 

that is in linkage disequilibrium [LD] with rs12016871) was identified (rs4771122; r2=0.876, 

distance=2398bp) and used in replacement62. We checked that each of the variants were imputed with 

high quality (>0.90, Table S2).  

The dosage of each genetic variant was weighted by its relative effect size on BMI obtained from 

the GIANT consortium62 and summed across all variants. The resulting total was then rescaled by dividing 
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by the sum of all effect sizes and multiplied by the number of genetic variants used. Therefore, this 

weighted genetic risk score (GRS) reflected the average number of BMI-increasing alleles each participant 

possessed60. In total, 487,409 participants had genetic data.  

 

Statistical analysis 

 As only the month and year of birth was available in the UK Biobank study, date of birth (DoB) 

was set as the 15th of each month and year in which the participant was born. Participants were removed 

if they lacked information on date of birth (used for secular trends), initial assessment age and date, cause 

of death or AoD. Participants were also excluded if they lacked any/plausible information on DoD (i.e., if 

the individual had apparently died before the assessment clinic that they later attended). Participants 

who were never at risk during the follow-up period (i.e., who were recruited after 16th February 2016) 

were also excluded.  

The sample was restricted to UK Biobank participants of White British ancestry, defined by those 

who self-identified as “White British” and confirmed to have a similar genetic ancestry based on a 

principal components (PCs) analysis of the genome-wide genetic data58. Of those with full genetic data 

and information on BMI, 335,308 participants were included in analyses after recommended exclusions 

based on sex mismatch, sex-chromosome aneuploidy detection and related individuals (Supporting 

Methods, Figure 1). Of these, 9,570 had available data on cause, age and date of death (Table S1a, Figure 

1). 

 Within the set of participants who had required information, Cox proportional hazards 

regression models were used to estimate conventional hazard ratios (HRs) for all-cause and cause-

specific mortality per unit increase (kg/m2) of BMI. The participant’s age was used as a measure of time; 

thus, models were automatically adjusted for age. Analyses were conducted with the following two 

models: i) unadjusted and ii) adjusted for secular trends (DoB), current occupation, qualifications, 

smoking status, alcohol intake, physical activity and the first ten genetic PCs. Analyses were restricted to 

the conditions responsible a minimum number of deaths (>40)29 and performed in the whole sample plus 

stratified by sex. The associations of the GRS with BMI and of each covariable with BMI and the GRS were 

tested using linear regression and associations of each covariable with all-cause mortality was assessed 

using Cox proportional hazards regression models, with all analyses adjusting for the first ten genetic PCs. 
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For MR analyses, a two-stage approach was conducted within the context of survival analyses. In 

the first stage, BMI was regressed on a GRS comprising 77 SNPs to generate the denominator of a two-

stage MR estimate. In the second stage, Cox proportional hazards models were used to estimate the HR of 

each mortality outcome with each unit increase in the GRS, thus generating the numerator for the two-

stage MR estimate. Exponentiating the ratio between the natural logarithm of the numerator (HR for each 

mortality outcome per unit increase in the GRS) and the denominator (association between BMI and the 

GRS) yielded a ratio MR estimate of the HR of each mortality outcome per unit increase (kg/m2) in BMI. 

Confidence intervals (CIs) were obtained using Taylor series expansions63. A simplification of the matrix 

method for the Durbin-Wu-Hausman (DWH) test for endogeneity was used to compare the HR estimates 

per unit increase in BMI derived from conventional Cox regression and the two-stage MR estimate (see 

Supporting Methods). All analyses were conducted using Stata 14.2. 

 

Linearity and proportional hazards assumption 

 To test the linearity of associations, fully-adjusted cubic spline models for both the exposure 

(here, BMI) and the instrument (here, the GRS) were plotted to show the pattern of association between 

levels of BMI and mortality. Observations were censored to restrict them to the period when death would 

have been recorded and used in the analysis. To focus on the densest part of the BMI distribution, the 

linearity tests were conducted after removing data below/above the 1st/99th percentile, respectively, due 

to the scarcity of data towards the tails of the BMI distribution. In addition, an approximate MR analogue 

to the non-linear plot of mortality against BMI was obtained by estimating localized average causal effects 

(i.e., MR estimates of the log-linear effect of BMI on the hazard of mortality) within percentiles of the 

instrument-free exposure (set at the 5th, 10th, 25th, 50th, 75th and 85th percentile)64. These localised 

average causal effects were then joined together and plotted against corresponding quantiles of the 

original exposure65. HRs were calculated relative to the mean BMI of 27kg/m2 and 1000 bootstrap 

resamples were used to obtain CIs. Meta-regression was used to test for a linear trend in association 

between the GRS and BMI (i.e. denominator of the two-stage MR estimate) over quantiles of the 

instrument-free exposure. 

 To check the proportional hazards assumption, the Schoenfeld residuals for BMI from the cubic 

spline models of each mortality outcome were tested for association with the natural log of the follow-up 

time (here, age) using both conventional Cox regression and MR analysis. If there was evidence for a 
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difference in the association between BMI and the risk of mortality with age (i.e., a Bonferroni-corrected 

P-value of 0.05/138 tests = 0.0004), an interaction term was fitted to the cubic spline model using the 

“tvc()” option for survival analyses in Stata. 

  

Sensitivity analyses 

To investigate the validity of the GRS as an IV within this context, MR-Egger was used to detect 

and accommodate violations of the MR assumptions, specifically horizontal pleiotropy66. The intercept 

obtained from the MR-Egger test is used as an indication of pleiotropy and the slope can be considered as 

the estimate of the causal effect between the exposure (here, BMI) and the outcome (here, all-cause and 

cause-specific mortality). In addition, the weighted median- and mode-based methods were used67, 68, 

which vary in their assumptions of instrument validity. The weighted median approach provides a causal 

estimate even when 50% of instruments are invalid and the weighted mode estimate is consistent when 

the largest number of similar causal effect estimates comes from valid instruments, even if most 

instruments are invalid. MR-Egger, weighted median and weighted mode estimates were compared to 

those obtained from the inverse-variance weighted (IVW) for two-sample MR66. For these analyses, the 

first-stage estimates (coefficients of the association between each SNP and BMI) were obtained from an 

independent external source, as to not induce weak instrument bias69, 70, and the second-stage estimates 

(natural logarithm of the HR for each mortality outcome with each SNP) were obtained directly from UK 

Biobank. 

In the UK Biobank sample, there is evidence to suggest a differential array effect on markers 

scattered across the genome (i.e., those that were genotyped using the Affymetrix UK Biobank Axiom® 

Array or the Affymetrix UK BiLEVE Axiom Array58, 61) and the UK BiLEVE sub-sample, which included 

>50,000 participants and used the UK BiLEVE Axiom Array, also preferentially selected individuals based 

on smoking intensity. To evaluate the impact of this differential array effect, MR sensitivity analyses were 

conducted with an additional adjustment of genotyping chip. 

As a final sensitivity analysis, the GRS was restricted to exclude the genetic variants known to be 

classified as having a secondary signal within a locus to other phenotypes (N=7; leaving 70 in the GRS, 

Table S3)37, 60 and all MR analyses were repeated.  
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RESULTS 

 Of those included, the average age of initial assessment was 56.9 years old (SD=8) and 

participants had an average BMI of 27.4kg/m2 (SD=4.7) (Table 1). Of the 335,308 participants with 

required information for mortality analyses, 9,570 participants (N=5,882/3,688 males/females, 

respectively) had died by the 16th of February 2016 at an average age of 65.7 years old (SD=6.9). Most 

had died from various types of cardiovascular diseases (CVDs) and cancer (Table S1a/1b for whole-

sample and sex-specific mortality).    

 

Observational analyses 

 In unadjusted observational analyses, higher BMI was associated with a higher risk of all-cause 

mortality and mortality from CVD, specifically CHD and those other than stroke and aortic aneurysm, 

overall cancer and cancer in the stomach, oesophagus, kidney and liver (Table 2). Higher BMI was also 

associated with a lower risk of lung cancer mortality. 

Adjusting Cox regression models for covariables made little difference to results, providing 

evidence that BMI was associated with a higher risk of all-cause mortality (HR per 1kg/m2 higher BMI: 

1.02; 95% CI: 1.01, 1.02; P=9.72x10-11) and mortality from CVD (HR: 1.07; 95% CI: 1.06, 1.08; P=2.12x10-

34), specifically CHD (HR: 1.08; 95% CI: 1.06, 1.09; P=2.22x10-22) and those other than stroke and aortic 

aneurysm (HR: 1.10; 95% CI: 1.08, 1.13; P=6.66x10-22), as well as a higher risk of mortality from overall 

cancer (HR: 1.01; 95% CI: 1.00, 1.01; P=0.03) and cancer of the kidney (HR: 1.07; 95% CI: 1.03, 1.11; 

P=1.40x10-04) and liver (HR: 1.05; 95% CI: 1.01, 1.09; P=0.01) (Table 2). The inverse association between 

BMI and risk of lung cancer also remained consistent after adjusting for covariables (HR: 0.97; 95% CI: 

0.95, 0.99; P=0.004) and there was evidence for an inverse association between BMI and mortality from 

external causes (HR: 0.96; 95% CI: 0.94, 0.99; P=0.02). The association between BMI and risk of mortality 

from stomach cancer slightly attenuated (HR: 1.04; 95% CI: 1.00, 1.09; P=0.06) and, whilst the estimate of 

association between BMI and risk of mortality from oesophageal cancer remained consistent (HR: 1.03; 

95% CI: 0.99, 1.06; P=0.11), CIs widened after adjustment (Table 2).  

Results were similar within sex-stratified analyses, with additional evidence for an association 

between higher BMI and decreased risk of mortality from respiratory disease in males (HR: 0.91; 95% CI: 

0.88, 0.95; P=2.28x10-06) but an increased risk of mortality from respiratory disease in females (HR: 1.06; 

95% CI: 1.02, 1.09; P=0.002), which was not present in the overall sample (Table 3 and Table 4 for males 
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and females, respectively). In males, adjusted Cox regression analyses also provided evidence for an 

association between higher BMI and increased risk of prostate cancer mortality (HR: 1.05; 95% CI: 1.02, 

1.08; P=0.003), alongside greater magnitudes of association of higher BMI with a decreased risk of 

mortality from lung cancer (HR: 0.94; 95% CI: 0.91, 0.97; P=3.54x10-05) and bladder cancer (HR: 0.93; 

95% CI: 0.87, 1.00; P=0.06), and increased risk of mortality from oesophageal cancer (HR: 1.07; 95% CI: 

1.04, 1.11; P=8.50x10-05) and liver cancer (HR: 1.08; 95% CI: 1.03, 1.13; P=0.003). The estimate of 

association between higher BMI and mortality from external causes was smaller compared to that in the 

whole sample (HR: 0.97; 95% CI: 0.93, 1.01; P=0.11); however, all CIs overlapped (Table 3).  

In females, adjusted Cox regression analyses provided evidence for an association between 

higher BMI and increased risk of mortality from endometrial cancer (HR: 1.12; 95% CI: 1.07, 1.18; 

P=1.29x10-05), weak evidence for an association of higher BMI with an increased risk of mortality from 

post-menopausal breast cancer (HR: 1.02; 95% CI: 1.00, 1.04; P=0.13) and other causes (HR: 1.02; 95% 

CI: 1.00, 1.04; P=0.09). There was no strong evidence of an association with ovarian cancer (Table 4). 

There was no strong evidence of an association of BMI with mortality from lung cancer and the estimate 

of association between higher BMI and mortality from oesophageal cancer was in the opposite direction 

to that observed in the whole sample (HR: 0.87; 95% CI: 0.80, 0.95; P=0.001); however, all CIs overlapped 

(Table 4). 

 

Association between the GRS and BMI 

 Each unit increase in the GRS (comprising 77 SNPs) in the UK Biobank participants of White 

British ancestry was associated with 0.11kg/m2 higher BMI (95% CI: 0.11, 0.11; P<1.20x10-307), 

explaining 1.8% of the variance in UK Biobank and was similar between males and females (Table 5).  

 

Confounder analysis 

As expected with observational analyses, both BMI and mortality were associated with all 

covariables including age of initial assessment, sex, smoking status, alcohol consumption, qualifications, 

employment status and physical activity (Table S4 and 5 for BMI and all-cause mortality, respectively). 

Unlike the direct measurement of BMI, the GRS was associated with covariables to a much lesser extent, 

with all estimates near zero (Table S6). 
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MR analyses 

 Within the whole UK Biobank sample, using the GRS as an IV in MR analyses provided estimates 

of a similar or greater magnitude to observational analyses (albeit, with wider CIs), supporting the causal 

role of higher BMI in increasing the risk of all-cause mortality (HR: 1.02; 95% CI: 0.97, 1.06; P=0.45) and 

mortality from CVD (HR: 1.12; 95% CI: 1.02, 1.23; P=0.02), specifically CHD (HR: 1.19; 95% CI: 1.05, 1.35; 

P=0.01) and those other than stroke and aortic aneurysm (HR: 1.13; 95% CI: 0.93, 1.38; P=0.22), as well 

as mortality from stomach cancer (HR: 1.30; 95% CI: 0.91, 1.86; P=0.16) and oesophageal cancer (HR: 

1.08; 95% CI: 0.84, 1.38; P=0.55) (Table 2). Although CIs were wide, the estimate of the effect of higher 

BMI on decreasing the risk of mortality from lung cancer was consistent to that obtained in observational 

analyses (HR: 0.97; 95% CI: 0.84, 1.11; P=0.63). There was also evidence supporting the causal role of 

higher BMI in increasing the risk of mortality from external causes (HR: 1.35; 95% CI: 1.09, 1.67; P=0.01), 

unlike the inverse association obtained in observational analyses (DWH P-value for comparison between 

observational and MR analyses: 0.002). In contrast, the estimates of the effect of higher BMI on mortality 

from cancer, kidney cancer and liver cancer were attenuated or in the opposite direction, with CIs too 

wide for comparison to observational analyses or conclusive interpretation (Table 2). 

 Results for males were similar, in that the estimates of the causal role of higher BMI in increasing 

the risk of all-cause mortality and mortality from CVDs (including CHD and those other than stroke and 

aortic aneurysm), stomach cancer, oesophageal cancer and kidney cancer, as well as the decreased risk of 

mortality from respiratory diseases, lung cancer and bladder cancer, were consistent to or greater than 

the observational analyses (Table 3). The estimates of the effect of higher BMI on risk of mortality from 

prostate cancer (HR: 0.73; 95% CI: 0.57, 0.93; P=0.01) and external causes (HR: 1.25; 95% CI: 0.94, 1.67; 

P=0.13) were in the opposite direction to those obtained in observational analyses (DWH P-value for 

comparison: 0.004 and 0.08, respectively). The estimates of the effect of higher BMI on mortality from 

cancer and liver cancer were attenuated or in the opposite direction, with CIs too wide for comparison to 

observational analyses or conclusive interpretation (Table 3). 

 In females, the estimates of the effect of higher BMI on increasing the risk of mortality from CVDs 

(including CHD and those other than stroke) and other causes, as well as the decreased risk of mortality 

from oesophageal cancer, were consistent to the observational analyses (Table 4). The estimates of the 

effect of higher BMI on risk of mortality from external causes (HR: 1.56; 95% CI: 1.10, 2.20; P=0.01), 

breast cancer (HR: 0.87; 95% CI: 0.73, 1.02; P=0.09), specifically post-menopausal breast cancer (HR: 
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0.87; 95% CI: 0.73, 1.04; P=0.14), and endometrial cancer (HR: 0.71; 95% CI: 0.41, 1.23; P=0.23) were in 

the opposite direction to those obtained in observational analyses (DWH P-value for comparison: 0.01, 

0.06, 0.09 and 0.10, respectively). Furthermore, the estimates of the effect of higher BMI on mortality 

from all causes, respiratory diseases, overall cancer and kidney cancer were attenuated or in the opposite 

direction compared to observational analyses, but with CIs too wide for conclusive interpretation (Table 

4). 

 

Linearity and proportional hazards assumption 

The pattern of association between the GRS and all-cause mortality appeared linear (Figure 2); 

however, the CIs were wide. Assessment of linearity between BMI and most causes of mortality showed a 

J-shaped association in observational analyses (Figure 3A). When localised average causal effects within 

strata of instrument-free BMI were used to plot an approximate MR analogue to the plot of mortality 

against BMI, a J-shape was visible (Figure 3B), but with a smaller value of BMI at which mortality risk was 

lowest (~23kg/m2 compared to ~26kg/m2 with observational analyses) and apparently flatter over a 

larger range of BMI, as compared to the observational association. However, CIs were wide with this 

analysis. Meta-regression testing for a linear trend in the association between the GRS and BMI over 

quantiles of instrument-free exposure provided some evidence that the GRS-BMI association was non-

linear (P-value for linear trend = 0.07 and P-value for heterogeneity < 0.001). This was primarily driven 

by the extreme quantiles of BMI, as removal of these quantiles indicated a linear association in the meta-

regression (P-value for linear trend = 0.99 and P-value for heterogeneity < 0.001).  

 The proportional hazards assumption held for all causes of mortality in both the conventional 

Cox regression and the MR analyses, especially given the number of tests being performed (Table S7a and 

S7b for correlation coefficients and corresponding P-values for testing the proportional hazards 

assumption in observational and MR analyses, respectively).  

 

Sensitivity analyses 

 Across all methods applied, which assume linearity (including MR-Egger, weighted median- and 

mode-based estimators as compared to the IVW approach), MR-derived estimates were consistent (Table 

S8a, S8b and S8c for results in the whole sample, males and females, respectively). Whilst there was no 

evidence for pleiotropic effects in the estimation of the causal role of BMI in a majority of the mortality 
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causes, the intercept estimate from MR-Egger regression showed marginal evidence for pleiotropy in the 

association between BMI and mortality from other cancers (intercept: 0.96; 95% CI: 0.93, 1.00; P=0.03; 

HR from MR-Egger regression: 1.25; 95% CI: 0.96, 1.62; P=0.09, Table S8a and Figure S1a) and mortality 

from other causes (intercept: 0.97; 95% CI: 0.94, 0.99; P=0.02; HR from MR-Egger regression: 1.27; 95% 

CI: 1.03, 1.58; P=0.03, Figure S1b), suggesting an underestimated MR estimate with negative directional 

pleiotropy. In males, there was marginal evidence for pleiotropy in the association between BMI and 

mortality from other cancers (intercept: 0.95; 95% CI: 0.91, 0.99; P=0.01; HR from MR-Egger regression: 

1.35; 95% CI: 0.97, 1.89; P=0.07, Table S8b and Figure S2a) and other causes (intercept: 0.96; 95% CI: 

0.93, 1.00; P=0.04; HR from MR-Egger regression: 1.27; 95% CI: 0.97, 1.66; P=0.08, Figure S2b), similarly 

suggesting negative directional pleiotropy. There was no strong evidence of directional pleiotropy in 

female-specific analyses (Table S8c). In both the whole sample and male-specific analyses, the negative 

directional pleiotropy was likely driven by the rs17024393 SNP (in the association between BMI and 

mortality from other cancers) and by many SNPs with small positive effects on BMI and small negative 

effects on mortality (in the association between BMI and mortality from other causes). 

Additional adjustment of genotyping chip made no substantive difference to the current MR 

analyses (Table S9), providing no strong evidence of a differential array effect. When limiting the GRS to 

exclude the SNPs that may have potentially pleiotropic effects based on previous literature and biological 

plausibility (N=70), there was no substantive difference in the association between the GRS and BMI 

(Table S10). The results of the MR analyses were similar to the main analyses (Table S11).  
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DISCUSSION 

Results supported the causal role of higher BMI in increasing the risk of all-cause mortality and 

mortality specifically from CVD (including CHD and those other than stroke and aortic aneurysm) plus 

various cancer sub-types including those of the oesophagus and stomach, as well as decreasing the risk of 

lung cancer mortality. Sex-stratified analyses were consistent to those in the whole sample and provided 

additional evidence to support the causal role of higher BMI in increasing the risk of mortality from 

bladder cancer in males and other causes in females, whilst decreasing the risk of mortality from 

respiratory diseases in males. 

 The current results for the most common mortality causes are consistent with previous studies 

that support the causal role of higher BMI in increasing the risk of all-cause mortality and mortality 

specifically from vascular diseases and various cancers, whilst decreasing the risk of lung cancer 

mortality1, 2, 5, 7, 8, 21. For example, the largest systematic review and meta-analysis of this relationship 

(including more than 30 million participants and approximately 3.7 million deaths) showed consistent 

evidence that each 5kg/m2 increment in BMI was associated with a 5% increased risk (95% CI: 4-7%) of 

all-cause mortality in all participants21. Concordant with this, scaling the current results in UK Biobank 

suggested that each 5kg/m2 increase in BMI was associated with a ~10% increased risk in all-cause 

mortality. Similarly, and consistent with a collaborative analysis of over 900,000 adults showing an 

approximate 40% increased risk of vascular mortality with each 5kg/m2 higher BMI1, scaling the current 

results to reflect the same increase in BMI implied a ~75% increased risk of overall CVD and, specifically, 

more than a 2.5-fold increased risk of CHD.  

For cancer, whilst CIs for all MR analyses were wide, the current analyses provided evidence for a 

causal role of higher BMI increasing the risk of mortality from cancer of the stomach and oesophagus, 

whilst decreasing the risk of lung cancer mortality in all participants (but CIs were wide). Sex-specific 

analyses were broadly consistent with an additional inverse association with mortality from respiratory 

diseases and bladder cancer in males, in whom the effect on kidney cancer mortality was also stronger 

than in all participants. In females, there was consistent evidence that BMI played a causal role in 

mortality from other causes. However, these analyses were likely limited by the rarity of mortality from 

cancer (i.e., many cancers had fewer than 300 cases), accentuated further particularly in analyses within 

female participants, where many estimates derived from MR analyses were opposite to those from 

observational analyses or had CIs too wide for interpretation. Despite this, many effect estimates were in 
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the same direction as those derived from previous large-scale meta-analyses and reviews. The association 

of BMI on incidence of 22 cancer sites in 5.24 million individuals, suggested linear positive relationships 

with cancers of the kidney, liver, colorectal and ovary and inverse associations with prostate, pre-

menopausal breast cancer and lung cancer, the latter being strongly driven by smoking status25. 

Consistent with this, despite estimates from the conventional Cox regression suggesting a positive 

association between BMI and prostate cancer mortality in UK Biobank, MR analyses provided evidence in 

the opposite direction (i.e., higher BMI reducing prostate risk). Additionally, in the Million Women Study, 

incrementally higher BMI was associated with a higher risk of mortality from cancers of the 

endometrium, oesophagus (specifically, adenocarcinoma subtypes), kidney, pancreas, lymphatic system, 

ovary, breast cancer (in post-menopausal women) and colorectal cancer (in pre-menopausal women)5. 

However, whilst there was observational evidence for a positive effect on mortality from endometrial 

cancer and post-menopausal breast cancer, estimates were inverse in MR analyses. 

When using instrument-free BMI as the exposure, the association between BMI and all-cause 

mortality showed a J-shaped pattern but appeared flatter over a larger range of BMI, as compared to the 

observational association, with a smaller value of BMI at which mortality risk was lowest. Such a 

difference may be suggestive of confounding in observational associations (i.e., potentially overestimating 

the harmful effects of underweight whilst underestimating the harmful effects of being overweight and 

obese); however, we accept wide CIs suggest a need for more power to be conclusive. Likely explanations 

for a heightened J-shaped curve in observational studies include confounding by lifestyle factors, which 

may generate a higher risk of mortality in underweight individuals, or reverse causality. Many previous 

studies used populations comprising older individuals with likely existing illnesses, which may generate a 

spurious association of lower BMI increasing the risk of mortality (i.e., those who lose weight as a result 

of disease)17, 28, 29. Indeed, in the largest study to date, overestimation of estimates and this characteristic 

J-shaped association were reported greatest in analyses with the most potential for bias (including all 

participants, current, former or never smokers and studies with short follow-up durations of <5 years), 

highlighting the importance for unbiased modes of estimation (such as those used in the current 

analysis)21. Those that attempt to appropriately control for such effects (such as adjusting for baseline 

traits, restricting analyses to individuals who never smoked or had a longer follow-up), observe an 

emerging linear association2, 11, 21, 71, 72, suggesting an underestimation of the positive link of BMI on 

mortality but falsely overestimating the effect of low BMI on mortality in a general population. Whilst it is 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2018. ; https://doi.org/10.1101/281436doi: bioRxiv preprint 

https://doi.org/10.1101/281436
http://creativecommons.org/licenses/by/4.0/


19 
 

plausible that individuals considered severely and unhealthily underweight have a higher risk of 

mortality than those within the normal ranges of BMI73, the current findings in this large population of 

healthy individuals support a more linear association, with lower BMI being protective. Furthermore, the 

lowest risk of mortality occurred at approximately 23kg/m2 when using MR methodology, as opposed to 

being overweight (i.e., a BMI of 25-30kg/m2), which was observed in the current observational analyses 

and has been implied previously by some of the existing observational literature13. Therefore, a stable 

BMI within the ‘normal’ range (i.e., 18.5-25kg/m2) may be the most beneficially healthy with regards to 

reducing mortality risk, with any reduction within that range likely to be beneficial8, 21.  

 Use of the UK Biobank study has enabled an MR investigation of the causal role of BMI in all-

cause and cause-specific mortality. This has been afforded given the large sample size, comprehensive 

genetic and phenotypic measurements and detailed death registry information. Whilst the power to 

detect associations with MR analyses was low for many mortality causes in the current study, given the 

incidence of the outcomes tested, this will increase in the coming years where incidence and mortality 

from many causes will approximately double by 202257. 

The MR concept rests on several key assumptions31-34: (i) the IV (here, the GRS) must be 

associated with the exposure (here, BMI); (ii) the IV must be independent of the factors that act as 

confounders of the association between the exposure and the outcome (here, all-cause and cause-specific 

mortality); and (iii) there must be no independent pathway between the IV and outcome other than 

through the exposure – horizontal pleiotropy34. These assumptions were tested where possible, but it can 

be difficult to directly assess whether possible sources of pleiotropy are horizontal (independent of the 

exposure) or vertical (involved in the causal pathway between the exposure and outcome)66. Within the 

context of the current study, sensitivity analyses conducted provided little evidence of pleiotropy in MR 

estimates and awarded greater confidence in the validity of the instrument used and, thus, MR-derived 

estimates. Reverse causality is an important source of bias in observational estimates of the association 

between BMI and mortality and may be the driver of the characteristic J-shaped association. However, 

whilst it is possible that mortality from specific causes can influence the relative distribution of genetic 

variants within a selected sample74, it is likely that this potential bias is less marked than that seen in 

observational studies (especially in light of the use of common genetic variants to predict a complex risk 

factor like BMI). 
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The UK Biobank study is comprised of relatively healthy volunteer participants and is a unique 

opportunity to undertake these analyses. Even in this study, however, the sample sizes available were 

limited. With this, it is likely that participants with higher education and socioeconomic position and 

different causes of death and estimates of association may not be representative of and generalisable to 

the wider national or international populations. Furthermore, to remove any possible effect of genetic 

confounding, the current analyses were restricted to those only of White British ancestry, limiting the 

generalisability of results to other ancestral groups. Generally, the current analyses were likely limited by 

the rarity of many mortality causes (e.g., the number of individuals who had died from diabetes and other 

cardiovascular-related traits were insufficient to include), accentuated further in sex-stratified analyses. 

Therefore, the potential role of chance and low statistical power in many relatively weak associations 

such as those observed between BMI and mortality from the various rare mortality causes cannot be 

ruled out.  

 

Conclusions  

This study represents the application of MR to assess the causal effect of higher BMI on the risk 

and cause of mortality. Results supported the causal role of higher BMI in increasing the risk of all-cause 

mortality and mortality specifically from CVD, various cancers and other causes. Along with the 

comprehensive studies with greater numbers of deaths in combination with the application of robust 

causal inference methods such as those employed here that appropriately account for the heavy burden 

of confounding, reverse causation and bias within observational epidemiological designs, our results 

further highlight the need for a global effort to reduce the rising population trends for excess weight from 

an early age.  
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Table 1. Descriptive statistics for UK Biobank participants of White British Ancestry included in the main 
analyses 

Variable N Mean (SD) or percentage 
Age (years) at initial assessment  335,308 56.87 (8.00) 
Sex (% of males) 335,308 46.22 
Body mass index (kg/m2) 335,308 27.38 (4.74) 
Smoking status 334,142  

Never 183,170 54.82 
Former 117,838 35.26 
Current 33,134 9.92 

Alcohol drinker status 335,074  
Never 10,311 3.08 
Former 11,368 3.39 
Current 313,395 93.53 

Highest qualifications  275,544  
College or University degree 106,280 38.57 
A-levels 38,271 13.89 
O-levels 73,770 26.77 
CSEs 18,016 6.54 
NVQ/HND/HNC 22,012 7.99 
Other professional qualifications 17,195 6.24 

Current employment status 332,835  
In paid employment or self-employed 190,085 57.11 
Retired 117,615 35.34 
Looking after home/family 8,690 2.61 
Unable to work due to sickness/disability 9,982 3.00 
Unemployed 4,436 1.33 
Doing unpaid or voluntary work 1,404 0.42 
Full or part-time student 623 0.19 

Days/week spent doing vigorous physical activity 319.813 1.82 (1.94) 
Genotyping chip2 335,308 9.24 
Age at death (years) 9,570 65.66 (6.88) 

Date of death1  
06/02/2013 

(07/07/2007-16/02/2016) 
CSE = certificate of secondary education; HNC = higher national certificate; HND = higher national diploma; 
NVQ = national vocational qualification; SD = standard deviation 
1Recorded as the mean (minimum and maximum) date of death 
2UK BiLEVE participants genotyped on the Affymetrix Axiom Array 
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Table 2. Observational and MR analyses of all-cause and cause-specific mortality by BMI in UK Biobank participants of White British ancestry 

Cause of death N1 
Observational 

MR-analyses DWH4 
Unadjusted Adjusted3 

HR (95% CI)2 P-value HR (95% CI)2 P-value HR (95% CI)2 P-value  
All-cause 9570 1.02 (1.02, 1.03) 2.76x10-27 1.02 (1.01, 1.02) 9.72x10-11 1.02 (0.97, 1.06) 0.45 0.95 
Cardiovascular disease 1967 1.07 (1.06, 1.08) 8.91x10-60 1.07 (1.06, 1.08) 2.12x10-34 1.12 (1.02, 1.23) 0.02 0.38 

Coronary heart disease 1087 1.08 (1.06, 1.09) 5.61x10-36 1.08 (1.06, 1.09) 2.22x10-22 1.19 (1.05, 1.35) 0.01 0.13 
Stroke 346 1.02 (0.99, 1.04) 0.18 1.01 (0.98, 1.04) 0.60 0.98 (0.78, 1.24) 0.89 0.83 
Aortic aneurysm 109 1.03 (0.99, 1.07) 0.18 1.02 (0.97, 1.07) 0.50 0.86 (0.59, 1.27) 0.46 0.40 
Other cardiovascular disease 425 1.11 (1.09, 1.13) 2.07x10-40 1.10 (1.08, 1.13) 6.66x10-22 1.13 (0.93, 1.38) 0.22 0.81 

Respiratory diseases 532 0.99 (0.97, 1.01) 0.27 0.98 (0.95, 1.00) 0.09 0.88 (0.72, 1.07) 0.21 0.30 
Cancer 5613 1.01 (1.01, 1.02) 6.13x10-05 1.01 (1.00, 1.01) 0.03 0.98 (0.93, 1.03) 0.42 0.27 

Lung cancer 993 0.98 (0.97, 1.00) 0.03 0.97 (0.95, 0.99) 0.004 0.97 (0.84, 1.11) 0.63 0.93 
Colorectal cancer 552 1.01 (0.99, 1.03) 0.29 1.01 (0.99, 1.03) 0.34 1.10 (0.93, 1.29) 0.25 0.31 
Pancreatic cancer 388 1.01 (0.99, 1.03) 0.53 1.01 (0.99, 1.04) 0.39 1.02 (0.84, 1.25) 0.83 0.92 
Stomach cancer 144 1.06 (1.02, 1.09) 0.001 1.04 (1.00, 1.09) 0.06 1.30 (0.91, 1.86) 0.16 0.23 
Oesophageal cancer 283 1.03 (1.01, 1.06) 0.01 1.03 (0.99, 1.06) 0.11 1.08 (0.84, 1.38) 0.55 0.70 
Malignant melanoma 119 1.00 (0.96, 1.04) 0.90 0.97 (0.92, 1.02) 0.23 1.06 (0.76, 1.50) 0.72 0.59 
Kidney cancer 181 1.08 (1.05, 1.11) 7.45x10-09 1.07 (1.03, 1.11) 1.40x10-04 0.96 (0.70, 1.32) 0.81 0.50 
Bladder cancer 101 1.01 (0.97, 1.06) 0.62 0.96 (0.90, 1.02) 0.17 0.84 (0.56, 1.26) 0.40 0.53 
Brain cancer 280 1.01 (0.98, 1.03) 0.57 1.01 (0.98, 1.04) 0.64 1.01 (0.80, 1.27) 0.95 0.999 
Liver cancer 169 1.07 (1.04, 1.10) 1.76x10-06 1.05 (1.01, 1.09) 0.01 0.95 (0.69, 1.30) 0.74 0.52 
Lymphatic cancer 528 1.00 (0.98, 1.02) 0.75 0.99 (0.97, 1.02) 0.60 1.03 (0.86, 1.22) 0.76 0.71 
Other cancer 755 1.00 (0.98, 1.01) 0.66 1.00 (0.98, 1.02) 0.84 0.95 (0.82, 1.10) 0.52 0.54 

External causes 306 0.98 (0.96, 1.01) 0.14 0.96 (0.94, 0.99) 0.02 1.35 (1.09, 1.67) 0.01 0.002 
Other 1099 1.01 (1.00, 1.02) 0.08 1.00 (0.99, 1.02) 0.62 1.00 (0.88, 1.14) 0.97 0.98 

BMI = body mass index; CI = confidence interval; DWH = Durbin-Wu-Hausman; HR = hazard ratio; MR = Mendelian randomization 
1Number of deaths from all causes or cause-specific mortality 
2Adjusted for secular trends (date of birth) and sex, estimates represent HR with each unit increase in BMI (kg/m2) 
3Additionally adjusted for highest household occupation, education, smoking status, alcohol intake, physical activity and the first ten genetic PCs 
4P-value for comparing estimates derived from observational and MR analyses using a simplification of the matrix method for DWH test statistic (see Supporting 
Methods)  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2018. ; https://doi.org/10.1101/281436doi: bioRxiv preprint 

https://doi.org/10.1101/281436
http://creativecommons.org/licenses/by/4.0/


27 
 

Table 3. Observational and MR analyses of all-cause and cause-specific mortality by BMI in males of White British ancestry 

Cause of death N1 
Observational 

MR-analyses 
DWH4 Unadjusted Adjusted3 

HR (95% CI)2 P-value HR (95% CI)2 P-value HR (95% CI)2 P-value 
All-cause 5882 1.03 (1.02, 1.03) 4.00x10-18 1.02 (1.01, 1.03) 2.65x10-07 1.03 (0.97, 1.09) 0.39 0.84 
Cardiovascular disease 1467 1.08 (1.07, 1.09) 1.23x10-48 1.08 (1.06, 1.09) 1.12x10-27 1.10 (0.98, 1.24) 0.10 0.67 

Coronary heart disease 906 1.08 (1.07, 1.09) 8.84x10-32 1.08 (1.06, 1.09) 8.61x10-18 1.20 (1.04, 1.40) 0.02 0.14 
Stroke 194 1.03 (0.99, 1.06) 0.10 1.02 (0.98, 1.07) 0.27 0.90 (0.64, 1.26) 0.52 0.43 
Aortic aneurysm 83 1.04 (0.99, 1.09) 0.14 1.03 (0.96, 1.09) 0.41 0.82 (0.52, 1.31) 0.40 0.34 
Other cardiovascular disease 284 1.11 (1.09, 1.14) 9.96x10-25 1.11 (1.08, 1.14) 9.33x10-15 1.06 (0.82, 1.37) 0.66 0.72 

Respiratory diseases 361 0.94 (0.91, 0.97) 1.08x10-05 0.91 (0.88, 0.95) 2.28x10-06 0.84 (0.65, 1.09) 0.19 0.53 
Cancer 3113 1.01 (1.00, 1.02) 0.002 1.01 (1.00, 1.02) 0.06 1.00 (0.92, 1.08) 0.95 0.76 

Lung cancer 571 0.96 (0.94, 0.98) 2.28x10-04 0.94 (0.91, 0.97) 3.54x10-05 0.96 (0.79, 1.18) 0.70 0.82 
Prostate cancer 308 1.03 (1.01, 1.06) 0.01 1.05 (1.02, 1.08) 0.003 0.73 (0.57, 0.93) 0.01 0.004 
Colorectal cancer 329 1.03 (1.00, 1.05) 0.04 1.02 (0.99, 1.05) 0.28 1.17 (0.93, 1.47) 0.18 0.23 
Pancreatic cancer 201 1.01 (0.97, 1.04) 0.76 1.00 (0.96, 1.04) 0.98 1.04 (0.77, 1.41) 0.80 0.79 
Stomach cancer 105 1.07 (1.03, 1.11) 5.08x10-04 1.06 (1.01, 1.12) 0.03 1.32 (0.84, 2.08) 0.23 0.35 
Oesophageal cancer 226 1.06 (1.03, 1.09) 1.06x10-04 1.07 (1.04, 1.11) 8.50x10-05 1.20 (0.88, 1.62) 0.25 0.48 
Malignant melanoma 78 0.99 (0.94, 1.05) 0.85 0.97 (0.91, 1.04) 0.40 0.91 (0.57, 1.46) 0.71 0.80 
Kidney cancer 137 1.09 (1.05, 1.12) 8.27x10-07 1.08 (1.03, 1.13) 5.58x10-04 1.08 (0.73, 1.60) 0.70 0.998 
Bladder cancer 78 0.98 (0.93, 1.04) 0.58 0.93 (0.87, 1.00) 0.06 0.90 (0.55, 1.45) 0.66 0.88 
Brain cancer 169 1.01 (0.97, 1.05) 0.59 0.98 (0.94, 1.03) 0.44 1.29 (0.93, 1.79) 0.12 0.10 
Liver cancer 100 1.11 (1.07, 1.15) 3.18x10-08 1.08 (1.03, 1.13) 0.003 0.81 (0.52, 1.25) 0.34 0.20 
Lymphatic cancer 329 1.00 (0.97, 1.03) 0.91 1.01 (0.98, 1.04) 0.59 1.04 (0.82, 1.32) 0.74 0.79 
Other cancer 460 0.99 (0.96, 1.01) 0.22 1.00 (0.97, 1.03) 0.88 0.90 (0.74, 1.11) 0.33 0.31 

External causes 206 0.97 (0.94, 1.01) 0.12 0.97 (0.93, 1.01) 0.11 1.25 (0.94, 1.67) 0.13 0.08 
Other 696 1.00 (0.99, 1.02) 0.65 0.99 (0.97, 1.01) 0.38 1.00 (0.84, 1.18) 0.97 0.94 

BMI = body mass index; CI = confidence interval; DWH = Durbin-Wu-Hausman; HR = hazard ratio; MR = Mendelian randomization 
1Number of deaths from all causes or cause-specific mortality 
2Adjusted for secular trends (date of birth), estimates represent HR with each unit increase in BMI (kg/m2) 
3Additionally adjusted for highest household occupation, education, smoking status, alcohol intake, physical activity and the first ten genetic PCs 
4P-value for comparing estimates derived from observational and MR analyses using a simplification of the matrix method for DWH test statistic (see Supporting 
Methods)  
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Table 4. Observational and MR analyses of all-cause and cause-specific mortality by BMI in females of White British ancestry 

Cause of death N1 
Observational 

MR-analyses 
DWH4 Unadjusted Adjusted3 

HR (95% CI)2 P-value HR (95% CI)2 P-value HR (95% CI)2 P-value 
All-cause 3688 1.02 (1.01, 1.03) 1.84x10-11 1.02 (1.01, 1.02) 3.70x10-05 1.00 (0.94, 1.07) 0.90 0.71 
Cardiovascular disease 500 1.06 (1.04, 1.08) 6.64x10-14 1.06 (1.04, 1.08) 1.86x10-08 1.18 (0.98, 1.43) 0.08 0.26 

Coronary heart disease 181 1.06 (1.03, 1.09) 5.05x10-06 1.08 (1.04, 1.11) 9.21x10-06 1.20 (0.86, 1.67) 0.29 0.54 
Stroke 152 1.01 (0.97, 1.04) 0.75 1.00 (0.95, 1.04) 0.84 1.10 (0.78, 1.54) 0.58 0.56 
Other cardiovascular disease 141 1.11 (1.08, 1.14) 0 1.10 (1.06, 1.13) 8.74x10-09 1.30 (0.93, 1.82) 0.13 0.33 

Respiratory diseases 171 1.05 (1.02, 1.08) 3.94x10-04 1.06 (1.02, 1.09) 0.002 0.96 (0.68, 1.34) 0.80 0.56 
Cancer 2500 1.01 (1.00, 1.02) 0.01 1.01 (1.00, 1.02) 0.20 0.96 (0.89, 1.03) 0.25 0.19 

Lung cancer 422 1.01 (0.99, 1.03) 0.53 1.00 (0.97, 1.03) 0.99 0.97 (0.79, 1.19) 0.78 0.78 
Breast cancer 468 1.02 (1.00, 1.03) 0.05 1.02 (1.00, 1.04) 0.13 0.87 (0.73, 1.02) 0.09 0.06 

Pre-menopausal 48 1.00 (0.95, 1.06) 0.94 1.01 (0.95, 1.06) 0.84 0.81 (0.50, 1.30) 0.38 0.37 
Post-menopausal 420 1.02 (1.00, 1.04) 0.04 1.02 (1.00, 1.04) 0.13 0.87 (0.73, 1.04) 0.14 0.09 

Colorectal cancer 223 0.99 (0.97, 1.02) 0.59 1.01 (0.98, 1.04) 0.72 1.02 (0.81, 1.30) 0.84 0.87 
Pancreatic cancer 187 1.01 (0.98, 1.04) 0.57 1.02 (0.98, 1.05) 0.29 1.01 (0.76, 1.33) 0.97 0.93 
Ovarian cancer 211 1.00 (0.97, 1.02) 0.76 1.00 (0.96, 1.03) 0.79 1.13 (0.88, 1.45) 0.33 0.31 
Endometrial cancer 50 1.10 (1.06, 1.15) 3.29x10-06 1.12 (1.07, 1.18) 1.29x10-05 0.71 (0.41, 1.23) 0.23 0.10 
Oesophageal cancer 57 0.95 (0.90, 1.01) 0.10 0.87 (0.80, 0.95) 0.001 0.81 (0.50, 1.31) 0.38 0.75 
Malignant melanoma 41 1.00 (0.94, 1.06) 0.95 0.97 (0.90, 1.04) 0.39 1.33 (0.78, 2.27) 0.29 0.24 
Kidney cancer 44 1.08 (1.03, 1.13) 0.002 1.06 (0.99, 1.13) 0.07 0.71 (0.39, 1.30) 0.27 0.19 
Brain cancer 111 1.00 (0.97, 1.04) 0.80 1.03 (0.99, 1.07) 0.19 0.75 (0.54, 1.05) 0.09 0.06 
Liver cancer 69 1.03 (0.99, 1.08) 0.18 1.03 (0.97, 1.09) 0.35 1.17 (0.73, 1.86) 0.51 0.58 
Lymphatic cancer 199 1.00 (0.97, 1.02) 0.76 0.98 (0.94, 1.01) 0.22 1.01 (0.77, 1.32) 0.94 0.80 
Other cancer 295 1.01 (0.98, 1.03) 0.52 0.99 (0.96, 1.02) 0.60 1.02 (0.82, 1.27) 0.87 0.81 

External causes 100 0.99 (0.95, 1.03) 0.72 0.96 (0.92, 1.01) 0.10 1.56 (1.10, 2.20) 0.01 0.01 
Other 403 1.02 (1.00, 1.04) 0.04 1.02 (1.00, 1.04) 0.09 1.01 (0.83, 1.23) 0.92 0.92 

BMI = body mass index; CI = confidence interval; DWH = Durbin-Wu-Hausman; HR = hazard ratio; MR = Mendelian randomization 
1Number of deaths from all causes or cause-specific mortality 
2Adjusted for secular trends (date of birth), estimates represent HR with each unit increase in BMI (kg/m2) 
3Additionally adjusted for highest household occupation, education, smoking status, alcohol intake, physical activity and the first ten genetic PCs 
4P-value for comparing estimates derived from observational and MR analyses using a simplification of the matrix method for DWH test statistic (see Supporting 
Methods)   
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Table 5. Association between weighted GRS (comprising 77 SNPs) and BMI in UK Biobank participants of 
White British ancestry 

Sample 
N 

Effect estimate 
(95% CI)1 

P-value R2 (%)2 

Whole sample 335,308 0.11 (0.11, 0.11) <1.20x10-307 1.81 
Males  154,967 0.10 (0.10, 0.11) <1.20x10-307 2.05 
Females 180,341 0.12 (0.11, 0.12) <1.20x10-307 1.70 

BMI = body mass index; CI = confidence interval; GRS = genetic risk score; SNP = single nucleotide 
polymorphism 
1Effect estimate (and corresponding P-value) represents the change in BMI (kg/m2) per BMI-increasing 
allele in individuals of White British ancestry adjusted for the first ten genetic PCs 
2Variance explained 
 
 
 

Figure Legends 

Figure 1. Flow-chart of those included in main analyses 

Figure 2. Assessment of linearity in associations of the GRS (comprising 77 SNPs) and all-cause mortality 

in the UK Biobank sample of White British ancestry 

Figure 3. Assessment of linearity in associations of BMI and all-cause mortality in the UK Biobank sample 

of White British ancestry using BMI (A) and instrument-free BMI (B) 
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Figure 1. Flow-chart of those included in main analyses 
 

 
BMI = body mass index 
1Of those with valid BMI, genetic and survival data, 335,308 were of White British ancestry 
2Of those who had died by the 16th February 2016, 9,570 were of White British ancestry 
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Figure 2. Assessment of linearity in associations of the GRS (comprising 77 SNPs, right) and all-cause mortality in the UK Biobank sample of White British ancestry. 
 
 

 
 

Association between the GRS (comprising 77 SNPs) and all-cause mortality, adjusted for the same variables as with BMI (Figure 2). Linearity tests were conducted after 
removing data below/above the 1st/99th percentile of BMI, respectively, due to the scarcity of data towards the tails of the BMI distribution. Hazard ratios (HRs) were 
calculated relative to the mean GRS value with 1000 bootstrap resamples to obtain confidence intervals (CIs). The black lines represent the fitted HRs from cubic spline 
models (with the mean value of the GRS as the reference). 
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Figure 3. Assessment of linearity in associations of BMI and all-cause mortality in the UK Biobank sample of White British ancestry using BMI (A) and instrument-
free BMI (B). 
 
(A)                                                                                                                                                               (B) 
 

 
 

A: Fully-adjusted observational associations between BMI and all-cause mortality obtained using conventional Cox regression.  
B: An approximate MR analogue of the instrument-free exposure (set at the 5th, 10th, 25th, 50th, 75th and 85th percentile). These localised average causal effects were then 
joined together and plotted against the corresponding percentiles of the original exposure.  
Linearity tests were conducted after removing data below/above the 1st/99th percentile, respectively, due to the scarcity of data towards the tails of the BMI 
distribution. Hazard ratios (HRs) were calculated relative to the mean BMI (27kg/m2), with 1000 bootstrap resamples to obtain confidence intervals (CIs). The darker 
lines represent the fitted HRs from cubic spline models (with mean BMI as the reference).  
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