Neurofilament-light as biomarker for AD in DS

1 Neurofilament light as a blood biomarker for neurodegeneration in Down syndrome

- 2
- 3 Andre Strydom MBChB MRCPsych PhD^{a,b,c}*
- 4 Amanda Heslegrave PhD^d
- 5 Carla M Startin PhD ^{a,b,c}
- 6 Kin Y Mok FRCP(Edin) PhD ^{c, d, e}
- 7 John Hardy PhD ^{c,d,f}
- 8 Jurgen Groet PhD ^{cg}
- 9 Dean Nizetic MD PhD ^{c,g,h}
- 10 Henrik Zetterberg MD PhD^{d,i,j}
- 11 And The LonDownS Consortium
- 12
- ¹³ ^a Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and
- 14 Neuroscience, Kings College London, London, UK
- 15 ^b Division of Psychiatry, University College London, London, UK
- 16 [°] The LonDownS Consortium
- ^d Department of Molecular Neuroscience, Institute of Neurology, University College London, London,
- 18 UK
- ^e Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, People's
- 20 Republic of China
- 21 ^f Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
- ^g Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London,
- 23 London, UK

Neurofilament-light as biomarker for AD in DS

- ^h Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- ²⁵ Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The
- 26 Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- 27 ^j UK Dementia Research Institute at UCL, London, UK

28

- 29 * Corresponding author: and re.strydom@kcl.ac.uk
- 30 Address: Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry,
- 31 Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, UK
- 32

33 Author contributions

- 34 Conception and design of the study: AS, HZ; acquisition of data: AH, KM, JH, JG, DN, HZ; analysis of
- data: AS, CS; writing the manuscript: AS, CS; revising the manuscript for important intellectual
- 36 content: all co-authors.
- 37

38 **Conflicts of interest**

- 39 AS has consulted for Ono pharmaceuticals, is an adviser to the UK Down Syndrome Association, and
- 40 is an advisory board member of the LuMind Foundation (USA). HZ has served at advisory boards of
- 41 Roche Diagnostics, Eli Lilly, and Teva, and is a co-founder of Brain Biomarker Solutions in Gothenburg
- 42 AB, a GU Ventures-based platform company at the University of Gothenburg.
- 43 No other authors have any competing interests to declare.

- 45 Title characters: 79
- 46 Abstract word count: 150
- 47 Body word count: 1261
- 48 Number of figures / tables: 2

Neurofilament-light as biomarker for AD in DS

49 Abstract

- 50 INTRODUCTION: Down syndrome (DS) may be considered a genetic form of Alzheimer's disease (AD)
- 51 due to universal development of AD neuropathology, but diagnosis and treatment trials are
- 52 hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L),
- 53 due to its association with axonal damage in neurodegenerative conditions.
- 54 METHODS: We measured blood NF-L concentration in 100 adults with DS using Simoa NF-light®
- assays, and examined relationships with age, and cross-sectional and longitudinal dementia
- 56 diagnosis.
- 57 RESULTS: NF-L levels increased with age (Spearman's rho = 0.789, p<0.001), with a steep increase
- after age 40, and were predictive of dementia status (p=0.022 adjusting for age, sex, and APOE4) but
- 59 showed no relationship with longstanding epilepsy or premorbid ability. Baseline NF-L levels were
- 60 associated with longitudinal dementia status.
- 61 DISCUSSION: NF-L is a biomarker for neurodegeneration in DS, with potential for use in future
- 62 clinical trials to prevent or delay dementia.
- 63
- 64 Keywords: Down syndrome, Alzheimer's disease, dementia, neurofilament light, biomarker
- 65
- 66 Research in context
- 67 Systematic review: The authors reviewed the literature using PubMed searches supplemented with
- 68 our knowledge of pending papers in this research area. While blood NF-L has been associated with
- 69 clinical features of progression in a number of neurodegenerative conditions, we have not identified
- any reports of NF-L associated with cognitive decline in DS, a genetic form of AD.
- 71 Interpretation: Our findings demonstrate the potential utility of NF-L as a blood biomarker of
- 72 neurodegeneration in DS, a population that may not be able to tolerate more invasive procedures
- such as neuroimaging and lumbar punctures to track progression.

Neurofilament-light as biomarker for AD in DS

- 74 Future directions: The association between NF-L and other markers of longitudinal AD progression
- should be explored further in future work.

Neurofilament-light as biomarker for AD in DS

76 1. Introduction

77	Down syndrome (DS), caused by the trisomy, translocation, or partial trisomy of chromosome 21, is
78	the most common genetic cause of intellectual disability (ID) with an estimated population of 6
79	million worldwide. Dementia is a common feature of the ageing process in DS due to the triplication
80	of the amyloid precursor protein (APP) on chromosome 21 leading to brain pathology indicative of
81	Alzheimer's disease (AD) [1], a cumulative incidence for dementia in excess of 90% by the age of 65
82	[2], and a mean age at dementia diagnosis of 55 [3]. DS is therefore a genetic form of AD alongside
83	autosomal dominant causes of AD [4].
84	Neurofilament light (NF-L) is one of the scaffolding cytoskeleton proteins of myelinated subcortical
85	axons [5] and can now be reliably measured in blood using ultrasensitive single molecule array
86	technology. Blood concentration of NF-L correlates well with corresponding CSF measures [6] and
87	reflects axonal damage in neurological disorders, including frontotemporal dementia [7], multiple
88	sclerosis [8], and familial and sporadic AD [9, 10]. NF-L correlates with other measures of disease
89	stage and severity [10] but the utility of NF-L in populations with other genetic forms of AD is yet to
90	be fully explored.
91	We aimed to explore the relationship between plasma NF-L levels, age, and dementia status in
92	individuals with DS, as well as its independence from sex effects, premorbid intellectual ability levels,
93	and longstanding epilepsy.
94	2. Methods
95	The North West Wales National Health Service (NHS) Research Ethics Committee provided ethical
96	approval for a longitudinal study of cognitive ability and dementia in DS (13/WA/0194). For those
97	with decision-making capacity written consent was obtained, while for those who did not have
98	decision-making capacity a consultee indicated their agreement to participation.
99	Participants aged 16 and older were recruited across England via care homes, support groups, and
100	local NHS sites. Participants with an acute physical or mental health condition were excluded until

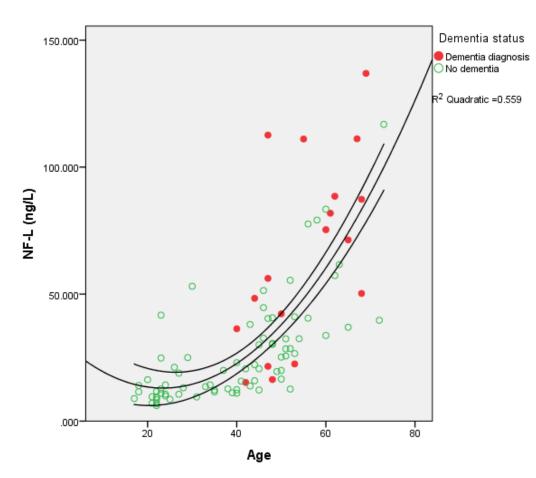
Neurofilament-light as biomarker for AD in DS

101	they had recovered; other details of the cohort have been previously described [11]. DS status was
102	confirmed using DNA from saliva or blood and genotyped using Illumina OmniExpressExome arrays
103	(San Diego, CA, USA); trisomy status was visually confirmed in GenomeStudio (see Table 1). APOE
104	was determined using Thermo Fisher Scientific Taqman assays for rs7412 and rs429358 (Waltham,
105	MA, USA).
106	Assessment included a detailed interview with carers using the Cambridge Examination of Mental
107	Disorders of Older People with Down's syndrome (CAMDEX-DS) [12] to determine decline in several
108	domains including memory. Premorbid ID level was defined according to the ICD10 diagnostic
109	system's descriptions of mild, moderate, and severe ID, based on carers' reports of the individuals'
110	best ever level of functioning [13]. At baseline, dementia was defined as a confirmed clinical
111	diagnosis. At follow-up, participants were classified according to whether they had retained or been
112	given a diagnosis of dementia, or were being investigated for dementia.
113	Blood samples from 100 individuals were collected in lithium heparin tubes (Fisher, Loughborough,
114	UK) and sent overnight for processing. Blood was layered over a similar amount of ficoll (GE
115	Healthcare, Little Chalfont, UK), then centrifuged in a swing-out rotor for 40 minutes at 400g without
116	brake. Plasma samples were stored at -80°C. Plasma NF-L concentration was measured by the same
117	laboratory technician with reagents from a single lot using the Simoa NF-light® assay (a digital
118	sandwich immunoassay employing antibodies directed against the rod domain of NF-L) on an HD-1
119	Simoa analyzer, according to the protocol issued by the manufacturer (Quanterix, Lexington, MA,
120	USA). Samples were run in duplicate and coefficients of variance (CV) for duplicates were set to be
121	below 12%. All samples measured within the range spanned by the limits of quantification and inter-
122	assay CV for the high and low concentration quality controls were 6.6 and 8.1% respectively.
123	All statistical tests were 2-sided and statistical significance was set at p<0.05. We tested associations
124	between plasma NF-L samples and demographic or clinical factors using Mann-Whiney U, Kruskal-
125	Wallis, and Spearman rank correlation tests as appropriate. Associations between plasma NF-L and

Neurofilament-light as biomarker for AD in DS

- dementia diagnosis were tested using logistic regression and log-transformed NF-L values, with
- adjustment for age and sex; we also adjusted for APOE4 status cross-sectionally.

128 3. Results


- 129 NF-L levels were obtained from 100 participants (age range 17-73); 5 results were excluded after
- 130 failing to meet CV thresholds meaning 95 adults were included in subsequent analyses. Of adults
- aged 36 and older who are being targeted for longitudinal follow-up, 29/63 (46%) had completed a
- 132 follow-up assessment at the time of this report (mean number of months between assessments
- 133 23.4, SD 3.9). One individual had suffered an occlusive cerebrovascular event 4-6 months prior to
- donating the blood sample and converted to dementia status at follow-up but was an outlier with an
- 135 NF-L level of 481.97 ng/L, thus was excluded from cross-sectional analysis. For the remaining 94
- 136 individuals NF-L concentration had a median value of 22.74 ng/L, range 6.11-136.91 ng/L. At

137 baseline, 18 of 94 participants had a clinical diagnosis of dementia (Table 1).

138 NF-L levels did not differ by premorbid ID level (Kruskal-Wallis test, p=0.195), sex (Mann-Whitney U

- 139 test, p=0.837) or longstanding epilepsy (Mann-Whitney U test, p=0.858). NF-L level and age of
- participants were significantly correlated (Spearman's rho = 0.789, p<0.001) (Figure 1), such that
- 141 those aged 35 and older had significantly higher levels of NF-L compared to younger individuals
- 142 (median 11.52 vs. 32.42, Mann-Whitney U test p<0.001). Those with dementia had significantly
- higher levels of NF-L (median 63.76 ng/L vs. 19.96 ng/L; Mann-Whitney U test p<0.001), and a
- 144 logistic regression model adjusting for age, sex, and APOE4 status revealed that NF-L levels remained
- 145 predictive of dementia status (p=0.022).

Neurofilament-light as biomarker for AD in DS

146

147 Figure 1. NF-L concentration by age of individuals with DS.

148

149 Seven (24.1%) of 29 individuals with follow-up cognitive data had a clinical diagnosis of dementia at 150 baseline, all with the dementia diagnosis retained at follow-up, with a further two (6.9%) individuals 151 converting to dementia status by follow-up, while three (10.3%) participants were under 152 investigation for dementia at follow-up. Predictive validity of NF-L levels at baseline was explored by 153 combining individuals with confirmed or suspected dementia at follow-up (n=12, median NF-L 77.38 154 ng/L), and comparing them against those who remained dementia-free (median NF-L 19.94 ng/L). 155 Higher levels of NF-L at baseline predicted the likelihood of dementia at follow-up, even when 156 adjusted for age and sex (p=0.036). 157

Neurofilament-light as biomarker for AD in DS

159 4. Discussion

160	We demonstrated that NF-L measured in blood using an ultra-sensitive assay is strongly associated
161	with age and dementia status in individuals with DS, and baseline levels were predictive of dementia
162	diagnosis over time. Furthermore, NF-L levels did not differ according to severity of premorbid ID or
163	by longstanding epilepsy diagnosis (a common neurological comorbidity in DS), suggesting that it is a
164	stable and feasible biomarker that can be used in clinical populations.
165	Our results indicate that this marker could pinpoint onset of neurodegeneration in DS. NF-L showed
166	an age relationship in keeping with post-mortem data and amyloid positron emission tomography
167	(PET) studies of AD pathology in adults with DS [1, 14]. Although NF-L is a marker of axonal damage,
168	and thus not specific to AD [7-9, 15], in a genetically predisposed population such as DS where AD is
169	almost always the cause of dementia, the lack of specificity is arguably less of an issue and NF-L
170	could potentially be used as a biomarker for treatment response. Normalization of serum/plasma
171	NF-L in response to treatment has already been demonstrated in patients with multiple sclerosis [8,
172	16].
173	Although further work is required to establish long-term predictive and concurrent validity of NF-L,
174	our data suggests that this biomarker could be instrumental in allowing an experimental medicine
175	approach in DS and other high-risk populations to test treatments that might prevent or delay
176	dementia onset.
177	
178	Acknowledgements

179 The authors would like to thank all the participants in this study for their time.

180 This work was funded by a Wellcome Trust Strategic Award (grant number: 098330/Z/12/Z)

181 conferred upon The London Down Syndrome (LonDownS) Consortium. The funder had no role in

Neurofilament-light as biomarker for AD in DS

182 study design; the collection, analysis, or interpretation of the data; the writing of the report; or the

183 decision to submit the report for publication.

184	HZ is a Wallenberg Academy Fellow and receives support from the European Research Council, the
185	Swedish Research Council, and Frimurarestiftelsen. HZ is further supported by the Wolfson
186	Foundation, the Wellcome Trust, and the UK Dementia Research Institute. DN is also supported by
187	the National Medical Research Council Singapore (NMRC/CIRG/1438/2015) and Singapore Ministry
188	of Education AcRF-Tier2 (2015-T2-1-023). This research was further supported by the National
189	Institute for Health Research networks (mental health, dementias and neurology) and participating
190	NHS trusts. We would like to thank our NHS network of sites that helped to identify participants.
191	The LonDownS Consortium principal investigators are Andre Strydom (chief investigator),
192	Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and
193	Neuroscience, King's College London, London, UK, and Division of Psychiatry, University College
194	London, London, UK; Elizabeth Fisher, Department of Neurodegenerative Disease, UCL Institute of
195	Neurology, London, UK; Dean Nizetic, Blizard Institute, Barts and the London School of Medicine,
196	Queen Mary University of London, London, UK, and Lee Kong Chian School of Medicine, Nanyang
197	Technological University, Singapore, Singapore; John Hardy, Reta Lila Weston Institute, Institute of
198	Neurology, University College London, London, UK, and UK Dementia Research Institute at UCL,
199	London, UK; Victor Tybulewicz, Francis Crick Institute, London, UK, and Department of Medicine,
200	Imperial College, London, UK; and Annette Karmiloff-Smith (Birkbeck University of London, London,
201	UK, deceased). Other members of The LonDownS Consortium who contributed to data collection are
202	Sarah Hamburg and Rosalyn Hithersay (both Department of Forensic and Neurodevelopmental
203	Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK,
204	and Division of Psychiatry, University College London, London, UK).

Neurofilament-light as biomarker for AD in DS

205 References

- 206 [1] Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic
- 207 cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci.
- 208 2015;16:564-74.
- 209 [2] McCarron M, McCallion P, Reilly E, Dunne P, Carroll R, Mulryan N. A prospective 20-year
- 210 longitudinal follow-up of dementia in persons with Down syndrome. J Intellect Disabil Res.
- 211 2017;61:843-52.
- [3] Sinai A, Mokrysz C, Bernal J, Bohnen I, Bonell S, Courtenay K, et al. Predictors of Age of Diagnosis
- and Survival of Alzheimer's Disease in Down Syndrome. J Alzheimers Dis. 2018;61:717-28.
- 214 [4] Zis P, Strydom A. Clinical aspects and biomarkers of Alzheimer's disease in Down syndrome. Free
- 215 Radic Biol Med. 2017.
- 216 [5] Zetterberg H. Neurofilament Light: A Dynamic Cross-Disease Fluid Biomarker for
- 217 Neurodegeneration. Neuron. 2016;91:1-3.
- 218 [6] Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, et al. Plasma Concentration
- of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-
- 220 Sectional Study. EBioMedicine. 2016;3:135-40.
- 221 [7] Rohrer JD, Woollacott IO, Dick KM, Brotherhood E, Gordon E, Fellows A, et al. Serum
- 222 neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia.
- 223 Neurology. 2016;87:1329-36.
- 224 [8] Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum Neurofilament
- light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81:857-70.
- 226 [9] Mattsson N, Andreasson U, Zetterberg H, Blennow K, Alzheimer's Disease Neuroimaging I.
- 227 Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer
- 228 Disease. JAMA Neurol. 2017;74:557-66.
- [10] Weston PSJ, Poole T, Ryan NS, Nair A, Liang Y, Macpherson K, et al. Serum neurofilament light in
- familial Alzheimer disease: A marker of early neurodegeneration. Neurology. 2017;89:2167-75.

Neurofilament-light as biomarker for AD in DS

- [11] Startin CM, Hamburg S, Hithersay R, Davies A, Rodger E, Aggarwal N, et al. The LonDownS adult
- cognitive assessment to study cognitive abilities and decline in Down syndrome. Wellcome Open

233 Res. 2016;1:11.

- [12] Ball SL, Holland AJ, Huppert FA, Treppner P, Watson P, Hon J. The modified CAMDEX informant
- interview is a valid and reliable tool for use in the diagnosis of dementia in adults with Down's
- syndrome. J Intellect Disabil Res. 2004;48:611-20.
- 237 [13] Strydom A, Hassiotis A, King M, Livingston G. The relationship of dementia prevalence in older
- adults with intellectual disability (ID) to age and severity of ID. Psychol Med. 2009;39:13-21.
- [14] Annus T, Wilson LR, Hong YT, Acosta-Cabronero J, Fryer TD, Cardenas-Blanco A, et al. The
- 240 pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement.
- 241 2016;12:538-45.
- 242 [15] Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, et al. Neurofilament light
- chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84:2247-57.
- 244 [16] Piehl F, Kockum I, Khademi M, Blennow K, Lycke J, Zetterberg H, et al. Plasma neurofilament
- light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult Scler.
- 246 2017:1352458517715132.

Neurofilament-light as biomarker for AD in DS

	All participants	Dementia	No dementia	Participants with
		(baseline)	(baseline)	follow up data
Number	94	18	76	29
Age at baseline	42.68±14.87 (17-	55.17±9.92 (40-	39.72±14.34 (17-	52.63±8.88 (40-
(mean ±	73)	69)	73)	72)
standard				
deviation				
(range))				
DS type	89 (94.7%)	18 (100.0%)	71 (93.4%)	28 (96.6%)
	trisomy, 2 (2.1%)	trisomy	trisomy, 2 (2.6%)	trisomy, 1 (3.4%)
	translocation, 3		translocation, 3	unknown
	(3.2%) unknown		(3.9%) unknown	
Sex	41 (43.6%)	6 (33.3%)	35 (46.1%)	10 (34.5%)
	female, 53	female, 12	female, 41	female, 19
	(56.4%) male	(66.7%) male	(55.9%) male	(65.5%) male
Ethnicity	85 (90.4%)	17 (94.4.0%)	68 (89.5%)	27 (93.1%)
	white, 9 (9.6%)	white, 1 (5.6%)	white, 8 (10.5%)	white, 2 (6.8%)
	other	other	other	other
Pre-dementia ID	37 (39.4%) mild,	6 (33.3%) mild, 9	31 (40.8%) mild,	13 (44.8%) mild,
level	47 (50%)	(50.0%)	38 (50%)	12 (41.4%)
	moderate, 9	moderate, 3	moderate, 6	moderate, 3
	(9.6%) severe, 1	(16.7%) severe	(7.9%) severe, 1	(10.3%) severe, 1
	(1.2%) unknown		(1.3%) unknown	(3.4%) unknown

Neurofilament-light as biomarker for AD in DS

_				
APOE status	68 (72.3%) non-	12 (66.7%) non-	56 (73.7%) non-	22 (75.9%) non-
	APOE4 carrier,	APOE4 carrier, 5	APOE4 carrier,	APOE4 carriers, 6
	23 (24.5%)	(27.8%) APOE4	18 (23.7%)	(20.7%) APOE4
	APOE4 carrier, 3	carrier, 1 (5.5%)	APOE4 carrier, 2	carrier, 1 (3.4%)
	(3.2%) unknown	unknown	(2.6%) unknown	unknown
NFL level	22.74 (6.11-	63.76 (15.21-	19.96 (6.11-	32.67 (12.23 –
(median (range))	136.91)	136.91)	116.84)	481.97)
ng/L				

Table 1. Participant demographics of all participants included in group and subgroup analyses