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Abstract1

Positive natural selection can lead to a decrease in genomic diversity at the selected site and2

at linked sites, producing a characteristic signature of elevated expected haplotype homozygos-3

ity. These selective sweeps can be hard or soft. In the case of a hard selective sweep, a single4

adaptive haplotype rises to high population frequency, whereas multiple adaptive haplotypes5

sweep through the population simultaneously in a soft sweep, producing distinct patterns of ge-6

netic variation in the vicinity of the selected site. Measures of expected haplotype homozygosity7

have previously been used to detect sweeps in multiple study systems. However, these methods8

are formulated for phased haplotype data, typically unavailable for nonmodel organisms, and9

may have reduced power to detect soft sweeps due to their increased genetic diversity relative to10

hard sweeps. To address these limitations, we applied the H12 and H2/H1 statistics of Garud11

et al. [2015] to unphased multilocus genotypes, denoting them as G12 and G2/G1. G12 (and12

the more direct expected homozygosity analogue to H12, denoted G123) has comparable power13

to H12 for detecting both hard and soft sweeps. G2/G1 can be used to classify hard and soft14

sweeps analogously to H2/H1, conditional on a genomic region having high G12 or G123 values.15

The reason for this power is that under random mating, the most frequent haplotypes will yield16

the most frequent multilocus genotypes. Simulations based on parameters compatible with our17

recent understanding of human demographic history suggest that expected homozygosity meth-18

ods are best suited for detecting recent sweeps, and increase in power under recent population19

expansions. Finally, we find candidates for selective sweeps within the 1000 Genomes CEU,20

YRI, GIH, and CHB populations, which corroborate and complement existing studies.21
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Introduction1

Positive natural selection is the process by which an advantageous genetic variant rises to high frequency2

in a population, thereby reducing site diversity and creating a tract of elevated expected homozygosity and3

linkage disequilibrium (LD) surrounding that variant [Sabeti et al., 2002]. As beneficial alleles increase to4

high frequency in a population, the signature of a selective sweep emerges, which we can characterize from the5

number of haplotypes involved in the sweep [Maynard Smith and Haigh, 1974, Schweinsberg and Durrett,6

2005, Hermisson and Pennings, 2017]. A hard sweep is an event in which a single haplotype harboring7

a selectively advantageous allele rises in frequency, while in a soft sweep, multiple haplotypes harboring8

advantageous mutations can rise in frequency simultaneously. Thus, selective sweeps represent a broad and9

non-homogenous spectrum of genomic signatures. A selective event that persists until the beneficial allele10

reaches fixation is a complete sweep, while a partial sweep is one in which the selected allele does not reach11

fixation. Consequently, expected haplotype homozygosity surrounding the selected site is greatest once the12

selected allele has fixed and before recombination and mutation break up local LD [Przeworski, 2002].13

Two modes of soft sweeps have been proposed across three seminal papers, consisting of sweeps from14

standing genetic variation that becomes beneficial in a changing environment, or new recurrent de novo adap-15

tive mutations [Hermisson and Pennings, 2005, Pennings and Hermisson, 2006a,b], and these can be complete16

and partial as well. Unlike hard sweeps, where haplotypic diversity is decreased, in a soft sweep, haplotypic17

diversity remains, since multiple haplotypes carrying the adaptive allele rise to high frequency. [Przeworski18

et al., 2005, Berg and Coop, 2015]. Patterns of diversity surrounding the selected site begin to resemble those19

expected under neutrality as the number of unique haplotypic backgrounds carrying the beneficial allele (the20

softness of the sweep) increases, potentially obscuring the presence of the sweep. Accordingly, the effect of21

a soft sweep may be unnoticeable, even if the selected allele has reached fixation.22

Popular modern methods for identifying recent selective sweeps from haplotype data identify distortions23

in the haplotype structure following a sweep, making use of either the signature of elevated LD or reduced24

haplotypic diversity surrounding the site of selection. Methods in the former category [Kelly, 1997, Kim25

and Nielsen, 2004, Pavlidis et al., 2010] can detect both hard and soft sweeps, as neighboring neutral vari-26

ants hitchhike to high frequency under either scenario. Indeed, LD-based methods may have an increased27

sensitivity to softer sweeps [Pennings and Hermisson, 2006b], especially relative to methods that do not use28

haplotype data, such as composite likelihood approaches [Kim and Stephan, 2002, Nielsen et al., 2005, Chen29

et al., 2010, Vy and Kim, 2015, Racimo, 2016]. Haplotype homozygosity-based methods include iHS [Voight30

et al., 2006], its extension, nSL [Ferrer-Admetlla et al., 2014], and H-scan [Schlamp et al., 2016]. These31

approaches identify a site under selection from the presence of a high-frequency haplotype. Additionally,32
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Chen et al. [2015] developed a hidden Markov model-based approach that similarly identifies sites under1

selection from the surrounding long, high-frequency haplotype.2

While the aforementioned methods are powerful tools for identifying selective sweeps in the genome,3

they lack the ability to distinguish between hard and soft sweeps. It is this concern that Garud et al. [2015]4

address with the statistics H12 and H2/H1. H12, a haplotype homozygosity-based method, identifies selective5

sweeps from elevated expected haplotype homozygosity surrounding the selected site. It is computed as the6

expected haplotype homozygosity, with the frequencies of the two most frequent haplotypes pooled into a7

single frequency:8

H12 = (p1 + p2)
2 +

I∑
i=3

p2i , (1)

where there are I distinct haplotypes in the population, and pi is the frequency of the ith most frequent9

haplotype, with p1 ≥ p2 ≥ · · · ≥ pI . Pooling the two largest haplotype frequencies provides little additional10

power to detect hard sweeps relative to H1, the standard measure of expected haplotype homozygosity,11

where H1 =
∑I

i=1 p
2
i (Figure 1A, left panel). However, pooling provides more power to detect soft sweeps,12

in which at least two haplotypes rise to high frequency, and the distortion of their joint frequency produces13

an elevated expected haplotype homozygosity consistent with a sweep (Figure 1A, right panel).14

In conjunction with an elevated value of H12, the ratio H2/H1 serves as a measure of sweep softness,15

and is not meaningful on its own. H2 is the expected haplotype homozygosity, omitting the most frequent16

haplotype, computed as H2 = H1− p21, and is larger for softer sweeps. In the case of a soft sweep, the17

frequencies of the first- and second-most frequent haplotypes are both large, and omitting the most frequent18

haplotype still yields a frequency distribution in which one haplotype predominates. Under a hard sweep,19

the second through Ith haplotypes are likely to be at low frequency and closer in value, such that their20

expected homozygosity is small. Thus, while H2 < H1 in all cases, the value of H2 is closer to that of H121

under a soft sweep.22

To leverage the power of H12 and H2/H1 to detect sweeps in nonmodel organisms, for which phased23

haplotype data are often unavailable, we extend the application of these statistics to unphased multilocus24

genotype (MLG) data as G12 and G2/G1. MLGs are single strings representing a diploid individual’s allelic25

state at each site as homozygous for the reference allele, homozygous for the alternate allele, or heterozygous.26

Similarly to H12, we define G12 as27

G12 = (q1 + q2)
2 +

J∑
j=3

q2j , (2)

where there are J distinct unphased MLGs in the population, and qj is the frequency of the jth most28

frequent MLG, with q1 ≥ q2 ≥ · · · ≥ qJ . As with haplotypes, pooling the most frequent MLGs only provides29

marginally more resolution to detect hard sweeps, as only a single predominant unphased MLG is expected30
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under random mating (Figure 1B, left panel). However, because the input data for G12 and G2/G1 are1

unphased MLGs, we define another statistic that is uniquely meaningful in this context. The presence of2

multiple unique frequent haplotypes under a soft sweep implies not only that the frequency of individuals3

homozygous for these haplotypes will be elevated, but also that the frequencies of their heterozygotes will be4

elevated. When haplotypes X and Y both exist at high frequency, diploid individuals of type XX, Y Y , and5

XY will also exist at high frequency, assuming individuals mate randomly within the population (Figure 1B,6

right panel). Therefore, we can define a statistic truly analogous to H12 for unphased MLG data, G123.7

This statistic is calculated as8

G123 = (q1 + q2 + q3)
2 +

J∑
j=4

q2j . (3)

We note, however, that with this approach we do not explicitly enforce a constraint on the presence of9

particular high-frequency MLGs in the sample. That is, we only assume that the presence of one or more10

high-frequency MLGs implies a sweep, even if any one of the XX, Y Y , or XY MLGs is absent.11

We show through simulation and empirical application that the statistics G12 and G123, in conjunction12

with the ratio G2/G1, both maintain the power of H12 to detect and classify sweeps, without requiring13

phased haplotype input data. Furthermore, as a closer analogue to H12, the use of G123 with G2/G114

more closely maintains the classification ability of H12 with H2/H1 than does G12. Generally, we find that15

the selective events visible with H12 in phased haplotype data are visible to G12 and G123 in unphased16

MLG data, with trends in power and genomic signature of the applications remaining consistent with one17

another. Accordingly, we recover well-documented sweep signatures at LCT and SLC24A5 in individuals18

with European ancestry [Bersaglieri et al., 2004, Sabeti et al., 2007, Gerbault et al., 2009], with the latter19

also detected in South Asian individuals [Coop et al., 2009, Mallick et al., 2013], as well as the region linked20

to EDAR in East Asian populations [Fujimoto et al., 2007, Bryk et al., 2008, Pickrell et al., 2009], and SYT121

in African individuals [Voight et al., 2006]. In addition, we identify novel candidates RGS18 in African22

individuals, P4HA1 in South Asian individuals, and FMNL3 in East Asian individuals.23

Results24

To detect selective sweeps, we must have power to identify loci with elevated haplotype homozygosity relative25

to expectations under neutral demographic scenarios. We compared the power of the MLG-based methods26

G12 and G123 to that of the haplotype-based methods H12 and H123 [Garud et al., 2015], at the 1% false27

positive rate (FPR) obtained from simulations under neutral demographic models (see Materials and meth-28

ods). We performed simulations under population-genetic parameters inferred for human data [Takahata29

et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000] with the forward-time simulator30
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SLiM 2 [Haller and Messer, 2017]. Because SLiM outputs paired phased haplotypes for each diploid indi-1

vidual, we manually merged each individual’s haplotypes to apply the MLG-based methods. Our simulated2

replicates included scenarios of selective neutrality, hard sweeps, and soft sweeps. We evaluated methods3

across simulations of constant demographic history, as well as realistic human models of bottleneck and4

expansion [Lohmueller et al., 2009] (Figure 2). We then use an approximate Bayesian computation (ABC)5

approach to evaluate the ability of the MLG-based methods with G2/G1, and the haplotype-based methods6

with H2/H1, to differentiate between hard and soft sweeps. Finally, we evaluated empirical data from the7

1000 Genomes Project [Auton et al., 2015], manually merging each study individual’s phased haplotypes into8

MLGs to observe the effect of phasing on our ability to detect selective events. See Materials and methods9

for a detailed explanation of experiments.10

Using G12 and G123 to detect sweeps11

We demonstrate the range of sensitivity of G12 and G123 relative to H12 and H123 for selective sweeps12

occurring at time points between 400 and 4,000 generations before the time of sampling. We evaluated G12313

to determine whether it is a more direct analogue of H12 as we expected, while our application of H12314

follows from the work of Garud et al. [2015], which suggested that H123 yields little difference in power to15

detect sweeps relative to H12 for given sample and window size parameters. In the following experiments,16

we simulated 100 kilobase (kb) chromosomes carrying a selected allele at their center (sweep simulations), or17

carrying no selected allele for neutrality, performing 103 replicates for each scenario with sample size n = 10018

diploid individuals.19

For each series of simulations, we detected sweeps using a sliding window of size 40 kb shifting by 4 kb20

increments across the chromosome. We selected this window size to ensure that the effect of short-range21

LD would not inflate the values of our statistics (Figure S1). This additionally matched the window size22

we selected for analysis of empirical data in non-African populations (see Analysis of empirical data for23

signatures of sweeps). According to theoretical expectations [Gillespie, 2004, Garud et al., 2015, Hermisson24

and Pennings, 2017], a window of size 40 kb under our simulated parameters is sensitive to sweeps with25

selection strength s ≥ 0.004 (see Materials and methods). Additionally, although we used a nucleotide-26

delimited window in our analysis, one can also fix the number of single-nucleotide polymorphisms (SNPs)27

included in each window (SNP-delimited window), though this somewhat changes the properties of the28

methods (see Discussion). A SNP-delimited window corresponding to approximately 40 kb for our simulated29

data contains on average 235 SNPs under neutrality. To supplement experiments measuring the power of30

each method, we also assessed the genomic distribution of G12 and G123 values to characterize their patterns31

under sweep scenarios.32
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Tests for detection of hard sweeps1

Methods that detect selective sweeps typically focus on the signature of hard sweeps, though many can2

detect soft sweeps as well. Accordingly, we began by measuring the ability of G12, G123, H12, and H1233

to detect both partial and complete hard sweeps, under scenarios in which a single haplotype acquires a4

selected mutation and rises in frequency. We examined selection start times (t) of 400, 1,000, 2,000, and5

4,000 generations before the time of sampling. These values of t span the time periods of various sweeps in6

human history [Przeworski, 2002, Sabeti et al., 2007, Beleza et al., 2012, Jones et al., 2013, Clemente et al.,7

2014, Fagny et al., 2014]. For each t, we simulated hard sweeps under the aforementioned parameters to8

sweep frequencies (f) between 0.1 and 1 for the selected allele (Figures 3 and S2). Sweeps to smaller f have9

a smaller effect on the surrounding expected haplotype homozygosity and are more difficult to detect. We10

performed hard sweep simulations for a large selection coefficient of s = 0.1 and a more moderate selection11

coefficient of s = 0.01.12

The values of t and f both impact the ability of methods to identify hard sweeps (Figure 3). At the 1%13

FPR, all methods are suited to the detection of more recent sweeps for simulated data, losing considerable14

power to resolve hard sweep events occurring prior to 2,000 generations before sampling, and losing power15

entirely for hard sweeps occuring prior to 4,000 generations before sampling. For selection within 2,00016

generations of sampling, trends in the power of the MLG-based methods resemble those of the haplotype-17

based methods, with the power of the MLG-based methods either matching or approaching that of the18

haplotype-based methods for s = 0.1 (Figures 3A and S2A), and following similar trends in power for19

s = 0.01 (though with slightly reduced power overall; Figures 3B and S2B), indicating that the two highest-20

frequency MLGs and the two highest-frequency haplotypes have a similar ability to convey the signature of21

a sweep.22

For data simulated under strong selection, s = 0.1 (Figure 3A), G12 and H12 achieve their maximum23

power for recent selective sweeps originating within the past 1,000 generations (with little to no power lost24

over this interval for sweeps to large f). This result is expected because sweeps with such a high selection25

coefficient quickly reach fixation, at which point mutation and recombination break down tracts of elevated26

expected homozygosity until the signal fully decays, obscuring more ancient events. For a given value of s,27

selective sweeps to larger values of f for the selected allele additionally produce a stronger signal because28

more diversity is ablated the longer a sweep lasts. Thus, G12 and H12 are best able to detect sweeps over29

recent time intervals, especially as the sweep goes to larger values of f . Strong hard sweeps additionally30

create a peak in signal surrounding the site of selection that increases in magnitude with increasing duration31

of a sweep. This signal is broad and extends across the one Mb interval that we modeled in Figure 3C. These32

patterns repeat for G123 and H123 (Figure S2A), yielding little difference in power between H12 and H123,33
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and no difference in power between G123 and G12 (along with a nearly-identical spatial signature along the1

chromosome; Figure S2C).2

At a smaller selection coefficient of s = 0.01 (Figure 3B), G12 and H12 have a distinct range of sweep3

detection from s = 0.1. The reduced strength of selection here leads beneficial mutations to rise more slowly4

in frequency than for stronger selection. Consequently, after 400 generations of selection, the distribution of5

haplotype (and therefore MLG) frequencies has scarcely changed from neutrality, and G12 and H12 cannot6

reliably detect the signal of a sweep. However, the powers of G12 and H12, as well as G123 and H1237

(Figure S2B), are greatest for a moderate sweep to f ≥ 0.9 starting 2,000 generations prior to sampling. As8

with stronger selection, pooling the three largest frequencies had little effect on power relative to pooling the9

two largest frequencies (Figure S2). We could not detect adaptive mutations appearing more anciently than10

2,000 generations before sampling, indicating that all methods lose power to detect sweeps for smaller values11

of s, and that haplotype methods may outperform MLG methods for smaller values of s as well. Furthermore,12

the range of time over which methods detect a sweep narrows and shifts to more ancient time periods with13

decreasing s. Weaker selection nonetheless produces a signal peak distinct from the neutral background and14

proportional in magnitude to the value of f (Figures 3D and S2D), though expected haplotype homozygosity,15

and therefore expected MLG homozygosity, is reduced for moderate selection (compare vertical axes of16

Figures 3C and D and of Figures S2C and D).17

Tests for detection of sweeps on standing variation18

We characterized the properties of G12, G123, H12, and H123 for simulated soft sweeps from selection on19

standing genetic variation (SSV). We generated results analogous to those for hard sweeps: measures of20

power for each method, and the chromosome-wide spatial distribution of the G12 and G123 signals. Across21

identical times of selection (t) and selection coefficients (s) as for hard sweep simulations, we simulated SSV22

scenarios by introducing the selected mutation on multiple haplotypes simultaneously. We evaluated method23

ability to correctly distinguish sweeps on k = 2, 4, 8, 16, and 32 initially-selected different haplotypes from24

neutrality. One copy of the selected allele is guaranteed to remain in the population for the entire simulation,25

but we do not condition on the number of sweeping haplotypes at the time of sampling. Indeed, we do not26

expect that for larger values of k, all haplotypes carrying the selected allele will remain at high frequency,27

or remain at all by the time of sampling (Figure S4). For our scaled (see Materials and methods) simulated28

population size of 500 diploids (unscaled 104 diploids), this corresponds to having the beneficial allele present29

on 0.2 to 3.2% of haplotypes at the onset of selection. Our results for these tests mirror those for hard sweeps,30

with stronger selection on fewer distinct haplotypes yielding the most readily detectable genomic signatures31

(Figures 4 and S3).32
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SSV once again produces a signal of elevated MLG homozygosity for s = 0.1 that all methods most1

readily detect if it is recent, and rapidly lose power to detect as t increases. G12 and H12 reliably detect2

signals of SSV in simulated 100 kb chromosomes, retaining power for SSV on as many as k ≤ 16 haplotypes3

within the first 400 generations after the start of selection (Figure 4A). However, the relatively smaller4

expected homozygosity under SSV leads the power of each method to decay more rapidly than under a hard5

sweep. The levels of expected homozygosity produced under SSV are consequently smaller in magnitude than6

those generated under hard sweeps, but unambiguously distinct from neutrality for at least one combination7

of each tested k and t, with k = 2 most closely resembling a hard sweep throughout (Figure 4C). As with8

the hard sweep scenario, G123 and H123 yield little change in resolution for detecting strong soft sweeps9

from SSV, suggesting that the third-most frequent haplotype may have little importance in detecting sweeps10

(Figures S3A and C). Once again, H123 maintains slightly greater power than does G123.11

G12 and H12 perform comparably well for moderate (s = 0.01) sweeps from SSV (Figure 4B). Similarly12

to hard sweep scenarios for s = 0.01, G12 and H12 detected soft sweeps from SSV occurring between 1,00013

and 2,000 generations before sampling. Once again, the power of H12 was greater than that of G12, with14

trends in power for G12 following those of H12. For both MLG and haplotype data, the inclusion of additional15

selected haplotypes at the start of selection up to k = 8 only slightly reduced the maximum power of G1216

and H12 to detect sweeps, but with time at which maximum power is reached shifting from 2,000 generations17

before sampling for k ≤ 8 to 1,000 generations before sampling for k ≥ 16. Additionally, the spatial signal18

for moderate sweeps was comparable between SSV and hard sweep scenarios (Figure 4D). This result may be19

because at lower selection strengths, haplotypes harboring adaptive alleles are more likely to be lost by drift,20

leaving fewer distinct selected haplotypes rising to appreciable frequency. These trends persist for G123 and21

H123, which display similar powers to G12 and H12 across all scenarios (Figures S3B and D).22

Effect of population size changes on detection capabilities of G12 and G12323

Changes in population size that occur simultaneously with or after the time of selection may impact the ability24

of methods to detect sweeps because haplotypic diversity may decrease under a population bottleneck, or25

increase under a population expansion [Campbell and Tishkoff, 2008]. To test the robustness of the expected26

homozygosity statistics to these potentially confounding scenarios, we modeled hard sweeps following the27

human population bottleneck and expansion parameters inferred by Lohmueller et al. [2009] (Figure 2). We28

measured the powers of the MLG- and haplotype-based methods across our previously-tested parameters,29

using simulated 100 kb chromosomes and sliding windows, and approaching these scenarios in two ways.30

First, we applied a 40 kb window as previously to evaluate the effect of population size change on the31

power of expected homozygosity methods. Under a bottleneck, a 40 kb window is expected to carry fewer32
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SNPs than under a constant-size demographic history, whereas an expansion results in greater diversity1

per window. Second, we examined whether we could increase the robustness of the expected homozygosity2

methods to population size changes by adjusting the window size for each scenario to match the expected3

number of segregating sites for a 40 kb window under constant demographic history. To do this, we followed4

the approach outlined in DeGiorgio et al. [2014], increasing window size for bottleneck simulations and5

decreasing window size for expansion simulations. We employed windows of size 56,060 nucleotides for6

bottleneck, and of size 35,048 nucleotides for expansion scenarios [see DeGiorgio et al., 2014].7

A recent population bottleneck reduces the powers of all methods to detect sweeps, whereas a recent8

population expansion enhances power (Figures S5 and S6). This results from the genome-wide reduction9

in haplotypic diversity under a bottleneck relative to the constant-size demographic history. Thus, the10

maximum values of the expected homozygosity statistics in the absence of a sweep are inflated, resulting in11

a distribution of maximum values under neutrality that has increased overlap with the distribution under12

selective sweeps. In contrast, haplotypic diversity is greater under the population expansion than what13

is expected for the constant-size demographic history, rendering easier the detection of elevated expected14

homozygosity due to a sweep.15

For strong selection (s = 0.1) under a population bottleneck, all methods using unadjusted windows have16

reliable power to detect only recent hard sweeps to large f occurring within 1,000 generations of sampling17

(Figures S5A and S6A). Adjusting window size has little effect on this trend, with powers for sweeps beginning18

400 generations before sampling increasing only slightly (Figures S5C and S6C). This result indicates that19

we can apply the expected homozygosity methods to populations that have experienced a severe bottleneck20

and make accurate inferences about their selective histories. Similarly, adjusting window size had little21

effect on the power of methods to detect a sweep under a population expansion, wherein power is already22

elevated. As with the bottleneck scenario, reducing the size of a 40 kb window (Figure S5B and S6B) to23

35,048 bases (Figure S5D and S6D) provided a minor increase in power to detect selective events occurring24

within 2,000 generations of sampling, with high power for larger values of f extending to 2,000 generations25

prior to sampling.26

Distinguishing hard and soft sweeps with G2/G127

Having identified selective sweeps with the statistics G12 or G123, our goal is to make an inference about the28

number of sweeping haplotypes. To distinguish between hard and soft sweeps, Garud et al. [2015] defined29

the ratio H2/H1, which is larger under a soft sweep and smaller under a hard sweep. The H2/H1 ratio30

leverages the observation that haplotypic diversity following a soft sweep is greater than that under a hard31

sweep. Garud and Rosenberg [2015] showed that the value of H2/H1 is inversely correlated with that of32
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H12, and that identical values of H2/H1 have different interpretations depending on their associated H121

value. Therefore, H2/H1 should only be applied in conjunction with H12 when H12 is large enough to be2

distinguished from neutrality.3

Here, we extend the application of H2/H1 to MLGs. As with the haplotype approach, G2/G1 is larger4

under a soft sweep and smaller under a hard sweep, because MLG diversity following a soft sweep is greater5

than under a hard sweep. G2/G1 should therefore distinguish between hard and soft sweeps similarly to6

H2/H1, conditional on a high G12 or G123 value. To demonstrate the classification ability of the MLG-7

based methods with respect to the haplotype-based methods, we began by generating 106 simulated replicates8

of 40 kb chromosomes with sample size n = 100 diploids for hard sweep and SSV scenarios, treating each9

chromosome as a single window and recording its G12, G123, and G2/G1 values (see Materials and methods).10

We evaluated the ability of G2/G1 with G12 or G123 to distinguish between hard sweeps and soft11

sweeps from SSV specifically from k = 3 and k = 5 drawn haplotypes, both within the range of method12

detection (Figures 4 and S3), with all sweeps allowed but not guaranteed to go to fixation. We examined13

two values of k, distinct from one another and from hard sweeps, to illustrate the effect of model choice on14

sweep classification. Each experiment evaluated the likelihood that a soft sweep scenario would produce a15

particular paired (G12, G2/G1) or (G123, G2/G1) value relative to a hard sweep scenario. We measured16

this relative likelihood by plotting the Bayes factors (BFs) for paired (G12, G2/G1) and (G123, G2/G1) test17

points generated from an approximate Bayesian computation (ABC) approach (see Materials and methods).18

A BF > 1 indicates a greater likelihood of a soft sweep generating the paired values of a test point, and19

a BF < 1 indicates that a hard sweep is more likely to have generated such values. In practice, however,20

we only assign BF ≤ 1/3 as hard and BF ≥ 3 as soft to avoid making inferences about borderline cases21

(Figure 5). For each replicate, time of selection (t) and selection strength (s) were drawn uniformly at22

random on a log-scale from t ∈ [40, 2000] generations before sampling and s ∈ [0.005, 0.5].23

The comparison of hard sweep and SSV scenarios provides a distribution of BFs broadly in agreement24

with expectations for the haplotype-based approaches (Garud et al. [2015], Garud and Rosenberg [2015];25

Figure 5). In Figure 5, colored in blue are the values most likely to be generated under SSV, and colored26

in red are the values most likely to be generated under hard sweeps. In all scenarios tested, hard sweeps27

produce relatively smaller G2/G1 values than do soft sweeps. Intermediate G12 and G123 paired with large28

values of G2/G1 are more likely to result from soft sweeps than from hard sweeps. SSV cannot generate29

large values of G12 or G123 because these sweeps are too soft to elevate homozygosity levels to the extent30

observed under hard sweeps. This is particularly so when soft sweeps are simulated with k = 5. Therefore,31

the majority of test points with extreme values of G12 and G123, regardless of G2/G1, have BF ≤ 1/332

(meaning only one SSV observation within a Euclidean distance of 0.1 for every three or more hard sweep33
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observations), and this is in line with the results from the constant-size demographic model of Garud et al.1

[2015] for comparisons between hard sweeps and the softest soft sweeps. Additionally, we cannot classify2

sweeps if the values of G12 and G123 are too low, as these values are unlikely to be distinct from neutrality.3

Thus, our ability to distinguish between hard and soft sweeps is greatest for intermediate values of G12 and4

G123. In practice, our empirical top sweep candidates all converge over this range of the (G12, G2/G1) and5

(G123, G2/G1) values (Figure 6), meaning that we can confidently classify sweeps from outlying values of6

G12 and G123 in our data as hard or soft.7

In Figure S7, we repeat our ABC procedure for the phased haplotype data corresponding to our preceding8

analyses. We find that a small proportion of (G12, G2/G1) and (G123, G2/G1) values for which we lack the9

ability to distinguish hard and soft sweeps (gray points), corresponds to (H12, H2/H1) values that do classify10

sweeps as soft. Additionally, the (H123, H2/H1) values yielded a still larger proportion of SSV-classified11

(blue) values. This result may indicate that the haplotype approaches maintain a somewhat greater ability12

to classify sweeps than do the MLG approaches. Accordingly, the skew toward larger BFs among the (G123,13

G2/G1) values relative to (G12, G2/G1) may indicate that classification with the former may more closely14

resemble classification using (H12, H2/H1) values.15

To further characterize the classification properties of both the MLG- and haplotype-based approaches,16

we next employed an alternative ABC approach in which we determined the posterior distribution of k for a17

range of (G12, G2/G1), (G123, G2/G1), (H12, H2/H1), and (H123, H2/H1) value combinations. For these18

experiments, we generated 5 × 106 replicates of sweep scenarios with k ∈ {1, 2, . . . , 16} drawn uniformly at19

random for each replicate, maintaining all other relevant parameters identical to the BF experiments (see20

Materials and methods). From the posterior distribution of k values, we assigned the most probable k for21

a wide range of points using both MLG and haplotype data (Figure S8), and generated probability density22

functions across H12, H2/H1, G123, and G2/G1 for each value of k (Figure S9). G12, G123, H12, and H12323

values were larger for sweeps with smaller k, and G2/G1 values were smaller for these sweeps, as expected.24

We achieved a finer resolution from haplotypes than from MLGs, as in the BF experiments (Figures 5 and S7),25

and found our inference of the most probable values of k across test points to be concordant with BF-based26

results. As previously, hard sweeps (k = 1) occupied larger values of G12, G123, H12, and H123 and smaller27

values of G2/G1 and H2/H1, with inferred k (similarly to inferred BF) increasing with increasing G2/G128

and H2/H1, regardless of G12, G123, H12, and H123 value. Thus, our alternative ABC approach can assign29

a most probable k from the entire tested range of k ∈ {1, 2, . . . , 16}, allowing for sweep classification without30

the ambiguity of BFs.31
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Analysis of empirical data for signatures of sweeps1

We applied G12, G123, and H12 to whole-genome variant calls on human autosomes from the 1000 Genomes2

Project [Auton et al., 2015] to compare the detective properties for each method on empirical data (Fig-3

ures 7 and S11-S18; Tables S3-S14). This approach allowed us to understand method performance in the4

absence of confounding factors such as missing data and small sample size. The choice of human data5

additionally allowed us to validate our results from the wealth of identified candidates for selective sweeps6

within human populations worldwide that has emerged from more than a decade of research [e.g., Sabeti7

et al., 2002, Bersaglieri et al., 2004, Voight et al., 2006, Bhatia et al., 2011, Chen et al., 2015, Schrider and8

Kern, 2016, Cheng et al., 2017]. To apply our MLG-based methods to the empirical dataset, consisting of9

haplotype data, we manually merged the haplotypes for each study individual to generate MLGs. Thus, all10

comparisons of G12 and G123 with H12 were for the same data, as in our simulation experiments.11

For our analysis of human data, we focused on individuals from European (CEU), African (YRI), South12

Asian (GIH), and East Asian (CHB) descent. Across all populations, we assigned p-values and BFs, as well13

as maximum posterior estimates and Bayesian credible intervals on k, for the top 40 selection candidates (see14

Materials and methods). Our Bonferroni-corrected significance threshold [Neyman and Pearson, 1928] was15

2.10659× 10−6, with critical values for each statistic in each population displayed in Table S1. We defined16

soft sweeps as those with BF ≥ 3 or inferred k ≥ 2, and hard sweeps as those with BF ≤ 1/3 or inferred17

k = 1. Following each genome-wide scan, we filtered our raw results using a mappability and alignability18

measure (see Materials and methods), following the approach of Huber et al. [2016]. We additionally omitted19

genomic windows from our analysis with fewer than 40 SNPs, the expected number of SNPs in our genomic20

windows [Watterson, 1975] under the assumption that a strong recent sweep has affected all but one of the21

sampled haplotypes. This is thus a conservative approach. We display the filtered top 40 outlying sweep22

candidates for G12, G123, and H12, including p-values, BFs, and inferred k (with credible interval), in23

Tables S3-S14. We also overlay the top 40 selection candidates for each population onto (G123, G2/G1)24

test points (Figures 6 and S10). For all populations, we see that top candidates, regardless of assignment as25

hard or soft, generate broadly similar G123 values within a narrow band of paired (G123, G2/G1) values.26

Finally, we indicate the top 10 selection candidates in chromosome-wide Manhattan plots for both G12 and27

G123 (Figures S11-S18). Expectedly, G12 and G123 plots are nearly identical in their profiles.28

We recovered significant signals from the well-documented region of CEU chromosome 2 harboring the29

LCT gene, which confers lactase persistence beyond childhood [Bersaglieri et al., 2004]. Although filtering30

removed SLC24A5, another expected top candidate controlling skin pigmentation, the adjacent SLC12A131

gene remained. Assigned BFs and inferred values of k suggest that hard sweeps in each of these regions yield32

the observed signals (Tables S3 and S4). In YRI (Tables S6 and S7), we most notably found the previously-33
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identified SYT1, HEMGN, and NNT [Voight et al., 2006, Pickrell et al., 2009, Fagny et al., 2014, Pierron1

et al., 2014]. SYT1 and HEMGN were significant for G12, G123, and H12 analyses, with SYT1 yielding2

the strongest signal by a large margin, while NNT was not significant. Of these, we could only confidently3

classify HEMGN, which we uniformly identified as hard. Though we were more likely to confidently classify4

candidate sweeps in YRI as hard from their MLG-based BFs, the proportion of top candidates assigned as5

hard from the posterior distribution of k remained comparable across data types, and generally greater than6

the levels we observed in other populations (see Discussion for further analysis). The most outlying target7

of selection in GIH (Tables S9 and S10) for all methods was at SLC12A1, a significant signal corresponding8

to a sweep shared among Indo-European populations [Mallick et al., 2013], which we also recovered as a top9

candidate in CEU. We could classify this signal as hard from haplotype data, but we assigned k = 2 from10

MLGs, despite a BF < 1. Finally, our analysis of CHB returned EDAR-adjacent genes among the top sweep11

candidates, including LIMS1, CCDC138, and RANBP2 (each below the significance threshold), though not12

EDAR itself (Tables S12 and S13), and additionally MIR548AE2 and LONP2, adjacent to the site of a13

proposed sweep on earwax texture within ABCC11 [Ohashi et al., 2010], which we recovered as another top14

candidate.15

In Figure 7, we highlight for each population one example of a sweep candidate, including its G1216

signal profile, with the genomic window of maximum value highlighted, and a visual representation of the17

MLG diversity within that region. For the CEU population, we present LCT (p < 10−6), and additionally18

highlight the nearby outlying candidates, each of which was within the top 10 outlying G12 signals in the19

population (Figure 7A, left panel). The distribution of MLGs surrounding LCT in the sample showed a single20

predominant MLG comprising approximately half of individuals, consistent with a hard sweep (Figure 7A,21

right panel). Accordingly, LCT yielded a BF ≈ 0.1, indicating that a hard sweep is tenfold more likely to22

yield this signal than a soft sweep (from k = 5), and an inferred k = 1 supports this result. For the YRI23

population, the top selection signal for all analyses was SYT1 (p = 10−6), previously identified by Voight et al.24

[2006] (Figure 7B, left panel). Here, one high-frequency and one intermediate-frequency MLG predominated25

in the population (Figure 7B, right panel), but we could not confidently assign the signal as hard or soft, with26

haplotypes suggesting k = 1 and MLGs suggesting k = 2. This is because one high-frequency haplotype27

exists in the population, carried by approximately half of individuals, while another haplotype exists in28

approximately one quarter of individuals. In GIH, we found P4HA1 as a selection candidate exceeding the29

significance threshold for haplotype data (p = 10−6), but not for MLG data. Although we were unable30

to confidently assign the putative sweep on P4HA1 as hard or soft from BFs, we note that two MLGs, as31

well as two haplotypes, exist at elevated frequency here, and that all methods yielded BF > 1 and k > 1,32

suggesting that P4HA1 is likely the site of a soft sweep, but on fewer than k = 5 haplotypes (Figure 7C,33
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right panel). Finally, our scan in CHB returned the undocumented FMNL3 gene as a top candidate from1

the G12 analysis (p = 5× 10−6; Figure 7D, left panel). A single high-frequency MLG predominated at this2

site, and this yielded a BF from MLG data of 0.147, and inferred k = 1 from all data, indicating a hard3

sweep (Figure 7D, right panel).4

Through the application of G123 and G2/G1 we have identified and classified a number of interesting5

sweep candidates. We further explored the existence of a more general relationship between top sweep6

candidates and the prevalence and length of runs of homozygosity. Previous research has indicated that7

short-to-intermediate runs of homozygosity spanning tens to hundreds of kilobases are characteristic of8

recent sweeps [Pemberton et al., 2012, Blant et al., 2017], and we sought to examine whether there was a9

correlation of G123 or sweep softness (using log10(BF) as proxy) with the proportion of individuals falling10

in a run of homozygosity of specific length. To this end, we intersected our top candidates lists with the11

inferred coordinates of short to intermediate runs of homozygosity from Blant et al. [2017]. We found that the12

proportion of individuals with runs of homozygosity of intermediate length (class 4) is positively correlated13

(correlation coefficient = 0.32, p-value = 3.66×10−5) with G123 (Table S2), likely due to stronger and more14

recent sweeps generating larger G123. Moreover, the proportion of individuals with runs of homozygosity15

of intermediate length is negatively correlated (correlation coefficient = -0.26, p-value = 1.02 × 10−3) with16

log10(BF) (Table S2), likely due to the narrower genomic signature left behind by soft sweeps relative to17

hard sweeps. In contrast, we observe no significant correlation for smaller runs of homozygosity (classes 218

and 3), which have also been proposed to potentially be affected by selective sweeps [Pemberton et al., 2012,19

Blant et al., 2017].20

Discussion21

Selective sweeps represent an important outcome of adaptation in natural populations, and detecting these22

signatures is key to understanding the history of adaptation in a population. We have extended the existing23

statistics H12 and H2/H1 [Garud et al., 2015] from phased haplotypes to unphased MLGs as G12, G123, and24

G2/G1, and demonstrated that the ability to detect and classify selective sweeps as hard or soft remains.25

Across simulated selective sweep scenarios covering multiple selection start times and strengths, as well as26

sweep types and demographic models, we found that both G12 and G123 maintain comparable power to27

H12. The most immediate implication of these results is that signatures of selective sweeps can be identified28

and classified in organisms for which genotype data are available, without the need to generate phased29

haplotypes. Because phasing may be difficult or impossible given the resources available to a study system,30

while also not being error-free [Browning and Browning, 2011, O’Connell et al., 2014, Laver et al., 2016,31

Castel et al., 2016, Zhang et al., 2017], the importance of our MLG-based approach is apparent. Although32
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phased haplotypes tend to be preferable for use with expected homozygosity statistics based on our findings,1

we nonetheless observe a high degree of congruence in practice between the lists of selection candidates for2

human empirical data emerging from analyses on haplotypes and MLGs (Tables S3-S14).3

Performance of G12 and G123 for simulated data4

G12 and G123, similarly to H12 and H123, are best suited to the detection of recent and strong selective5

sweeps in which the beneficial allele has risen to appreciable frequency. This is as expected because haplotype6

(and therefore MLG) homozygosity increases under sweeps, which results in a distinct signature from which to7

infer the sweep. This extended tract of sequence identity within the population erodes over time and returns8

to neutral levels due to the effects of recombination and mutation. The strength of selection and range of9

time over which the expected homozygosity-based methods can detect selection are inversely correlated. Our10

approach detects weaker selective events only if they started far enough back in time, and has a narrower11

time interval of detection than do stronger events (compare panels A and B across Figures 3, 4, S2, and S3).12

This is because alleles under weaker selection increase in frequency toward fixation more slowly than those13

under stronger selection, and so more time is required to generate a detectable signal. In the process, the14

size of the genomic tract that hitchhikes with the beneficial allele decreases due to recombination and is15

smaller than under a hard sweep. Panels C and D from Figures 3, 4, S2, and S3 motivate this point. Across16

all simulation scenarios, stronger selection produces on average a wider and larger signature surrounding the17

site of selection, while weaker sweeps are more difficult to detect and classify. For empirical analyses, this18

means we are more likely to detect stronger sweeps, as reductions in diversity from strong selection persist19

for hundreds of generations and can leave footprints on order of hundreds of kilobases [Gillespie, 2004, Garud20

et al., 2015, Hermisson and Pennings, 2017].21

Expectedly, the signatures of sweeps, and the power of the expected homozygosity methods to detect22

them, vary across selective sweep scenarios, with nearly identical trends in haplotype and MLG data. Strong23

(s = 0.1) hard sweeps to high sweep frequency f are easiest to detect, as the single, large tract of sequence24

identity generated under a strong hard sweep remains distinct from neutrality for the longest time interval25

relative to other scenarios (Figures 3A and C and Figures S2A and C). Nonetheless, power to distinguish26

soft sweeps is large for the most recent simulated sweeps. Indeed, a soft sweep yields a smaller tract of27

sequence identity that requires a shorter time to break apart, but for strong selection on up to k = 1628

different haplotypic backgrounds (1.6% of the total population), both the MLG and haplotype methods29

have perfect or nearly-perfect power (Figures 4A and S3A). While this power rapidly fades for selection30

within 1,000 generations of sampling for k > 4, our strong sweep results illustrate that selection coefficient31

s, more than partial sweep frequency f or number of initially-selected haplotypes k, influences the power32
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of our pooled expected homozygosity methods, and that pooling can allow for similar detection of hard1

and soft sweeps. Our moderate selection (s = 0.01) results further highlight this. Once again, we see a2

distinct concordance in power trends between hard (Figures 3B and D and Figures S2B and D) and soft3

(Figures 4B and D and Figures S3B and D) sweeps that depends primarily on the value of s and secondarily4

on f or k.5

Because genomic scans using G12, G123, H12 and H123 are window-based, the choice of window size is6

an important determinant of the methods’ sensitivity. As do Garud et al. [2015], we recommend a choice7

of window size that minimizes the influence of background LD on window diversity, while maximizing the8

proportion of sites in the window affected by the sweep. Windows that are too small may contain extended9

homozygous tracts not resulting from a sweep, while windows that are too large will contain an excess10

of neutral diversity leading to a weaker signal, while overlooking weaker selective events [Gillespie, 2004,11

Garud et al., 2015, Hermisson and Pennings, 2017]. Accordingly, our choice of a 40 kb sliding window12

to analyze simulation results derives from our observation that the value of LD between pairs of SNPs13

separated by 40 kb in these simulations is less than one-third of the LD between pairs separated by one kb,14

as measured from the squared correlation, r2 (Figure S1). We also found that for recent selection within 40015

generations of sampling, power under bottleneck or expansion does not change for a 40 kb analysis window16

(Figures S5 and S6). This is especially important in the context of a population bottleneck, in which levels of17

short-range LD are elevated beyond their expected value under a constant-size demographic history [Slatkin,18

2008, DeGiorgio et al., 2009]. Thus, our population size change experiments indicated that for sufficiently19

large analysis windows, further adjusting window size does not improve power. The trends in power that20

we observed for samples of n = 100 diploids and 40 kb genomic windows also persisted for experiments with21

a smaller sample size of n = 25 (Figure S19). The expected homozygosity methods are therefore suitable22

for detecting sweeps from a wide range of sample sizes, though samples need to be large enough to capture23

the difference in variation between selected and neutral regions of the genome, as smaller samples result in24

fewer sampled haplotypes [Pennings and Hermisson, 2006a]. Accordingly, the classification of sweeps requires25

substantially larger sample sizes, as differentiating between hard and soft sweeps requires the detection of a26

more subtle signal than does distinguishing selection from neutrality.27

Although we exclusively used a nucleotide-delimited window in our present analyses, it is possible to28

search for signals of selection using a SNP-delimited window, and this was the approach of Garud et al.29

[2015]. Similarly to our present approach, the number of SNPs to include in a window could be determined30

based on the decay in pairwise LD between two sites separated by a SNP-delimited interval. Under the31

SNP-delimitation approach, each analyzed genomic window includes a specified number of SNPs. Thus, the32

range of physical window sizes may be broad. In principle, the use of a SNP-delimited window prevents the33
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inclusion of SNP-poor windows. Accordingly, SNP delimitation may be inherently robust to the effect of1

bottlenecks, or to the misidentification of heterochromatic regions as sweep targets. In practice, however, we2

can filter out nucleotide-delimited genomic windows carrying too few SNPs to overcome confounding signals.3

More importantly, allowing for a variable number of SNPs in a window allows the genomic scan to identify4

sweeps not only from distortions in the haplotype frequency spectrum, but also from reductions in the total5

number of distinct haplotypes, which are more constrained in their range of values when conditioned on a6

specific number of SNPs. Because both of these signatures can indicate a sweep, it may be useful to consider7

each. Even so, the use of a SNP-delimited window may be preferable for SNP chip data. That is, SNP8

density can be low relative to whole-genome data, resulting in an excess of regions spuriously appearing9

to be under selection within a nucleotide-delimited window. Indeed, Schlamp et al. [2016] employ a SNP-10

delimited window approach for their canine SNP array dataset.11

During a genomic scan, it may also be helpful to account for sources of uncertainty in the data. Foremost12

among these is uncertainty in genotype calls [Marchini and Howie, 2010, Nielsen et al., 2011]. Modern geno-13

type calling methods provide a posterior probability for each genotype [He et al., 2014, Korneliussen et al.,14

2014, Fumagalli et al., 2014], and so it may be possible to assign to each analysis window a weighted mean15

G12 or G123 score from this posterior to produce a more accurate representation of sweep events throughout16

the study population’s genome. It is also possible that windows of elevated G12 and G123 value may arise in17

the absence of random mating. That is, although our approach assumes elevated MLG homozygosity derives18

from elevated haplotype homozygosity as a result of random mating, we do not specifically evaluate whether19

observed patterns of MLG diversity are compatible with the random mating assumption. Such an approach20

could condition on the presence of one high-frequency MLG with only homozygous sites in the case of a hard21

sweep, or at least two high-frequency homozygous MLGs in the case of a soft sweep. To further consider22

this point, we rescanned the 1000 Genomes dataset, but randomly paired haplotypes into diploid MLGs to23

simulate random mating. Our lists of outlying sweep candidates for G123 across each study population after24

random reshuffling were highly concordant with the lists for the true set of diploid individuals (Tables S5,25

S8, S11, and S14).26

While power to detect hard and soft sweeps is comparable, the possible values of G12 and G2/G1 that27

can be generated under hard versus soft sweeps for a variety of k values are distinct. Thus, we can properly28

classify sweeps from MLG data (Figure 5, 6, S8, and S10). This result matched our theoretical expectations29

(Figure 1), and corresponded to the results from haplotype data as well (Figure S7). However, we note that30

with the BF-based ABC approach there is substantial ambiguity in classification over which 1/3 ≤ BF ≤ 331

(where BF is computed as Probability(soft)/Probability(hard)), meaning that distinguishing between hard32

and soft sweeps for these paired values remains difficult or not meaningful. In addition, we find that MLGs33
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(Figure 5) provide a greater proportion of BF ≤ 1/3 than do haplotypes (Figure S7), which yield a greater1

proportion of BF ≥ 3. This observation may indicate that a hard sweep with a small associated BF for2

MLGs will also have a small haplotype-based BF, while a hard sweep with an associated BF closer to 1, may3

be called as ambiguous or soft from haplotypes. We were able to address the issue of classification ambiguity4

with our alternative ABC approach, which assigned each test point a most probable underlying k. Although5

haplotypes provided better ability over MLGs to assign a posterior value of k, our results here were as6

expected, showing a clear increase in assigned k as G2/G1 or H2/H1 increased (Figure S8). For application7

to empirical data, however, most top sweep candidates are likely to be classifiable as hard or soft from8

BFs (Tables S3-S14). Pooling frequencies beyond the greatest two also increased the occupancy associated9

with larger BFs, and this effect was greater for haplotype data. Ultimately, the use of G123 with G2/G1 to10

classify sweeps and assign k from MLGs may be preferable because (G123, G2/G1) classification more closely11

resembles (H12, H2/H1) than does (G12, G2/G1). The true value of pooling additional frequencies may12

thus lie in sweep classification rather than detection, as G123 and H123 are not appreciably more powerful13

than G12 and H12 (Figures S2 and S3).14

Application of G12 and G123 to empirical data15

Our analysis of human empirical data from the 1000 Genomes Project [Auton et al., 2015] recovered multiple16

positive controls from each study population, as well as novel candidates. Across many of these candidates,17

a single high-frequency MLG predominated (Figure 7). Additionally, more top candidates in CEU appear18

as hard sweeps than in other populations (Tables S3 and S4), though all populations had more hard sweeps19

than soft. The top outlying genes we detected in CEU following the application of a filter to remove20

heterochromatic regions with low mappability and alignability consisted of LCT and the adjacent loci of21

chromosome 2 (Figure 7A), as well as SLC12A1 of chromosome 15 (Table S3). All of these sites are well-22

represented in the literature as targets of sweeps [Bersaglieri et al., 2004, Sabeti et al., 2007, Liu et al., 2013,23

Chen et al., 2015]. Diet-mediated selection on LCT likely drives the former signal cluster, as dairy farming24

has been a feature of European civilizations since antiquity [Itan et al., 2009, Edwards et al., 2011, Ermini25

et al., 2015]. Accordingly, we see that most individuals in the sample carry the most frequent MLG, and we26

assign this signal to be a hard sweep from its BF and from the posterior distribution of k generated under our27

demographic model for CEU (see Materials and Methods; Tables S3 and S4). Meanwhile, the latter signal28

peak is associated with the known target of selection SLC24A5, a melanosome solute transporter responsible29

for skin pigmentation [Lamason et al., 2005], also a hard sweep.30

The assignment of sweeps as hard or soft in CEU, as well as their assigned k, were highly concordant31

between haplotype and MLG approaches, with the sole exception of PRKDC, a protein kinase involved in32
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DNA repair [Fushan et al., 2015]. Our haplotype results indicate the presence of k = 3 high-frequency1

haplotypes at PRKDC, but MLG results suggest a hard sweep. This is because the window of maximum2

signal differs between both data types. The maximal haplotype-based window features multiple haplotypes3

and MLGs at high frequency, while the maximal MLG window approximately 35 kb upstream more closely4

resembles a hard sweep for both data types. We found such classification discrepancies to be rare across5

our top candidates, and typically inverted, with the MLG signal more often appearing softer (see SYT1 and6

RGS18; Figure 7). Furthermore, we emphasize that classification discrepancies do not appear to impact7

the power of MLG-based methods to detect sweeps, as we generated highly concordant lists of outlying8

candidates for both haplotype and MLG data.9

Large tracts of MLG homozygosity surround the SYT1, RGS18, HEMGN, KIAA0825, and NNT genes in10

YRI. Unlike for CEU, we found that assigning BFs to top signals was difficult, both for haplotype and MLG11

data (Tables S6 and S7). We also note a greater proportion of soft sweeps among top signals in YRI relative12

to other populations (Tables S6 and S7). This is likely due to the greater ease of detecting soft sweeps in13

more genetically diverse populations rather than any non-adaptive confounding factor (see next subsection),14

and we indeed see a larger occupancy of soft BFs among (G123, G2/G1) values (Figure 6). In addition, BFs15

for the two top candidates, SYT1 and RGS18, yielded values close to 1/3 (hard) for haplotype data, but16

closer to 3 (soft, k = 2) for MLG data, indicating disproportionately large MLG diversity resulting from17

low haplotypic diversity, as the presence of a high-frequency haplotype alongside one or more intermediate-18

frequency haplotypes may generate comparatively more diversity among MLGs than haplotypes. Voight19

et al. [2006] previously identified our strongest selection target, SYT1, as a target of selection in the YRI20

population, and The International HapMap Consortium [2007] corroborated this, but neither speculated as21

to the implications of selection at this site. SYT1 (Figure 7B) is a cell surface receptor by which the type22

B botulinum neurotoxin enters human neurons [Connan et al., 2017]. Selection here may be a response23

to pervasive foodborne bacterial contamination by Clostridium botulinum, similar to what exists in modern24

times [Chukwu et al., 2016]. Pierron et al. [2014] named HEMGN (which Pickrell et al. [2009] also identified),25

involved in erythrocyte differentiation, as a selection signal common to Malagasy populations derived from26

common ancestry with YRI. Racimo [2016] also identified KIAA0825 as a target of selection, but in the27

ancestor to African and Eurasian populations. Our identification of NNT in YRI matches the result of28

Fagny et al. [2014], who identified this gene using a combination of iHS [Voight et al., 2006] and their derived29

intraallelic nucleotide diversity (DIND) method. Fagny et al. [2014] point out that NNT is involved in the30

glucocorticoid response, which is variable among global populations. Our most noteworthy candidate of31

selection in YRI, RGS18, has not been previously characterized as the location of a sweep. However, Chang32

et al. [2007] point to RGS18 as a contributor to familial hypertrophic cardiomyopathy (HCM) pathogenesis.33
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HCM is the primary cause of sudden cardiac death in American athletes [Barsheshet et al., 2011], and1

particularly affects African-American athletes [Maron et al., 2003].2

Our scan for selection in the GIH population once again revealed the SLC12A1 site as the strongest sweep3

signal (Tables S9 and S10). Because this signal is common to Indo-European populations [Liu et al., 2013,4

Ali et al., 2014], this was expected. However, we found that we could not confidently classify this sweep from5

MLG data (with inferred k = 2), though haplotype data suggests that this is a hard sweep. We additionally6

find P4HA1 (Figure 7C) as a novel sweep candidate in GIH that exceeds the significance threshold for7

haplotype data, and appears as a near-soft sweep for MLGs (BF > 2.5) with inferred k ≥ 2 for both8

haplotype and MLG data. Two high-frequency MLGs predominate at the location of this candidate sweep,9

and their pooled frequency yields a prominent signal peak. P4HA1 is involved in collagen biosynthesis,10

with functions including wound repair [Baxter et al., 2013], and the population-variable hypoxia-induced11

remodeling of the extracellular matrix [Petousi et al., 2013, Chakravarthi et al., 2014]. Because selection on12

P4HA1 has been documented among both the tropical forest-dwelling African pygmy population [Mendizabal13

et al., 2012, Amorim et al., 2015] and now in individuals of Gujarati descent, and is known to present a14

differing expression profile among low- and high-altitude populations [Petousi et al., 2013], this gene may be15

involved in a number of adaptations to harsh climatic conditions, potentially in wound repair, which is more16

difficult in tropical climates.17

Of the sweep candidates we identified in the CHB population (Tables S12 and S13), we found that the18

inferrence of significance from G123 was considerably more concordant with H12 than was G12. We recovered19

as top candidates EXOC6B, which produces a protein component of the exocyst [Evers et al., 2014] and20

LONP2, both previously documented [Baye et al., 2009, Ohashi et al., 2010, Durbin and Consortium, 2011,21

Pybus et al., 2014]. EXOC6B is a characteristic signal in East Asian populations alongside EDAR, which22

we did not specifically recover in our scan (but nearby candidates LIMS1, CCDC138, and RANBP2 did23

appear), while LONP2 is adjacent to ABCC11, which controls earwax texture. FMNL3 yielded elevated24

values of G12 and G123 in CHB, but was only significant from its H12 value. A single MLG predominates at25

FMNL3 in the sample (Figure 7D), and all approaches assign this sweep as hard. The function of FMNL3 is26

related to actin polymerization [Hetheridge et al., 2012, Gauvin et al., 2014], and has a role in shaping the27

cytoskeleton, which it shares with EXOC6B. Moreover, the signal at FMNL3 may be additionally associated28

with the outlier RANBP10, which also interacts with the cytoskeleton, but with microtubules [Schulze et al.,29

2008]. Though it is unclear why we identify an enrichment in cytoskeleton-associated genes, future studies30

may shed light on why variants in such genes could be phenotypically-relevant specifically in individuals of31

East Asian descent. Finally, we found SPATA31D3 as a hard sweep within the top H12 signals in CHB,32
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as well as in GIH, and while it did not exceed our significance threshold, this is in line with the results of1

Schrider and Kern [2017].2

Addressing confounding scenarios3

A variety of processes, both adaptive and non-adaptive, may produce elevated values of expected homozy-4

gosity in the absence of selective sweeps in a sampled population, or small values of expected homozygosity5

despite a sweep, thereby misleading expected homozygosity methods. To understand the impacts of poten-6

tially confounding processes on the power of the expected homozygosity methods, we evaluated the effects of7

long-term background selection, long-term population substructure, and pulse admixture on G12, G123, H12,8

and H123. We additionally consider the confounding effect of missing data, as the manner in which missing9

sites is addressed during computations can change analyzed patterns of MLG and haplotype diversity.10

We first addressed long-term background selection as a potentially common confounding factor with11

a brief experiment to determine the susceptibility of all methods to the misidentification of background12

selection as a sweep. Signatures of background selection are ubiquitous in a number of systems [McVicker13

et al., 2009, Comeron, 2014], and the effect of background selection is a reduction in nucleotide diversity14

and a distortion of the site frequency spectrum, which to many methods may spuriously resemble a sweep15

[Charlesworth et al., 1993, 1995, Seger et al., 2010, Charlesworth, 2012, Nicolaisen and Desai, 2013, Cutter16

and Payseur, 2013, Huber et al., 2016]. Here, we simulated chromosomes containing a centrally-located genic17

region of length 11 kb in which deleterious alleles arise throughout the course of the simulation. Our model18

involved a gene with exons, introns, and untranslated regions (UTRs) with properties based on human-19

inspired parameters (see Materials and methods). In agreement with the result of Enard et al. [2014], we20

found that background selection did not distort the haplotype (and therefore MLG) frequency spectrum to21

resemble that of a sweep, such that G12 and G123 were thoroughly robust to background selection. We22

demonstrate this by displaying the concordance in the distributions of maximum G12, G123, H12, and H12323

scores for background selection and neutral evolution scenarios (Figure S20). Thus, we do not expect that24

outlying G12, G123, H12, or H123 values can result from background selection.25

Methods to detect recent sweeps may be confounded by the effect of long-term population substructure, as26

well as from admixture. Structured populations contain a greater proportion of homozygous genotypes than27

would be expected under an equally-sized, randomly-mating population [Sinnock, 1975], thereby increasing28

the chance that an elevated level of expected homozygosity will arise in the absence of a sweep. We examined29

the possibility that a symmetric island migration model with six demes (Figure S21A), and migration rates30

(m) between demes of m ∈ {10−5, 10−4, 10−3, 10−2, 10−1} per generation (a proportion m of the haplotypes31

in a deme derives from each of the other five demes for a total proportion of 5m haplotypes) could yield32
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elevated values of H12 and G123 under neutrality. We found that compared to a model with no substructure,1

H12 and G123 values were moderately impacted for a model with population substructure. These values2

were substanially lower than expected H12 and G123 values under a recent strong hard sweep. However,3

these values are more comparable to an ancient sweep, and so caution is warranted in the study of structured4

populations for all but the most outlying signals.5

The expected homozygosity methods are similarly robust to the effect of admixture under most scenar-6

ios. Specifically, we evaluated whether any admixture scenario can falsely generate a signature of a sweep.7

We simulated a model in which a single ancestral population diverges into two descendant populations8

(Figure S21B; see also Materials and methods). We maintained the size of one descendant population (the9

target) at N = 104 diploid individuals, and varied the size of the unsampled (donor) population (N = 103,10

104, or 105 diploids), admixing at rate m ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} as a single pulse 20011

generations before sampling. We find that admixture with donor sizes N = 105 or N = 104 produces only12

small values of H12 (Figure S23, left and center) and G123 (Figure S24, left and center) in the sampled13

population in the absence of a sweep. However, admixture with a donor population of small size (N = 103)14

can produce elevated values of H12 and H2/H1, as well as G123 and G2/G1 when migration is sufficiently15

large (m ≥ 0.15), thus spuriously resembling the pattern of a soft sweep in the absence of selection (Fig-16

ures S23 and S24, right). In this scenario, with a large enough admixture fraction, there will be a high17

probability that many sampled lineages from the target population will derive from the donor population,18

which will coalesce rapidly due to the small effective size, which will in turn lead to elevated homozygosity.19

Small donor population sizes with large migration rates therefore represent the only admixture scenario that20

we considered under which the expected homozygosity methods are susceptible to misclassifying neutrality21

as selection, specifically as a soft sweep. Otherwise, our methodology remains robust under a wide range of22

other admixture scenarios. We note therefore that the elevated number of soft sweeps we detected within the23

YRI population (Tables S6 and S7) is unlikely to be due to the effect of the admixture described in Busby24

et al. [2016], as this would produce a genome-wide pattern, which we do not observe (Figures S13 and S14).25

Finally, we note that accounting for missing data is a practical consideration that must be undertaken26

when searching for signals of selection, and the manner in which missing data are removed affects our ability27

to identify sweeps. We explored the effects of two corrective strategies to account for missing data. Our28

strategies were to remove sites with missing data or to define MLGs and haplotypes with missing data29

as new distinct MLGs and haplotypes. Relative to the ideal of no missing data (Figure 3A), removing30

sites resulted in a slight inflation of power observed in the absence of missing data. This was true for31

G12 and H12 (Figure S25A), as well as G123 and H123 (Figure S25C). After removing sites, the overall32

polymorphism in the sample decreases, but windows containing the site of selection are still likely to be the33
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least polymorphic, and therefore identifiable. Even so, weaker sweeps are likely to be obscured by the lower1

background diversity after removing sites. Conservatively defining MLGs and haplotypes with missing data2

as new distinct MLGs and haplotypes inflates the total observed diversity and results in a more rapid decay3

of power compared to complete data (Figures S25B and D). This result is because individuals affected by4

the sweep may have different patterns in their missing data, and therefore different assigned sequences after5

accounting for missingness. Overall, the choice of strategy will likely depend on the level of missing data in6

the sample. Removing too many sites is likely to generate false positive signals, while removing no sites may7

lead to false negatives.8

Concluding remarks9

Our results emphasize that detecting selective sweeps does not require phased haplotype data, as distortions10

in the frequency spectrum of MLGs capture the reduction in diversity under a sweep similarly well to11

phased haplotypes. Accordingly, the advent of rapid and cost-effective genotyping-by-sequencing technologies12

[Elshire et al., 2011] across diverse taxa including bovine, marine-dwelling, and avian populations means that13

the adaptive histories of myriad organisms may now be inferred from genome-wide data [Daetwyler et al.,14

2014, Drury et al., 2011, Zhu et al., 2016]. Furthermore, we have shown that the inferences emerging15

from MLG-based scans align with those of phased haplotype-based scans, with empirical analyses of human16

populations yielding concordant top outlying candidates for selection, both documented and novel. We17

demonstrate as well that paired (G12, G2/G1) and (G123, G2/G1) values properly distinguish hard sweeps18

from soft sweeps. In addition to identifying sweeps from single large values of G12 and G123, we find that19

the genomic signature of these MLG-based statistics surrounding the site of selection provides a means of20

distinguishing a sweep from other types of selection (e.g., balancing selection). This additional layer of21

differentiation motivates the use of MLG identity statistics as a signature in a statistical learning framework,22

as such approaches have increasing in prominence for genome analysis [Grossman et al., 2010, Lin et al.,23

2011, Pavlidis et al., 2010, Ronen et al., 2013, Pybus et al., 2015, Ronen et al., 2015, Sheehan and Song,24

2016, Schrider and Kern, 2016, Akbari et al., 2017, Kern and Schrider, 2018, Mughal and DeGiorgio, 2018].25

We expect that the MLG-based approaches G12 and G123, in conjunction with G2/G1, will be invaluable26

in localizing and classifying adaptive targets in both model and non-model study systems.27
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Materials and methods1

Simulation parameters2

To compare the powers of G12 and G123 to detect sweeps relative to H12 and H123 [Garud et al., 2015],3

we performed simulations for neutral and selection scenarios using SLiM 2 (version 2.6) [Haller and Messer,4

2017]. SLiM is a general-purpose forward-time simulator that models a population according to Wright-5

Fisher dynamics [Fisher, 1930, Wright, 1931, Hartl and Clark, 2007] and can simulate complex population6

structure, selection events, recombination, and demographic histories. For our present work, we used SLiM7

2 to model scenarios of recent selective sweeps, long-term background selection, and neutrality, additionally8

including models of population substructure and pulse admixture. Our models of sweeps comprised complete9

and partial hard sweeps, as well as soft sweeps from selection on standing variation (SSV). For background10

selection, we simulated a gene with introns, exons, and untranslated regions in which deleterious mutations11

arose randomly. We additionally tested the effect of demographic history on power by examining constant12

population size, population expansion, and population bottleneck models for hard sweep scenarios.13

General approach14

We first simulated data according to human-specific parameters for a constant population size model. For15

simulated sequences (Figures 2A and D), we chose a mutation rate of µ = 2.5×10−8 per site per generation,16

a recombination rate of r = 10−8 per site per generation, and a diploid population size of N = 104 [Takahata17

et al., 1995, Nachman and Crowell, 2000, Payseur and Nachman, 2000]. All simulations ran for a duration18

of 12N generations, where N is the starting population size for a simulation, equal to the diploid effective19

population size. The duration of simulations is the sum of a 10N generation burn-in period of neutral20

evolution to generate equilibrium levels of variation across simulated individuals [Messer, 2013], and the21

expected time to coalescence for two lineages of 2N generations. Simulation parameters were scaled, as is22

common practice, to reduce runtime while maintaining expected levels of population-genetic variation, such23

that mutation and recombination rates were multiplied by a factor λ, while population size and simulation24

duration were divided by λ. For simulations of constant population size, we used λ = 20.25

Scenarios involving population expansion and bottleneck were modeled on the demographic histories26

inferred by Lohmueller et al. [2009]. For population expansion (Figures 2B and D), we used λ = 20, and27

implemented the expansion at 1,920 unscaled generations before the simulation end time. After expansion,28

the size of the simulated population doubled from 104 to 2 × 104 diploid individuals. This growth in size29

corresponds to the increase in effective size of African populations that occurred approximately 48,000 years30

ago [Lohmueller et al., 2009], assuming a generation time of 25 years. Population bottleneck simulations31
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(Figures 2C and D) were scaled by λ = 10, began at 1,200 generations before the simulation end time,1

and ended at 880 generations before the simulation end time. During the bottleneck, population size fell to2

550 diploid individuals. This drop represents the approximately 8,000-year bottleneck that the population3

ancestral to non-African humans experienced as it migrated out of Africa [Lohmueller et al., 2009], assuming4

a generation time of 25 years.5

Simulating selection6

Our simulated selection scenarios encompassed a variety of selection modes and parameters. Though we7

primarily focused on selective sweeps, we additionally modeled a history of long-term background selection8

to test the specificity of methods for sweeps. Background selection may decrease genetic diversity relative to9

neutrality. For sweep experiments specifically, we tested the power of methods to detect selection occurring10

between 40 and 4,000 generations prior to the simulation end time (thus, within 2N generations prior to11

sampling). We set the site of selection to be at the center of the simulated chromosome, and performed12

two categories of simulations, allowing us to answer two distinct types of questions about the power of13

our approach: whether G12 and G123 properly identify the signature of a selective sweep (the detection14

experiments), and whether G12 or G123 in conjunction with G2/G1 can distinguish between hard and soft15

sweeps and ultimately infer the number of selected haplotypes (k; the classification experiments), and hence16

“softness” of the sweep.17

For the detection experiments (see Detecting sweeps), we simulated chromosomes of length 100 kb under18

neutrality and for each set of selection parameters, performed 103 replicates of sample size n = 100 diploids19

(and n = 25 for hard sweep experiments in Figure S19). Here, we fixed the times (t) at which selected alleles20

arise to be 400, 1,000, 2,000, or 4,000 generations prior to sampling (Figure 2), and selection coefficients (s)21

to be either 0.1 or 0.01, respectively representing strong and moderate selection. The parameters t and s were22

common to all selection simulations of the first type, with additional scenario-specific parameters which we23

subsequently define. For the classification experiments (see Differentiating between hard and soft sweeps), we24

performed two types of simulations. First, we simulated 106 replicates of n = 100 diploids for each scenario,25

with s ∈ [0.005, 0.5], drawn uniformly at random from a natural log-scale, and t ∈ [40, 2000] (also drawn26

uniformly at random from a natural log-scale), across chromosomes of length 40 kb. With these simulations,27

we assessed the occupancy of specific hard and soft sweeps among (G12, G2/G1), (G123, G2/G1), (H12,28

H2/H1), and (H123, H2/H1) test points. Second, we simulated 5 × 106 replicates with s ∈ [0.05, 0.5] and29

t ∈ [200, 2000] and all other parameters as previously. Here, we assigned the most probable k to each test30

point from the posterior distribution of k among nearby test points, drawing k ∈ {1, 2, . . . , 16} uniformly at31

random. We scaled selection simulations as previously described.32
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We first examined hard sweeps, in which the beneficial mutation was added to one randomly-drawn1

haplotype from the population at time t, remaining selectively advantageous until reaching a simulation-2

specified sweep frequency (f) between 0.1 and 1.0 at intervals of 0.1, where f < 1.0 represents a partial3

sweep and f = 1.0 is a complete sweep (to fixation of the selected allele). Although we conditioned on4

the selected allele not being lost during the simulation, we did not require the selected allele to reach f .5

We additionally modeled soft sweeps from selection on standing genetic variation (SSV). For this scenario,6

we introduced the selected mutation to multiple different, but not necessarily distinct, randomly-drawn7

haplotypes (k) such that k = 2, 4, 8, 16, or 32 haplotypes out of 2N = 103 (scaled haploid population size)8

acquired the mutation at the time of selection. We did not condition on the number of remaining selected9

haplotypes at the time of sampling as long as the selected mutation was not lost.10

For hard sweeps only, we additionally examined the effects of three common scenarios—population11

substructure, pulse admixture, and missing data—on performance. The population substructure model12

consisted of six demes in a symmetric island migration model in which migration between each deme is13

constant at rate m per generation for the duration of the simulation (Figure S21A). We simulated m ∈14

{10−5, 10−4, 10−3, 10−2, 10−1}. All demes were identical in size at N = 1, 660 (unscaled) diploid individuals,15

and samples consisted of n = 100 diploid individuals, with 50 individuals sampled from each of two demes.16

Thus, as m increases, the structured model converges to the unstructured model of N = 104 (unscaled)17

diploid individuals. Our admixture scenarios examined a single pulse of gene flow from an unsampled18

donor population into the sampled target at rate m ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}, occurring19

200 generations prior to sampling (Figure S21B). We performed experiments in which the donor had a20

(unscaled) diploid size of N = 103, 104, or 105, keeping the size of the target fixed at N = 104. For21

admixture simulations, a single population of size 104 diploids evolves neutrally until it splits into two22

subpopulations at 4, 000 generations before sampling. We selected the divergence and admixture times to23

approximately match the timing of these events in sub-Saharan African populations [Veeramah et al., 2011,24

Busby et al., 2016]. Sample sizes were of n = 100 diploids, matching the standard hard sweep experiments.25

To simulate missing data in the sampled population, we followed a random approach. Using data26

generated for the previous simple hard sweep experiment, we removed data from a random number of SNPs27

in each replicate sample, between 25 and 50, drawing these sites from locations throughout the simulated28

sequence uniformly at random. At each missing site, we assigned a number of the sampled individuals,29

between 1 and 5, uniformly at random, to have their genotypes missing at the site. We then accounted for30

missing data in one of two ways. First, we omitted any SNP with missing data in each analysis window. This31

reduced the number of SNPs included in each computation. Second, we assigned any haplotype or MLG32
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with missing data as an entirely new string. Thus, the number of distinct haplotypes and MLGs increases1

when sites are missing, providing a more conservative approach than the first.2

Finally, our single scenario of background selection was intended to quantify the extent to which the3

long-term removal of deleterious alleles in a population, which reduces nearby neutral genetic diversity,4

would mislead each method to make false inferences of selective sweeps. We generated a 100 kb chromosome5

containing an 11 kb gene at its center and allowed it to evolve over 12N generations under a constant-size6

demographic model. The gene was composed of 10 exons of length 100 bases with 1 kb introns separating7

each adjacent exon pair. The first and last exons were flanked by untranslated regions (UTRs) of length 2008

bases at the 5’ end and 800 bases at the 3’ end. Strongly deleterious mutations (s = −0.1) arose at a rate of9

50% in the UTRs, 75% in exons, and 10% in introns, while mutations occurring outside of the genic region10

were neutral. To measure the confounding effect of background selection, we observed the overlap between11

the distributions of maximum G12, G123, H12, and H123 values of 103 simulated replicates under neutrality12

and background selection. Our model here is identical to that of Cheng et al. [2017], with the sizes of genetic13

elements based on human mean values [Mignone et al., 2002, Sakharkar et al., 2004].14

Detecting sweeps15

We performed scans across simulated 100 kb and one Mb chromosomes with all methods using sliding genomic16

windows of length 40 kb, advancing by four kb increments. We chose this window size primarily because the17

mean value of LD between pairs of loci across the chromosome decays below one-third of its maximum value18

over this interval (Figure S1), and because this was the window size with which we analyzed all non-African19

populations from the 1000 Genomes dataset. Window size also affects sensitivity to sweeps by constraining20

the minimum strength of selective sweeps we can detect. That is, with our chosen window size, we are likely21

to detect sweeps with s > 0.004, because such sweeps will generate genomic footprints on the order of 4022

kb for our simulated population size of N = 104. We computed this value as F = s/(2r ln(4Ns)), where23

F is the size of the footprint in nucleotides, s is the per-generation selection coefficient, r is the per-base,24

per-generation recombination rate, and N is the effective population size [Gillespie, 2004, Garud et al., 2015,25

Hermisson and Pennings, 2017].26

For experiments measuring power at defined time points, we recorded the chromosomal maximum value27

of G12, G123, H12, or H123 across all windows as the score for each of 103 replicates of 100 kb chromosomes.28

Selection simulation scores provided us with a distribution of values that we compared with the distribution29

of scores generated under neutral parameters. We define a method’s power for each of our specified time30

intervals at the 1% false positive rate (FPR). This measures the proportion of our 1,000 replicates generated31

under selection parameters with a score greater than the top 1% of scores from the neutral replicates. The32
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method performs ideally if the distribution of its scores under a sweep does not overlap the distribution of1

scores for neutral simulations; i.e., if neutrality can never produce scores as large as a sweep.2

In addition to power, we also tracked the mean scores of G12 and G123 across simulated one Mb3

chromosomes at each 40 kb window for all selection scenarios at the time point for which power was greatest.4

In situations where G12 or G123 had the same power at more than one time point (this occurred for strong5

selection within 1,000 generations of sampling), we selected the most recent time point in order to represent6

the maximum signal, since mutation and recombination erode expected haplotype homozygosity over time.7

This analysis allowed us to observe the interval over which elevated scores are expected, and additionally8

define the shape of the sweep signal.9

Differentiating between selection scenarios10

Experiments to test the ability of G2/G1 to correctly differentiate between soft and hard sweeps, as H2/H111

can (conditioning on a G12 or G123 value for G2/G1, or an H12 or H123 value for H2/H1), required a12

different simulation approach than did the simple detection of selective sweeps. Whereas multiple methods13

exist to identify sweeps from extended tracts of expected haplotype homozygosity, the method of Garud14

et al. [2015] classifies this signal further to identify it as deriving from a soft or hard sweep. As did Garud15

et al. [2015], we undertook an approximate Bayesian computation (ABC) approach to test the ability of16

our method to distinguish soft and hard sweeps. To demonstrate the ability of G2/G1 conditional on G1217

and G123 to differentiate between sweep scenarios and establish the basic properties of the (G12, G2/G1)18

and (G123, G2/G1) distributions, we simulated sequences of length 40 kb under a constant population19

size demographic history (Figure 2A) with a centrally-located site of selection. Here, we treated the whole20

simulated sequence as a single window.21

For ABC experiments to classify test points as hard or soft from a fixed number of different selected22

haplotypes k, we performed 106 simulations for each selection scenario, drawing selection coefficients s and23

selection times t uniformly at random from a log-scale as previously described. Soft sweeps from SSV were24

generated for k = 5 and k = 3 starting haplotypes (out of a scaled 2N = 103 haploids). Soft sweeps generated25

under random t and s were compared with hard sweeps generated under random t and s, with completion of26

the sweep possible but not guaranteed. From the resulting distribution of scores for each simulation type, we27

computed Bayes factors (BFs) for direct comparisons between a hard sweep scenario and either soft sweep28

scenario.29

For two selection scenarios A and B and a (G12, G2/G1) or (G123, G2/G1) test point (or haplotype30

statistic test point), we compute BFs as the number of simulations of type A yielding results within a31

Euclidean distance of 0.1 from the test point, divided by the number of simulations of type B within that32
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distance. Here, test values of (G12, G2/G1) and (G123, G2/G1) are each plotted as a 100× 100 grid, with1

both dimensions bounded by [0.005, 0.995] at increments of 0.01. In the work of Garud et al. [2015], soft2

sweeps were of type A and hard sweeps were of type B, and we retain this orientation in our present work.3

Following these definitions, a BF less than one at a test coordinate indicates that a hard sweep is more likely4

to generate such a (G12, G2/G1) or (G123, G2/G1) pair, whereas a BF larger than one indicates greater5

support for a recent soft sweep generating that value pair. As do Lee and Wagenmakers [2013], we define6

BF ≥ 3 as representing evidence for selection scenario A producing a similar paired (G12, G2/G1) or (G123,7

G2/G1) value as the test point, and BF ≥ 10 to represent strong evidence. Similarly, BF ≤ 1/3 is evidence in8

favor of scenario B, and BF ≤ 1/10 is strong evidence. We performed analyses for both MLG and haplotype9

data to demonstrate the effect of data type on sweep type inference.10

We followed a similar approach for ABC experiments to assign a most probable k to test points within11

the aforementioned 100 × 100 grids. Here, we generated 5 × 106 replicates, drawing t and s uniformly at12

random on a log scale as previously, and k ∈ {1, 2, . . . , 16} uniformly at random. For each (G12, G2/G1),13

(G123, G2/G1), (H12, H2/H1), or (H123, H2/H1) test point, we retained the value of k for each replicate14

within a Euclidean distance of 0.1, and assigned the most frequently-occurring k as the most probable value15

for the test point. Thus, unlike for BF experiments, no test point yielded an ambiguous result, and all test16

points were assigned a most probable k.17

Analysis of empirical data18

We evaluated the ability of G12, G123, and H12 to corroborate and complement the results of existing19

analyses on human data. Because G12 and G123 take unphased diploid MLGs as input, we manually20

merged pairs of haplotype strings for this dataset (1000 Genomes Project, Phase 3 [Auton et al., 2015])21

into MLGs, merging haplotype pairs that belonged to the same individual. We also complemented the22

individual-centered approach by randomly merging pairs of haplotypes to produce a sample of individuals23

that could arise under random mating. Our approaches therefore allowed us to determine the effect of using24

different data types to infer selection. Unlike biallelic haplotypes, MLGs are triallelic, with an indicator25

for each homozygous state and the heterozygous state. Thus, there are at least as many possible MLGs as26

haplotypes, such that a sample with I distinct haplotypes can produce up to I(I + 1)/2 distinct MLGs.27

We scanned all autosomes using nucleotide-delimited genomic windows, proportional to the effective size28

of the study population, and the interval over which the rate of decay in pairwise LD plateaus empirically [see29

Jakobsson et al., 2008]. For the 1000 Genomes YRI population, we employed a window of length 20 kb sliding30

by increments of two kb, whereas for non-African populations (effective population size approximately half31

of YRI) we used a window of 40 kb sliding by increments of five kb (see Results). This means that we were32
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sensitive to sweeps from approximately s ≥ 0.002 for YRI, and approximately s ≥ 0.004 for the others. We1

recorded G12, G123, and H12 scores for all genomic windows, and subsequently filtered windows for which2

the observed number of SNPs was less than a certain threshold value in order to avoid biasing our results3

with heterochromatic regions for which sequence diversity is low in the absence of a sweep. Specifically, we4

removed windows containing fewer SNPs than would be expected [Watterson, 1975] when two lineages are5

sampled, which is the extreme case in which the selected allele has swept across all haplotypes except for one.6

For our chosen genomic windows and all populations, this value is 4Neµ× (window size in nucleotides) = 407

SNPs, where Ne is the diploid effective population size and µ is the per-site per-generation mutation rate.8

As in Huber et al. [2016], we additionally divided each chromosome into non-overlapping 100 kb bins and9

removed sites within bins whose mean CRG100 score [Derrien et al., 2012], a measure of site mappability10

and alignability, was less than 0.9. Filtering thereby removed additional sites for which variant calls were11

unreliable, making no distinction between genic and non-genic regions.12

Following a scan, we intersected selection signal peaks with the coordinates for protein- and RNA-coding13

genes and generated a ranked list of all genomic hits discovered in the scan for each population. We used14

the coordinates for human genome build hg19 for our data, to which Phase 3 of the 1000 Genomes Project15

is mapped. The top 40 candidates for each study population were recorded and assigned p-values and16

BFs. Specifically, we simulated sequences following the estimates of population size generated by Terhorst17

et al. [2017] from smc++ using ms [Hudson, 2002] to assign p-values and SLiM 2 to assign BFs, with per-18

generation, per-site mutation and recombination rates of 1.25×10−8 and 3.125×10−9 [Terhorst et al., 2017,19

Narasimhan et al., 2017], and sample sizes for each population matching those of the 1000 Genomes Project.20

For p-value simulations, we selected a sequence length uniformly at random from the set of all hg19 gene21

lengths, appended the window size used for scanning that population’s empirical data to this sequence, and22

used a sliding window approach, retaining information from the window of maximum G12, G123, or H1223

value. For BF simulations, we used simulated sequence lengths of either 20 kb for YRI or 40 kb for others,24

to match the strategy of empirical scans. That is, once we have identified an elevated sweep signal within a25

window, we then seek to classify it as hard or soft.26

We assigned p-values by generating 106 replicates of neutrally-evolving sequences, where the p-value for27

a gene is the proportion of maximum G12 (or G123 or H12) scores generated under neutrality that is greater28

than the score assigned to that gene. After Bonferroni correction for multiple testing [Neyman and Pearson,29

1928], a significant p-value was p < 0.05/23, 735 ≈ 2.10659 × 10−6, where 23,735 is the number of protein-30

and RNA-coding genes for which we assigned a G12 (or G123 or H12) score. To assign BFs, we simulated31

106 replicates of hard sweep and SSV (k = 5) scenarios for each study population (thus, 2 × 106 replicates32

for each population), wherein the site of selection was at the center of the sequence. We drew t ∈ [40, 2000]33
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and s ∈ [0.005, 0.5] uniformly at random from a log-scale, and defined BFs as previously. Additionally, we1

assigned the most probable values of k from the posterior distribution for each top 40 sweep candidate for2

each population, following the previous protocol. Values of t were chosen to reflect selective events within the3

range of detection of G12, G123, and H12, while also being after the out-of-Africa event, whereas values of s4

represent a range of selection strengths from weak to strong. We once again conditioned on the selected allele5

remaining in the population throughout the simulation, though not on its frequency beyond this constraint.6

We affirm that all data necessary for confirming the conclusions of the article are present within the7

article, figures, and tables. Any other materials and resources are available upon request.8
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Figure 1: Visual representation of expected homozygosity statistics. For all panels, total area of the
orange or blue squares within a panel represents the value of expected homozygosity statistics. Hard
sweep scenarios are in orange, and soft sweeps are in blue. (A) Under a hard sweep (left), a single
haplotype rises to high frequency, p1, so the probability of sampling two copies of that haplotype is
p21. Choosing p1 as the largest frequency yields H1 (dark orange area), while pooling p1 + p2 as the
largest frequency yields H12 (total orange area). Under a soft sweep (right), pooling the largest
haplotype frequencies results in a large shaded area, and therefore H12 has a similar value for both
hard and soft sweeps. (B) Under Hardy Weinberg equilibrium, a single high-frequency haplotype
produces a single high-frequency MLG (frequency q1). Pooling frequencies up to q3 has little effect
on the value of the statistic, thus G1, G12, and G123 have similar values. When two haplotypes
exist at high frequency, three MLGs exist at high frequency. Under a soft sweep, pooling the largest
two MLGs (G12) may provide greater resolution of soft sweeps than not pooling (G1), and pooling
the largest three creates a statistic (G123) truly analogous to H12.
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A B

Figure 2: Simulated demographic models. Selection events, where applicable, occurred within 2N
generations of sampling, indicated by small black bars on the right side of panels A-C corresponding
to selection 4,000, 2,000, 1,000, and 400 generations before sampling. (A) Constant-size model.
Diploid population size is 104 individuals throughout the time of simulation. (B) Model of recent
population expansion. Diploid population size starts at 104 individuals and doubles to 2 × 104

individuals 1,920 generations ago. (C) Model of a recent strong population bottleneck. Diploid
population size starts at 104 individuals and contracts to 550 individuals 1,200 generations ago,
and subsequently expands 880 generations ago to 104 individuals. (D) View of the final 3,000
generations across demographic models, highlighting the effects of changing demographic factors
on simulated populations.
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Figure 3: Capabilities of H12 (orange) and G12 (blue) to detect hard sweeps from simulated
chromosomes, sample size n = 100 diploids, and window size of 40 kb for selection across four
time points (400, 1,000, 2,000, and 4,000 generations before sampling) and 10 sweep frequencies
(f , frequency to which the selected allele rises before becoming selectively neutral). Selection
simulations conditioned on the beneficial allele not being lost. (A) Powers at a 1% false positive
rate (FPR) of H12 and G12 to detect strong sweeps (s = 0.1) in a 100 kb chromosome. (B) Powers
at a 1% FPR of H12 and G12 to detect moderate sweeps (s = 0.01) in a 100 kb chromosome. (C)
Spatial G12 signal across a one Mb chromosome for strong sweeps occurring 400 generations prior
to sampling. (D) Spatial G12 signal across a one Mb chromosome for moderate sweeps occurring
2,000 generations prior to sampling. Lines in (C) and (D) are mean values generated from the same
set of simulations as panels A and B, and contain only results for f ≥ 0.7. Note that vertical axes
in panels C and D differ.
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Figure 4: Capabilities of H12 (orange) and G12 (blue) to detect soft sweeps (SSV) from simulated
chromosomes generated for selection times, sample size, and window size as in Figure 3, and five
initially-selected haplotype values (k, number of haplotypes on which the selected allele arises at
time of selection). Selection simulations conditioned on the beneficial allele not being lost. (A)
Powers at a 1% false positive rate (FPR) of H12 and G12 to detect strong sweeps (s = 0.1) in a 100
kb chromosome. (B) Powers at a 1% FPR of H12 and G12 to detect moderate sweeps (s = 0.01)
in a 100 kb chromosome. (C) Spatial G12 signal across a one Mb chromosome for strong sweeps
occurring 400 generations prior to sampling. (D) Spatial G12 signal across a one Mb chromosome
for moderate sweeps occurring 2,000 generations prior to sampling. Lines in (C) and (D) are mean
values generated from the same set of simulations as panels A and B, and contain only results for
k ≤ 16. Note that vertical axes in panels C and D differ.
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Figure 5: Assignment of Bayes factors (BFs) to tested paired values of (G12, G2/G1) and (G123,
G2/G1). Plots represent the relative probability of obtaining a paired (G12, G2/G1) or (G123,
G2/G1) value within a Euclidean distance of 0.1 from a test point for hard versus soft sweeps,
determined as described in the Materials and methods. Selection coefficients (s) and times (t) were
drawn as described in the Materials and methods. Red regions represent a higher likelihood for
hard sweeps, while blue regions represent a higher likelihood for soft sweeps. Colored bars along
the axes indicate the density of G12 or G123 (horizontal) and G2/G1 (vertical) observations within
consecutive intervals of size 0.025 for hard sweep (magenta) and SSV (purple) simulations. (A)
BFs of paired (G12, G2/G1) values for hard sweep scenarios and SSV scenarios (k = 5). (B) BFs
of paired (G12, G2/G1) values for hard sweep scenarios and SSV scenarios (k = 3). (C) BFs of
paired (G123, G2/G1) values for hard sweep scenarios and SSV scenarios (k = 5). (D) BFs of
paired (G123, G2/G1) values for hard sweep scenarios and SSV scenarios (k = 3). Only test points
for which at least one simulation of each type was within a Euclidean distance of 0.1 were counted
(and therefore colored).
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Figure 6: (G123, G2/G1) values used to distinguish hard (red) and soft (blue) sweeps in human
empirical data using demographic models inferred with smc++ [Terhorst et al., 2017]. Points rep-
resenting the top 40 G123 selection candidates (Tables S4, S7, S10, and S13) for the (A) CEU,
(B) YRI, (C) GIH, and (D) CHB populations are overlayed onto each population’s specific (G123,
G2/G1) distribution. Candidates exceeding the significance threshold (Table S1; different for each
population) are colored in gold. Colored bars along the horizontal (G123) and vertical (G12) axes
are defined as in Figure 5.
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Figure 7: Outlying G12 signals in human genomic data. For each population, we show a top selec-
tion candidate and display its sampled MLGs within the genomic window of maximum signal. Red
and black sites are homozygous genotypes at a SNP within the MLG, while gray are heterozygous.
Green lines separate MLG classes in the sample. (A) CEU chromosome 2, centered around LCT,
including other outlying loci (labeled). LOC100507600 is nested within LCT (left). A single MLG
exists at high frequency, consistent with a hard sweep (right). (B) YRI chromosome 12, centered
on SYT1 (left). This signal is associated with two elevated-frequency MLGs (right). (C) GIH
chromosome 10, centered on P4HA1 (left). Two MLGs exist at high frequency (right). (D) CHB
chromosome 12, centered on FMNL3 (left). A single MLG predominates in the sample (right).
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