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ABSTRACT 16 

 17 

Genome wide association studies (GWASs) for complex traits have implicated thousands of genetic 18 

loci. Most GWAS-nominated variants lie in noncoding regions, complicating the systematic translation 19 

of these findings into functional understanding. Here, we leverage convolutional neural networks to 20 

assist in this challenge. Our computational framework, peaBrain, models the transcriptional machinery 21 

of a tissue as a two-stage process: first, predicting the mean tissue specific abundance of all genes and 22 

second, incorporating the transcriptomic consequences of genotype variation to predict individual 23 

abundance on a subject-by-subject basis. We demonstrate that peaBrain accounts for the majority 24 

(>50%) of variance observed in mean transcript abundance across most tissues and outperforms 25 

regularized linear models in predicting the consequences of individual genotype variation. We highlight 26 

the validity of the peaBrain model by calculating non-coding impact scores that correlate with 27 

nucleotide evolutionary constraint that are also predictive of disease-associated variation and allele-28 

specific transcription factor binding. We further show how these tissue-specific peaBrain scores can be 29 

leveraged to pinpoint functional tissues underlying complex traits, outperforming methods that depend 30 

on colocalization of eQTL and GWAS signals. We subsequently derive continuous dense embeddings 31 

of genes for downstream applications, and identify putatively functional eQTLs that are missed by high- 32 

throughput experimental approaches.  33 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Most reported disease-associated variation for complex traits lies in non-coding regions of the genome1. 34 

Despite advances in discovery and annotations of functional non-coding elements across the genome2-35 

5, characterising the consequences of non-coding variants remains a major challenge in human genetics. 36 

Prediction of the transcriptomic consequences of non-coding variation represents one solution6-10. 37 

Current methods of variant-expression prediction can be broadly divided into two classes: (a) methods 38 

that predict alterations in epigenetic and transcription factor binding sites (TFBS), such as DeepSEA8 39 

and Basset10; and (b) methods that directly predict RNA abundance from genotype or sequence data, 40 

such as PrediXcan6 and TWAS9. Methods in the former category do not capture differences in transcript 41 

expression as a result of genotypic variation8,10 and are relatively poor predictors of alterations in the 42 

histone code8; methods in the latter category are not able to identify which of the variants detected 43 

within an eQTL association locus are functional6,9. 44 

 45 

To address these concerns, here, we introduce a single framework, called promoter-and-enhancer-46 

derived abundance (peaBrain) model, which consolidates both of these approaches. Within the 47 

peaBrain framework, the transcriptional machinery of a tissue is modelled computationally as a two-48 

stage process. Stage 1 is a single model in which peaBrain predicts the mean abundance of each gene 49 

in a given tissue from DNA sequences, optionally annotated with epigenetic and genomic annotations. 50 

Stage 2 incorporates the transcriptomic consequences of genotype variation to predict individual 51 

abundance of any given gene; that is, it generates a gene- and tissue-specific model sensitive to 52 

individual variation.  53 

 54 

We demonstrate that the convolutional neural networks (CNNs) underlying this framework can capture 55 

the majority of variance (>50%) in the mean abundance of genes across most GTEx tissues (Stage 1), 56 

with utility in a diverse set of tasks (such as identifying somatic mutations with high-impact 57 

consequences  or pinpointing the functional tissues underlying GWAS signal from complex traits). We 58 

further show that CNNs outperform linear models in predicting the consequences of genotype variation 59 

(Stage 2). In EBV-transformed lymphocytes (LCLs), we demonstrate that the estimated peaBrain 60 

variant effects correlate more strongly with coefficients from the univariate eQTL analysis, compared 61 
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to log-skew effect estimates obtained from massively parallel reporter assays (MPRAs)11 and bi-allelic 62 

targeted STARR-seq (BiT-STARR-seq)12, or log fold changes (logFC) of perturbed epigenetic states 63 

from DeepSEA8. To highlight the utility of the Stage 2 models, we identified putatively functional 64 

eQTLs in LCLs that are missed by experimental high-throughput approaches that characterise variant 65 

function, such as MPRAs, BiT-STARR-seq, and high-definition reporter assays (HiDRA)13.   66 
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RESULTS 67 

 68 

peaBrain captures >50% of the variance in mean gene abundance. 69 

 70 

To predict the tissue-specific mean abundance of genes (Stage 1), we leveraged the reference genome14. 71 

For each gene, as input, we generated a 1-dimensional (1D) matrix centred on the region around the 72 

annotated transcription start site (TSS). By varying the length of the input sequence, the 4kbps promoter 73 

(2kbps upstream and 2kbps downstream of the annotated TSS)  was determined as the best-performing 74 

length for predicting the tissue-specific mean gene abundance in the GTEx dataset, outperforming 75 

2kbps and 6kbps promoter sequences (see Online Methods and Supplementary Figure 1). We used 76 

one-hot encoding (four channels) to represent the four DNA letters (A, T, C, G) in the reference genome 77 

(4 channels) (see Online Methods). The model output was the corresponding predicted mean RNA 78 

abundance of that gene, after rank-transformation to normality.   79 

 80 

We applied this framework to all tissues from the GTEx dataset15, constructing three classes of models: 81 

(a) using DNA sequence alone (class-A); (b) using DNA plus epigenomic annotations not specific to 82 

any tissue or cell type (i.e. non-specific annotations) (class-B); and (c) using DNA combined with both 83 

non-specific tissue-specific annotations (class-C).  For class-B models, we incorporated 28 channels of 84 

binary sequences that represent epigenomic (and related) annotations that are not specific to any cell 85 

type or tissue (curated by the authors of LD Score Regression16;see Online Methods for details). For 86 

class-C models, we added additional channels corresponding, for those tissues where such data were 87 

available, to the consolidated epigenomes from the Epigenomics Roadmap, including tissue-specific 88 

peaks from H3K4me1, H3K4me3, H3K9ac, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq 89 

experiments, and experimentally-derived DNase hotspots17.  90 

 91 

We observed that DNA-only (class-A) models captured nearly a fifth of the variance in mean gene 92 

abundance across all GTEx tissues (10-fold cross-validated median out-of-sample-r2 [oos-r2] values 93 

across all tissues = 17%). Addition of non-specific regulatory annotations (class-B models) markedly 94 
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improved model performance across all tissues (median cross-validated oos-r2 = 45%; Figure 1). (We 95 

average the oos-r2 across all 10-folds within a tissue and use the median across all tissues to assess 96 

global performance; see Online Methods.)  For example, for EBV-transformed lymphocytes, the 10-97 

fold cross-validated average oos-r2 is 56% for the class-B model compared to the 15% in the 98 

corresponding class-A model. Addition of tissue-specific annotations further improved model 99 

performance, such that class-C models captured more than half the variance for almost all GTEx tissues 100 

where such data were available (Figure 1).  101 

 102 

These results are suggestive that differences in mean abundance between genes are largely encoded in 103 

differences between core promoter elements and interacting regulatory factors encoded in the model 104 

weights, rather than a consequence of non-transcriptional downstream regulation (e.g. silencing by 105 

small non-coding RNAs). This is broadly consistent with anecdotal experimental evidence18. Explicitly 106 

incorporating experimental transcription factor binding site (TFBS) annotations has limited effect on 107 

performance (median cross-validated oos-r2 = 23%), when compared to the complete class B model 108 

with epigenetic/histone marks and chromatin annotations (median cross-validated oos-r2 = 46%; 109 

Supplementary Note 1). This suggests explicitly encoding TFBS annotations is largely redundant and 110 

that epigenetic and genomic annotations add information to that contained in the DNA sequence to 111 

substantially improve predictive performance. Importantly, this performance was only accomplished 112 

using the convolutional neural network architecture of peaBrain: experimental models that we generated 113 

in skeletal muscle using regularized linear models fitted with stochastic gradient descent exhibited poor 114 

performance. In fact, for these linear models the 10-fold average oos-r2 was negative, indicating that 115 

the out-of-sample predictions of the model fitted on the training data are worse than predicting the mean 116 

of the test set (see Online Methods and Supplementary Note 1). We also describe comparisons of the 117 

peaBrain CNN approach with other methods in Supplementary Note 1. 118 

 119 

peaBrain score outperforms existing measures in predicting disease-associated variants and in 120 

predicting allele-specific transcription factor binding. 121 
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Having demonstrated the predictive ability of the model (Stage 1), we were interested in using peaBrain 122 

to generate a non-coding impact metric, which captured the impact of each position in the core promoter 123 

sequence on the expression of each gene. We defined the impact of each position as the absolute 124 

difference in abundance between the original promoter sequence and a modified promoter sequence 125 

where all the information for that site (including epigenetic and genomic annotations) is set to zero.  To 126 

facilitate comparison across tissues, we performed this analysis using the class-B models, since the non-127 

specific epigenetic and genomic annotations were, by definition, available for all tissues. Across all 128 

GTEx tissues, the non-coding impact metric correlated with variant-specific conservation scores 129 

derived from multiple alignments of 99 vertebrate genomes to the human genome14 and represented by 130 

phylogenetic p-values (phyloP) (see Online Methods). Briefly, these phyloP nucleotide conservation 131 

scores are based on an alignment and a model of neutral evolution14: a more positive value indicates 132 

conservation or slower evolution than expected, with the magnitude of the phyloP score corresponding 133 

to the -log p-values under the null hypothesis (i.e. neutral evolution). For every unit of absolute 134 

magnitude increase in impact, we observed an average increase of 8.95 in phyloP scores, indicating 135 

increased conservation (8.95 order-of-magnitude difference in the –log10 p-value; Supplementary 136 

Table 1). Equivalently, for every unit increase in phyloP, we observed an approximately 0.1 absolute 137 

magnitude change in the average normalized expression of the affected gene (i.e. peaBrain impact 138 

score); again indicating that if a site is more conserved, it has a larger impact on expression. While this 139 

positive trend between conservation and impact on expression was consistent across most GTEx tissues, 140 

there were exceptions: in the nucleus accumbens (basal ganglia), noncoding transcriptomic impact was 141 

correlated with accelerated evolution (Supplementary Table 1). These results were consistent, albeit 142 

weaker, after rank-normalization of both the phyloP and peaBrain scores (Supplementary Table 1). 143 

 144 

This overall positive correlation between peaBrain impact and phyloP represents a direct equivalence 145 

between evolutionary conservation and impact on gene abundance. Most well-established non-coding 146 

impact measures (e.g. CADD19 and Eigen20) indirectly capture transcriptomic consequences by 147 

modelling evolutionary conservation measures, allele frequency, and/or functional non-coding 148 

consequence annotations. However, the peaBrain-derived impact metric directly assesses the 149 
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contribution of a genomic position on mean expression. Importantly, since the metric is independent of 150 

curated consequence and disease annotation databases – as it is trained solely on expression from 151 

“healthy” tissues – it provides an unbiased estimate of the information content and deleterious impact 152 

of variation at any genomic position in the core 4kbps promoter sequence. The peaBrain impact scores, 153 

for all tissues, have been made available (see URLs). 154 

 155 

Having established the correlation between peaBrain impact and evolutionary constraint, we were 156 

interested in assessing the utility of peaBrain-derived scores to interrogate disease-associated variants. 157 

We compared the performance of the non-tissue-specific peaBrain score (see Online Methods) to two 158 

other non-coding metrics (CADD19 and Eigen20) across a series of tasks (tasks A-C; all tasks are 159 

summarized in Supplementary Table 2). 160 

 161 

First, we made use of data on disease-related variation from the Catalogue of Somatic Mutations in 162 

Cancer [COSMIC]21 , limited to the census gene set which defines a set of genes with somatic mutations 163 

causally implicated in human cancer (see Online Methods). In task A, we assessed the predictive 164 

capacity of the non-coding metric to identify positions with non-zero incidence of cancer-associated 165 

somatic mutation (n=5268), among all genomic positions within the 4kbps core promoter sequences of 166 

COSMIC census genes (approximately 2.15 million positions), using a simple logistic model. The 167 

logistic coefficients give the change in the log odds of the outcome (i.e. presence or absence of somatic 168 

mutation) for a one-unit increase in the non-coding score. In task B, we similarly assessed the predictive 169 

capacity of the non-coding metric to identify, using the same COSMIC data set, positions with recurrent 170 

cancer-associated somatic mutations (n=544) when contrasted to positions with non-recurrent cancer-171 

associated somatic mutations (n=4724). The focus on cancer-associated somatic mutations allowed us 172 

to circumvent linkage disequilibrium (LD) confounding.  Patterns of recurrent non-coding somatic 173 

mutations, across all tumours in these genes, provide a coarse indicator of the functional transcriptomic 174 

impact of non-coding genomic positions. Both tasks were modelled with the allele frequency and 175 

phyloP conservation incorporated as covariates (see Online Methods). We subsequently assessed the 176 

significance of the logistic model coefficients for each of the non-coding metrics across the two tasks 177 
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(Table 1). Only the non-specific-peaBrain score, derived from scores across all GTEx tissues (average 178 

across all tissues and positions), was positively and significantly predictive for both tasks (Table 1). 179 

Significance was assessed using the default two-tailed p-value corresponding to the z ratio based on the 180 

Normal reference distribution (Table 1; see Online Methods). The non-specific peaBrain-derived 181 

metric was useful in isolating genomic positions with non-zero incidence of somatic mutations across 182 

all positions in the promoters of COSMIC consensus genes (task A; coefficient point estimate=29.36; 183 

95% confidence interval [ci] (16.63, 41.97)), and could further delimit positions with recurrent somatic 184 

mutations (task B; coefficient=102.96 [64.58, 140.72]). Eigen was significantly predictive for task A 185 

(coefficient = 0.10 [0.08, 0.12]), but not for task B (0.08 [-0.01, 0.17]). CADD exhibited the opposite 186 

trend between tasks A and B: negatively predictive of genomic positions with non-zero incidence of 187 

somatic mutations (coefficient = -0.05 [-0.08, -0.02]), but positively predictive of positions with 188 

recurrent somatic mutations (coefficient = 0.17 [0.06, 0.28]; Table 1). Thus, the non-coding peaBrain-189 

derived metric appears to better characterize the pathogenicity and putative functionality of non-coding 190 

variants with transcriptomic consequences in the core-promoter sequences, providing additional 191 

information to that found in allele frequency or evolutionary constraint metrics and with performance 192 

better than other established non-coding impact scores. 193 

 194 

Having demonstrated the utility of peaBrain impact in predicting disease-associated variants, we were 195 

interested in investigating the discriminative ability of peaBrain-derived scores in identifying allele-196 

specific transcription factor binding sites (task C). We hypothesized that allele-specific binding will 197 

have downstream transcriptional consequences that could be identified from directly modelling gene 198 

expression. For brevity, we briefly note that only the peaBrain impact score was significantly predictive 199 

of allele-specific binding sites (coefficient = 35.38 [12.00, 58.67]; p = 0.003; Table 1) and neither 200 

CADD nor Eigen achieved nominal significance.  We provide a more detailed analysis in 201 

Supplementary Note 1. We also highlight, in Supplementary Note 1, how characterizing TF motifs 202 

is not necessary to understand the consequences of sequence variation on TF binding by comparing 203 

peaBrain with methods specifically designed to predict TFBS, including two neural-network methods 204 
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(DeepBind22 and DeepSEA8),  two kmer-based variant scoring methods (gkmSVM23 and GERV24), and 205 

three position-weighted matrices (PWM)-related methods25. 206 

 207 

Tissue-specific peaBrain scores can identify the functional tissues underlying GWAS signals from 208 

complex traits 209 

 210 

For tasks A-C, we have used the non-tissue-specific peaBrain score (average of score, per position, 211 

across all tissues) to facilitate comparison with the other tissue-agnostic impact metrics. However, we 212 

sought to investigate advantages of tissue-specific impact scores. In particular, we wanted to highlight 213 

how tissue-specific scores could allow us to identify functional tissues associated with GWAS signal 214 

from complex traits (task D). We hypothesized that the “true” functional gene(s) downstream of a 215 

GWAS locus (“hit”) would have, on average, higher peaBrain impact scores for the tissue in which the 216 

gene is likely to act, given that >50% of the variance in mean gene abundance can be explained by the 217 

promoter sequence. In other words, we hypothesized that genes associated with a given phenotype (e.g. 218 

total cholesterol) are also likely to be transcriptionally perturbed in the underlying functional tissue (e.g. 219 

liver), which we can detect with tissue-specific peaBrain scores.  220 

 221 

We selected 4 quantitative traits (total cholesterol26, LDL26, HDL26, and triglycerides26) for which the 222 

(primary) putatively causal tissue is well-established and included in the GTEx dataset. Using HESS27, 223 

we calculated the local SNP-heritability from the relevant GWAS summary statistics, while accounting 224 

for linkage disequilibrium. For European populations, HESS partitions the genome into 1703 225 

approximately-independent LD blocks (average length = 1.6Mb)27. For each block (or “locus”), we 226 

calculated the tissue-specific peaBrain impact score for each GTEx tissue; the locus peaBrain score is 227 

defined as the average of the tissue-specific peaBrain scores at all positions (with a score) within that 228 

locus. We subsequently performed a regression of the rank-transformed local SNP-heritabilities as a 229 

function of the rank-transformed peaBrain locus scores to minimize bias caused by outlying loci and 230 

assessed significance for the linear model coefficient (n = 45 tests for each GTEx tissue per phenotype; 231 

see Online Methods). As a baseline benchmark, we compared our results to tissue predictions made 232 
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using the tissue trait concordance (RTC) score28, which was adapted to calculate the probability that a 233 

GWAS-associated variant and an eQTL are co-localized and weighted by the extent of tissue sharing 234 

for the given eQTL to obtain tissue-causality profiles for each trait.  Across all tested traits, we noted 235 

the peaBrain framework was better at identifying putatively causal tissues than simply using the RTC-236 

/eQTL-based method (Supplementary Tables 3 and 4). For LDL, using the peaBrain framework, the 237 

top five tissues (ranked by nominal p-value) were: EBV-transformed lymphocytes, visceral adipose, 238 

fibroblasts, liver, and terminal ileum (small intestine); all were significant after Bonferroni adjustment 239 

with p-values tabulated in Supplementary Table 3. In contrast, with the RTC-based method, the top 240 

five tissues were: sun-exposed skin (from lower leg), pancreas, fibroblasts, tibial nerve, and cerebellar 241 

hemisphere (brain). This was consistent across all tested traits (e.g. for HDL, liver ranked 3rd using the 242 

peaBrain framework and 32nd using the RTC-based method; Supplementary Tables 3 and 4). The 243 

superior peaBrain performance suggests inherent limitations to eQTL-based methods that are 244 

sidestepped by the Stage 1 peaBrain framework, which depends only on the average expression of all 245 

genes in a single tissue and the reference genome. Notably, peaBrain is independent from the number 246 

of eQTLs identified per tissue and the number of genome-wide significant hits for a given trait, which 247 

are both limitations for eQTL-GWAS co-localization methods (such as the RTC-based framework).  248 

 249 

Having validated the peaBrain Stage 1 approach and its utility in a diverse set of tasks, in 250 

Supplementary Note 1, we highlight how activations of the penultimate layer of the peaBrain model 251 

can be used as a continuous and compressed representation (i.e. embedding) of genes. These 252 

embeddings, or equivalently, neural activations, capture both the annotated DNA (input) and its additive 253 

contributions to tissue-specific abundance (output) in a compressed form amenable to downstream 254 

analyses (such as network-based analyses). These embeddings display interesting properties (see 255 

Supplementary Note 1), including the encoding of correlation information and membership to 256 

pathways/curated gene sets. Importantly, these embeddings are in a linear space, such that the pairwise 257 

cosine similarity between these dense gene representations is proportional to the measured RNA-seq 258 

correlation between the gene pair. In other words, co-regulation and co-expression may be discovered 259 
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by leveraging linear structure within the embeddings (e.g. adding embeddings of two genes to discover 260 

their co-expression with a third).   261 

 262 

peaBrain can predict transcriptomic consequences of individual variation. 263 

 264 

Having shown the utility of the Stage 1 peaBrain model, we extended the peaBrain model to incorporate 265 

the transcriptomic consequences of individual genotype variation (Stage 2). Given whole genome 266 

sequencing data of a group of individuals (such as GTEx participants), we sought to assess the ability 267 

of this extended peaBrain model to predict the tissue-specific expression profile of each individual, and 268 

to identify putatively functional variants within the sequence.   269 

 270 

To do this, we constructed, for each gene and in each tissue, an extended peaBrain model that takes 271 

individual genome sequence as input and predicts the tissue-specific expression of the corresponding 272 

gene as output. (For stage 2 analyses, we did not make use of individual level epigenomic and regulatory 273 

annotations as these were not available.) More concretely, unlike stage 1 models, for a single gene, 274 

stage 2 models predict the difference between the expression of two individuals as a function of the 275 

difference in the sequences between the two individuals (for the given gene; see Online Methods). By 276 

jointly modelling the input “difference” sequence in a non-linear manner, we hypothesized that we 277 

would capture information relevant to cis-heritability missed by linear models (such as distance to TSS 278 

sites and the pairwise relationships between variants), and be able to prioritize functional variants with 279 

transcriptomic consequences solely from the DNA sequence. This additional information is modelled 280 

by using the “difference” sequence as input, rather than the dosage in variation. (Stage 2 peaBrain 281 

models were trained separately from Stage 1 models, but share similar architectures; see Online 282 

Methods.) 283 

 284 

Consistent with evidence from eQTL studies29, we noted the 4kbps core promoter used in Stage 1 did 285 

not capture enough cis-heritability as estimated by constrained GCTA30 and thus was not sufficiently 286 

informative for this predictive task. In LCLs, for example, using the 4kbps core promoter, genes with 287 
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significant non-zero heritability (p < 0.01; n = 1066) had a median heritability of 0.136. We selected a 288 

1Mbps input length, centred on the annotated TSS (0.5Mbps upstream and 0.5Mbps downstream), as a 289 

compromise between computational tractability (extending the sequence entails more computational 290 

expense) and biological relevance (the potential to capture additional narrow-sense heritability with 291 

extended intervals). Using the 1Mbps input sequence, genes with significant non-zero heritability (p < 292 

0.01; n = 816) had a median heritability of 0.270; nearly twice the heritability captured with the core 293 

promoter 4kbps sequence. Importantly, our symmetric 1Mbps window likely contained >95% of cis-294 

eQTLs; in the GTEx dataset, the 95th percentile for absolute distance of cis-eQTLs from their target 295 

transcript TSS was 441,698bps15. Complete analysis of a 1Mbps interval (including 5 different train/test 296 

splits) for a single gene in a single tissue and 94 individuals, if run sequentially on a CPU, required 15 297 

days with 14 GB of memory. Limited to the genes with significant non-zero heritability in LCLs (n = 298 

816), on 600 cores, the complete analysis took approximately a month. (Stage 1 peaBrain models only 299 

required several hours.) Prior to training, for each individual, we re-constructed the 1Mbps input 300 

sequence from the variants called from whole genome sequence (WGS) data (see Online Methods). 301 

Exploring the peaBrain architecture, fine-tuning the model parameters, and deploying the models was 302 

conducted on NVidia’s P100 GPUs (see Online Methods for details); the bulk of the training, however, 303 

was run on CPUs.  304 

 305 

To assess peaBrain’s performance in predicting individual variation in RNA expression levels in 306 

comparison to other widely-used in silico methods and experimental assays (elastic net6, DeepSEA8, 307 

MPRA11, BiT-STARR-seq12, and HiDRA13), we designed four tasks (tasks E-H; described below and 308 

summarized in Supplementary Table 2). For the comparison with elastic net, in line with other recent 309 

studies in the field9, we restricted performance analyses to a set of genes with significant non-zero 310 

narrow-sense cis-heritability (henceforth, simply referred to as heritability) in LCLs as estimated by 311 

constrained GCTA30 (limited to the 1Mbps input sequence; p<0.01; see Online Methods). By limiting 312 

analysis to genes with detectable cis-heritability, we can make more meaningful conclusions about the 313 

comparative performance of the different methodologies. We restricted analysis to LCLs to enable 314 

comparisons with empirical data (tasks F-H) and to reduce the compute burden.  315 
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peaBrain identifies functional architecture that is inaccessible with current high-throughput 316 

experimental assays. 317 

 318 

First (task E), we compared the predictive performance of peaBrain to that of a regularized linear model 319 

(an implementation of elastic net identical to that used in PrediXcan). RNA-seq samples from the GTEx 320 

dataset (n = 94 individuals after filtering) were pre-processed, residualised to account for cryptic 321 

relatedness, biological confounders, and technical variance, and rank transformed to normality (see 322 

Online Methods) before modelling. Model performance for both linear models and peaBrain was 323 

assessed by generating oos-r2 for 5% of individuals randomly withheld from training and unrelated to 324 

individuals in the training set (repeated 3-10 times, depending on the how quickly the model reached 325 

the exit criteria and the performance of earlier repeats; see Online Methods). For each of the 816 genes 326 

with non-zero heritability (GCTA p < 0.01), we calculated the 95% confidence interval for the oos-r2, 327 

defining a gene as successfully predicted if the entire oos-r2 confidence interval exceeded zero to ensure 328 

we only consider genes with high-confidence models. Whilst regularized linear models were able to 329 

capture cis-heritability for 28 of the 816 genes, the equivalent number for peaBrain was 113. Cis-330 

heritability for 3 genes was captured by both models, with the oos-r2 confidence interval largely 331 

overlapping (Supplementary Table 5). Supplementary Table 5 also tabulates the performance 332 

metrics (confidence and point estimates for oos-r2 from both classes of models) and estimated GCTA 333 

heritability for all genes.  334 

 335 

Having established the predictive ability of peaBrain, we were interested in whether we can use the 336 

best-performing peaBrain models to measure the impact of single variants, compared to DeepSEA log 337 

gold change (logFC) estimates and experimental log skew estimates from MPRA and BiT-STARR-seq 338 

(Task F). For all “captured” genes (n = 113), we selected all variants identified as significant eQTLs in 339 

the GTEx v6p univariate eQTL analysis (n = 16,019 variants; see Methods) and replicated the analysis 340 

with the Geuvadis dataset31 (n = 17,279 variants for the EU population and n = 1601 variants for the 341 

YRI [Yoruba from Ibadan, Nigeria] population). For each eQTL (including indels), we created pairs of 342 

artificial sequences that only differed at the corresponding snp/indel position and predicted the 343 
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difference in expression between the alternate and reference alleles from the difference between the two 344 

artificial sequences. (We used only a single model of the those several trained during cross-validation 345 

for simplicity, but incorporating results from additional models may improve results; see Online 346 

Methods.) For brevity, we briefly note that only the peaBrain predictions were significantly and 347 

positively correlated with the univariate eQTL coefficients from the GTEx analysis (Spearman’s rho = 348 

0.09; p = 3.02 x10-32; Supplementary Figure 2), from the EU-Geuvadis analysis (rho = 0.10; p = 9.60 349 

x10-38;  Supplementary Figure 3), and from the YRI-Geuvadis analysis (rho = 0.18; p = 8.64 x10-13; 350 

Supplementary Figure 4). Neither the DeepSEA logFC (for lymphoblastoid cell line annotations), nor 351 

the  log skew estimates for the MPRA or BiT-STARR-seq assays correlated with the univariate eQTL 352 

coefficients from any of the three datasets. Supplementary Note 2 includes a more detailed analysis 353 

and interpretation of the results. Both the MPRA and BiT-STARR-seq experimental assays were run in 354 

lymphoblastoid cell lines. Importantly, we did not have any variant-level filters for any of the methods 355 

(e.g. using a p-value threshold for the experimental assays or any significance cut-off for the peaBrain 356 

estimates); thus, our comparison was not biased towards any method and assessed the utility of the 357 

method estimate across the range of variant effects.  358 

 359 

Next, we sought to evaluate the performance of peaBrain at identifying putatively-functional eQTLs 360 

against empirical data from MPRA, BiT-STARR-seq, and HiDRA (Task G). Like MPRA, HiDRA is 361 

an extension of the classical reporter gene assay, adapted for sequence constructs derived from 362 

accessible DNA regions via ATAC-seq13; MPRAs leverage shorter synthesized DNA sequences32. BiT-363 

STARR-seq is an extension of self-transcribing active regulatory region sequencing (STARR-seq), 364 

which like HiDRA involves fragmenting the genome and cloning fragments 3’ of a reporter gene. We 365 

considered whether variants with the larger estimated effects from each of the three experimental 366 

approaches and peaBrain were preferentially located in sequences with known functional relevance 367 

(e.g. accessible DNA or transcriptionally active chromatin) and depleted from quiescent or repressed 368 

regions.  The sequence annotations were derived from the Roadmap’s GM12878 lymphoblastoid cell 369 

line 15-state ChromHMM model; the same GM12878 cell line was also used for both experimental 370 

assays (MPRA and HiDRA). BiT-STARR-seq was also performed in a lymphoblastoid cell line, but 371 
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the exact cell line was not specified12. For each chromatin annotation, we assessed significance using a 372 

simple logistic model after rank-transformation of all estimates to normality (to ensure coefficients were 373 

comparable; see Online Methods). The coefficient of the model corresponded to the extent to which 374 

each approach was predictive of chromatin states/accessibility. More concretely, the logistic 375 

coefficients give the change in the log odds of the annotation overlap for a one-unit increase in the 376 

normalized score. 377 

 378 

For peaBrain, as opposed to analysing the consequences of all possible variants/indels within 1Mbps 379 

input sequences for the “captured” 113 genes (which is computationally expensive), we focussed our 380 

analysis on all 23,595 univariately-significant eQTLs (from either the GTEx or Geuvadis datasets). We 381 

noted that variants with higher peaBrain estimates were significantly enriched in DNase accessible sites 382 

and transcriptionally active regions, and significantly depleted from heterochromatin and repressed 383 

sequences (Table 2). In contrast, the magnitudes of the MPRA log skew estimates were not significantly 384 

associated with any chromatin state or accessibility annotation after Bonferroni correction (Table 2). 385 

This absence of enrichment/depletion was consistent whether we analysed all variants assessed on the 386 

platform (n = 26,986 variants after excluding those with no match in Ensembl’s VEP database; see 387 

Online Methods) or limited our analysis to the subset of variants also present in the peaBrain analysis 388 

(n = 1589 MPRA variants; i.e. univariately-significant eQTLs for the 113 “captured” genes). It is 389 

important to note that variants assessed on the MPRA platform were already selected, in part, because 390 

their eQTL status in the Geuvadis dataset; that is, excluding negative controls and LD-based selection, 391 

all variants assessed on the MPRA assays were univariately-significant eQTLs.   392 

 393 

Similarly, variants with high magnitudes of the BiT-STARR-seq log skew estimates were not 394 

significantly enriched in transcriptionally active chromatin (or depleted from repressed/quiescent 395 

intervals), irrespective of whether we assessed performance on all variants assessed on the platform (n 396 

= 43,494) or limited to univariately-significant eQTLs for the 113 “captured” genes (n = 621). Using 397 

nominal p-value thresholds, HiDRA performed better than either MPRA or BiT-STARR-seq when 398 

looking at all variants assessed on the platform (n = 32,906 variants), but no annotation reached 399 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

significance after multiple testing correction. Even when limited to the variants present in the peaBrain 400 

analysis (n = 199 univariately-significant eQTLs for the 113 “captured” genes), no significant 401 

enrichment or depletion was discovered for any annotation.  402 

 403 

For all four methods, we did not apply any (significance) filter at the variant-level; that is, to ensure a 404 

fair comparison between all four methods, we did not select significantly active variants/fragments. 405 

Selecting the subset of variants significant for each method (e.g. using DESeq2 for HiDRA, QuSAR-406 

MPRA for MPRA/BiT-STARR-seq, or a simple one-sample t-test across the peaBrain model repeats) 407 

would improve the results for the corresponding method (potentially biasing the test). It is important to 408 

note that we can generate confidence intervals/test-statistics for peaBrain estimates by assessing the 409 

prediction in each of the model replicates (trained and tested on different subsets of individuals); an 410 

idea conceptually similar to biological replicates in the experimental assays. However, the performance 411 

of a single cross-validated peaBrain model was deemed sufficient and thus, this assessment was not 412 

conducted. We should also note that the authors of the three experimental assays have convincingly 413 

shown that the methods, when limited to active fragments or significant variants (specific to each 414 

method), are able to identify functional variants enriched in transcriptionally active regions and depleted 415 

from heterochromatin11-13. However, this enrichment/depletion is limited to the subset of variants 416 

labelled as significant by the respective methods, i.e. the allelic log skew estimates are not insightful 417 

outside this limited subset. By comparing across all variants (without any significance filtering), we are 418 

able to show that peaBrain predictions from a single gene model are more informative (across the entire 419 

range of variant effects) than allelic log skew estimates from any of the experimental assays. In other 420 

words, peaBrain estimates can side step the noise inherent in assessing variant impact with experimental 421 

assays.  422 

 423 

Having established that variants with higher peaBrain estimates are enriched in transcriptionally active 424 

chromatin (irrespective of any variant-level filtering), we sought to subsequently evaluate the four 425 

aforementioned methods on a more granular level using RegulomeDB33 (Task H).  The chromatin states 426 

and DNA accessibility assessed in Task G are only coarse indicators of variant function. RegulomeDB 427 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

annotates variants in intergenic regions with known and predicted regulatory elements and categorizes 428 

each variant based on the evidence supporting regulatory function of the variant33. As RegulomeDB 429 

contains annotations from multiple tissues, we selected variants with well-established regulatory 430 

function in the GM12878 cell line (“Category 1”), which includes variants matched to known TF 431 

binding with matched TF motif and matched DNase footprint. For peaBrain and the three experimental 432 

assays (MPRA, BiT-STARR-seq, and HiDRA), we assessed significance using a simple logistic model 433 

after rank-transformation of all method estimates to normality (to ensure coefficients were comparable; 434 

see Online Methods). Similar to Task G (with chromatin states and accessibility), the coefficient of 435 

the model corresponded to the extent that each approach was predictive of variants with established 436 

regulatory function. In other words, larger coefficients indicate that the method is better able to delineate 437 

established regulatory variants from variants with minimal evidence for regulatory function. We note 438 

that only peaBrain had a significant and positive coefficient; with larger peaBrain estimates indicating 439 

variants with well-established and stronger evidence for predicted regulatory function (coefficient = 440 

0.15 [0.04, 0.28]; Table 3). None of the three experimental assays had significantly positive coefficients 441 

(for all variants tested on the respective platforms and limited to the subset of eQTLs for the 113 442 

“captured” genes). Overall, on the post-selective 113 genes, Tasks F-H suggest that the modelling 443 

undertaken by Stage 2 peaBrain (derived from sequence data alone) detects functional architecture that 444 

is not readily accessible with the latest high-throughput empirical approaches.   445 
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DISCUSSION 446 

 447 

Here, we have introduced a two-stage computational framework for predicting the transcriptomic 448 

consequences of non-coding variation. Using Stage 1 class-C (tissue-specific annotated) models, we 449 

observed that the majority of variance (>50%) in the mean abundance of genes across most GTEx 450 

tissues is encoded in the annotated 4kbps core promoter sequences. Thus, the difference in mean 451 

abundance between genes appears to be largely encoded in invariant differences between core promoter 452 

elements and the interacting tissue-specific regulatory factors encoded in the model weights, rather than 453 

a consequence of transcriptional regulation by more distal sequences or non-transcriptional downstream 454 

regulation (e.g. silencing by small non-coding RNAs). Furthermore, we note that the average expression 455 

of all genes in a single tissue and the reference genome is sufficient to learn both TFBS and allele-456 

specific binding (see Supplementary Note 1). Taken together, this is broadly consistent with anecdotal 457 

experimental evidence18 and suggests that non-transcriptional downstream processes play a secondary 458 

role in regulating mean expression. 459 

 460 

The predictive ability of Stage 1 peaBrain models allowed us to calculate a non-coding impact score 461 

for all genomic positions in the core promoter sequences, a useful metric for analysis of both common 462 

rare variants. Unlike other non-coding metrics that incorporate external consequence annotations (e.g. 463 

from Ensembl’s variant effect predictor [VEP], ClinVar, and other curated databases), peaBrain impact 464 

score is derived directly from predicting expression and does not depend on curated variant annotations. 465 

The tissue-specific nature of the peaBrain impact score is useful for identifying putatively functional 466 

tissues underlying GWAS signal for complex traits, which are not readily accessible through current 467 

methods that rely on eQTL-GWAS-hit co-localization. 468 

 469 

To incorporate the consequences of individual variation on gene abundance in Stage 2 of the framework, 470 

we extended the Stage 1 model to capture a 1Mbps window, a balance between computational 471 

tractability and biological “signal”. Unlike Stage 1 models, Stage 2 peaBrain leverages differences in 472 

the sequences between individuals to predict differences in expression (rather than prediction from the 473 
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sequence directly, see Online Methods for implementation details); that is, the sequence arrays are 474 

subtracted from each other and the resultant “difference sequence” captures how shifted the two 475 

sequences are and the differences in alleles. Without the sequence, peaBrain would simply be modelling 476 

SNP dosage (i.e. conceptually no different from existing [linear] models) and that is not sufficient for 477 

prediction of putatively functional variants as observed. Thus, the distance information encoded 478 

implicitly by modelling the sequence appears important to peaBrain performance. However, peaBrain 479 

is a black-box approach and we must be cautious in attempting to elucidate scientific rationales for the 480 

apparent improved performance. Existing methods for peering into “black-box” approaches are not 481 

particularly useful for peaBrain as it leverages differences between individual sequences aligned to the 482 

annotated TSS, rather than conventional (reference) sequences, that are modelled with “conjoined” 483 

neural networks (see Supplementary Table 7). In other words, we cannot readily extract meaningful 484 

motif sequences from the input data. Reconstruction of the individual sequences to generate the 485 

difference input required that we use a quality controlled VCF to reconstruct individual sequences (see 486 

Methods), as opposed to directly using the originally “noisy” sequence reads. However, by leveraging 487 

differences in “TSS-aligned” sequences, peaBrain learns to map differences at each genomic position 488 

of an individual (relative to the fixed TSS landmark) to predict difference in expression. The advantage 489 

of this approach is that peaBrain must learn to pinpoint important features regardless of where they 490 

occur in the sequence and that may eschew the overfitting concern associated with a priori identification 491 

of eQTLs. Importantly, Stage 2 peaBrain does not directly depend on eQTLs/variation dosage, but 492 

rather focusses on how differences at each genomic position (because of differences in alleles or because 493 

of shifts due to upstream/downstream indels) perturb expression.  494 

 495 

At this conjecture, it is important to note that, unlike many methods with similar conceptual origins, 496 

peaBrain was not designed with the sole intent of predicting gene expression abundance. Rather, one of 497 

the primary goals of Stage 2 peaBrain models is identifying putatively functional eQTLs.  As a first 498 

approximation, we note that peaBrain variant effect estimates positively and significantly correlate with 499 

the coefficients from the univariate eQTL analysis on the post-selective 113 “captured” genes. In 500 

contrast, MPRA and BiT-STARR-seq allelic log skew estimates did not correlate with the 501 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

corresponding univariate eQTL coefficients. Furthermore, variants with large peaBrain estimates were 502 

significantly enriched in DNase-accessible DNA and transcriptionally active chromatin, and depleted 503 

from quiescent and repressed states. Log skew estimates, for both MPRA and BiT-STARR-seq for 504 

variants were uninformative of chromatin state for the subset of variants investigated. The poor 505 

performance of MPRA may reflect the fact that it is an episomal assay so variants are not being assessed 506 

in their regular chromatin context. Variants with large HiDRA estimates were nominally enriched in 507 

transcriptionally active regions, but did not reach significance after Bonferroni correction. Notably, 508 

however, both the MPRA and HiDRA assays were performed in the GM12878 cell line from which the 509 

chromatin and DNA accessibility annotations were also derived, i.e. there is a possibility that the results 510 

for the experimental assays are biased over-estimates of true performance. It is important to note that 511 

when limited to the subset of significant variants (as labelled by each method), the experimental assays 512 

can identify regulatory variants enriched in transcriptionally active chromatin. The log-skew estimates 513 

from any of the three experimental assays, however, cannot delineate functional variants outside this 514 

limited “significant” subset. In Tasks F-H, by comparing across all variants (without any significance 515 

filtering), we show that peaBrain variant predictions are more informative (across the entire range of 516 

variant effects) than allelic log skew estimates from the experimental assays. More concretely, as 517 

described above, peaBrain estimates can side step the noise inherent in variant-level measurements 518 

using in vitro empirical assays. 519 

 520 

As with other deep learning approaches, there are limitations to peaBrain analysis; notably, that despite 521 

our best efforts for the rigorous quality control and model regularization, there may be some information 522 

that is biasing performance results in an intricate way (i.e. the generic problem of using black-box neural 523 

network models). To mitigate the risk of bias, we implemented dropout regularization, out-of-sample 524 

testing on unrelated individuals (after conservatively filtering for cryptic relatedness), comparison with 525 

high throughput assays (such as MPRAs and HiDRA), and validation using chromatin, TF-binding, and 526 

DNA accessibility annotations. However, without an explicit model, there is always a possibility for 527 

bias. For peaBrain, the ability of the Stage 2 analyses to identify putatively functional variants that are 528 

enriched in transcriptionally active chromatin and depleted from heterochromatin/repressed sequences 529 
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is encouraging evidence of model generalizability. Similarly, the correlation of the impact scores from 530 

Stage 1 analyses with evolutionary constraint and their utility in predicting disease-associated mutations 531 

and allele-specific binding sites further underscores the true performance of peaBrain framework.  532 

 533 

All together, the results from the Stage 1 and Stage 2 of the peaBrain framework suggest that models 534 

for understanding the effects of non-coding variation on RNA abundance (and possibly more complex 535 

traits) can be built by relying more on automated machine learning, rather than hand-designed or 536 

selected features. Furthermore, the results highlight the variant sensitivity of the Stage 2 peaBrain model 537 

and its ability to identify putatively functional variants underlying cis-eQTL signals. More generally, 538 

peaBrain’s performance in predicting mean abundance and individual variation further implicates the 539 

importance of the invariant genomic context and distance to the annotated TSS for interpreting the 540 

effects of non-coding variation in a tissue-specific manner.  541 
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ONLINE METHODS 542 

 543 

RPKM and gene count data, for Stage 1 and Stage 2 peaBrain models, was downloaded from GTEx 544 

(v7; see URLs)15. To prepare the data for Stage 1 of peaBrain, the mean abundance of each gene was 545 

obtained by averaging the RPKM across all subjects. The values were then rank transformed to 546 

normality using the rntransfrom function from GenABEL v1.8-0. The GRCh37 (hg19) reference 547 

genome was downloaded from UCSC14. We used the default Ensembl gene definitions to define gene 548 

borders; an Ensembl gene is defined as the collection of all spliced transcripts with overlapping coding 549 

sequences but excluding manually annotated readthrough genes. The gene start and end coordinates 550 

(from which the core promoter sequences are defined) correspond to the outermost transcript start and 551 

end coordinates. We accounted for gene strand-ness while extracting the core promoter sequences; start 552 

coordinates corresponding to the TSS for genes on the positive strand and the end coordinate 553 

corresponding to the TSS for genes on the negative strand. We further limited our analysis to protein-554 

coding genes (n = 19,820 genes) and to autosomal chromosomes for simplicity. For all Stage 1 models, 555 

the DNA promoter sequence for each gene was one-hot encoded (also known as a one-of-k scheme); 556 

each letter represented as separate channel. One-hot encoding is a technique commonly used in natural 557 

language processing to encode categorical integer features with each channel indicating the presence 558 

(1) or absence (0) of the corresponding DNA letter. Processed genomic annotations and epigenetic 559 

markers were obtained from the LDSC16 (see URLs) and similarly processed. For Stage 1 class B 560 

models and using the LDSC annotations, we incorporated an additional 28 channels of binary sequences 561 

for each base-pair, that are not specific to any cell type or tissue, highlighting: coding basepairs, 562 

conserved sites34, CTCF sites, DGF peaks2, DHS peaks3, enhancers4,35, fetal DHS peaks3, H3K27ac 563 

peaks5,17, H3K4me1 peaks3, H3K3me3 peaks3, H3K9ac peaks3, introns14, promoters14, promoter 564 

flanking sequences4, repressed sites4, super enhancers5, transcription factor binding sites (TFBS)2, 565 

transcribed sequences4, TSS4, untranslated 3’ regions (UTR3)14, untranslated 3’ regions (UTR5)14, and 566 

weak enhancers4. Stage 1 class C models included additional binary channels, corresponding to the 567 

consolidated epigenomes from Roadmap (see URLs), as described in the main text. Transcription factor 568 

processed ChIP-seq data were also downloaded from the gene transcription regulation database (GTRD 569 
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v17.04; see URLs). GTRD is a database of human transcription factor binding sites identified from 570 

ChIP-seq experiments and uniformly processed. As described in Supplementary Note 1, for a subset 571 

of Stage 1 models, transcription factor binding sites identified using four different peak callers (MACS, 572 

SISSR, GEM and PICS) and clusters of peaks for each method (defined as overlapping peak called 573 

using the protocol, but in different tissues or under different conditions) were included as separate 574 

binary channels. 575 

 576 

Stage 1 peaBrain model was constructed using Theano 0.9.0 and Lasagne 0.1. For a single tissue, 577 

peaBrain takes in the core promoter sequence as input and predicts the normalised mean abundance of 578 

the corresponding gene (Figure 1). The core promoter sequence was determined by varying the length 579 

of the promoter sequence (± 1kbps, ± 2kbps, and ± 3kbps). As highlighted in Supplementary Figure 580 

1, ± 2kbps (i.e. the 4kbps core promoter sequence) was the optimal length for predictive ability as 581 

assessed using a 10-fold cross-validation scheme. The input sequence is a 1D vector with 4 channels 582 

encoding the DNA sequence and when appropriate, additional channels as binary representations of 583 

various genomic annotations and epigenetic markers (described above). The Stage 1 peaBrain model is 584 

a series of 1D convolutions and max pooling layers (Supplementary Table 6). In practice, a 1D 585 

convolution is implemented as a 2D convolution with width set to 1 (effectively dropping the unused 586 

dimension). Each convolutional layer was set with 11 filters of size 5 and a leaky rectify non-linearity 587 

activation function. The leaky rectify activation function for all convolutional layers has a nonzero 588 

gradient for negative input, which is useful for convergence36: 589 

𝑓(𝑥) = {
𝑥

0.01𝑥
    if 𝑥 > 0
    if 𝑥 ≤ 0

 590 

The 0.01 corresponds to the “leakiness” of the activation function, with larger values denoting increased 591 

“leakiness”. The input to the first convolutional layer is 4000 x 1 x r sequence, where 4000 corresponds 592 

to the length of the core promoter sequence and r denotes the number of channels (minimum of 4 DNA 593 

letter channels). The first convolutional layer has 11 filters (or equivalently, kernels) of size 5 x 1 x 11, 594 

where 5 denotes the sequence length of the filter and 11 denotes the number of channels for that filter. 595 

The output of each filter is a locally connected structure, convolved with the sequence, to produce 11 596 
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feature maps that are then max pooled with the output of other filters from the layer, before serving as 597 

input for the subsequent layer. Prior to the penultimate embedding layer (from which we extract the 598 

continuous vector gene representations), we placed a dropout layer with p = 0.5 of setting values to 599 

zero. The dropout layer is a regularizer that randomly zeros input values (i.e. randomly dropping units 600 

and their connections), limiting co-adaptation and improving model generalizability 37,38.  The number 601 

of units in the penultimate embedding layer determines the size (or the number of components) in the 602 

vector and was set to 1001. The last layer is a single output neuron that outputs the mean abundance of 603 

the corresponding gene (for which the promoter was input). The last two dense layers (including the 604 

final output neuron) have linear activations, ensuring that the normalized mean abundance is a linear 605 

combination of the embedding components or equivalently, the neural activations of the penultimate 606 

layer. The objective was defined using the mean squared difference (between predictions and observed 607 

mean abundances) and model weights were updated using Adam with the learning rate=0.001, 608 

beta1=0.9, beta2=0.999, and epsilon=1 x10-8. Adam is an algorithm for gradient-based optimization of 609 

(stochastic) objective  functions39; beta1 corresponds to the exponential decay rate for the first moment 610 

estimates and beta2 is the decay rate for the second moment estimates. The model was trained for a 611 

minimum of 100 epochs, before exiting early using a validation set (defined as 10% of the training). As 612 

is typical in neural networks, the number of layers and other explicitly-specified model variables, above, 613 

are referred to as hyperparameters; they are variables that set prior to optimization of the models 614 

parameters. 615 

 616 

Pre-processing for heritability and variant-sensitive regression for the Stage 2 peaBrain model was 617 

performed as recommended by the authors of QTLTools40. For each tissue, we selected genes with non-618 

zero RPKM values for at least 50% of samples. Per gene, RPKM values were residualised using linear 619 

regression to account for autolysis score, date of nucleic acid isolation, date of genotype isolation, RIN, 620 

total ischemic time, time spent in paxgene fixative, sex, age, Hardy score, interval of onset to death for 621 

last underlying cause, number of hours in refrigeration, ischemic time, temperature, donor status (post-622 

mortem, surgical or organ donor), three genotype PCs and enough expression matrix PCs to explain 623 

55% of the variance (to account for unexplained technical and biological variance). The residuals were 624 
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then rank-transformed to normality using GenABEL’s rntransform function. As with Stage 1 peaBrain 625 

analyses, we further limited our analysis to protein-coding genes (number of genes differed between 626 

tissues) and to autosomal chromosomes for simplicity. For each protein-encoding gene on an autosomal 627 

chromosome, we defined the input sequence as 0.5 Mbps upstream and 0.5Mbps downstream of the 628 

TSS using default GRCh37 Ensembl gene definitions (total 1Mbps centred on the TSS). As highlighted 629 

in the main text and supplementary notes, the 1Mbps was selected as a balance between computational 630 

tractability and biological relevance. Increasing the length of the input sequence beyond the 1Mbps 631 

increases both the compute time and memory footprint. Importantly, our symmetric 1Mbps window 632 

likely contained >95% of cis-eQTLs; in the GTEx dataset, the 95th percentile for absolute distance of 633 

cis-eQTLs from their target transcript TSS was 441,698bps15. Incidentally, the 1Mb interval have also 634 

used by other approaches in imputing RNA expression from genotype (namely, TWAS)9. Using the 635 

unphased whole genome sequencing GTEx data, we reconstructed the individual’s sequence from the 636 

quality controlled VCF.  In other words, we generated the individual variation by substituting each 637 

individual’s non-reference alleles into the reference sequence. Variants in the WGS GTEx VCF were 638 

quality controlled by GTEx LDACC at the Broad Institute. As stated in the corresponding README 639 

file, quality control was conducted using GATK, Hail, and PLINK. Notably, a variant was removed if 640 

it didn't “pass Variant Quality Score Recalibration (VQSR), had low Inbreeding Coefficient or low 641 

Quality Score, was within a Low Complexity Region (LCR), became monomorphic after applying 642 

genotype quality score (GQ) <20 or allele balance (AB) >0.8 or AB<0.2 filters or assigning male 643 

heterozygous calls in chrX nonPAR regions to missing, had missingness rate >= 15%, did not pass 644 

Hardy-Weinberg Equilibrium testing in African American or European subpopulations for autosomes 645 

or in European females for chr X, showed significant association with sequencing technology or library 646 

construction batch, or showed significant non-random missing of reference alleles.”15 For each 647 

individual, we generated two copies of the gene 1Mbps input sequence; phasing did not matter as the 648 

sequences were combined prior to modelling.  649 

 650 

Stage 2 peaBrain models for heritability analysis and variant-sensitive prediction were similarly 651 

constructed as described for the Stage 1 models. Stage 2 models, however, are three separate 652 
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convolutional neural networks, connected by a dense fully-connected layer prior to the output neuron 653 

(Supplementary Table 7). The input 1Mbps sequence is split into three inputs: 0.48Mbps upstream, 654 

4kbps core promoter, and 0.48Mbps downstream sequences. The 4kbp core promoter is the input to a 655 

CNN with identical structure and hyperparameters as described for Stage 1 peaBrain model (described 656 

above in detail). The upstream and downstream sequences are input to networks with identical 657 

architecture, but different pooling hyperparameters: a pool size of 100 for the first pooling layer, 50 for 658 

the second, and 10 for the last. Number of filters was consistent between all networks (n = 11). The 659 

fully connected output from each sequence is concatenated, before one penultimate fully-connected 660 

layer and a single output node. Unlike the Stage 1 peaBrain models, Stage 2 models are trained to 661 

predict the differences between individuals (rather than direct prediction of expression). As humans are 662 

diploid, for each individual, the input sequence was the sum of the one-hot encoding of each of the 663 

1Mbps sequences corresponding to the “maternal” and “paternal” sequences ; phasing did not matter 664 

because the sum was consistent. A separate Stage 2 model was constructed for each gene with 665 

significant non-zero heritability (see text). For any pair of individuals, A and B, the input sequence was 666 

defined as the difference between the one-hot encoded sequences, with the corresponding output as the 667 

difference between the two individuals. We included both differences, (A – B) and (B – A), during 668 

training. After removing individuals with cryptic relatedness (see GCTA analysis below), the GTEx 669 

dataset was randomly split into train and test individuals (95% of subjects for training and 5% for 670 

testing), with the model trained on all the pairwise differences between train individuals and tested on 671 

all pairwise differences between test individuals. The training set was further sub-divided into training 672 

and validation sets, with the latter used to exit early after a minimum 100-epoch training. As described 673 

below, overall model performance was assessed using the oos-r2 on five to ten random repetitions of 674 

95/5 train/test splits; the number of repetitions was dependent on how quickly each model reached exit 675 

criteria. 676 

 677 

Elastic net (regularized linear) models. We used an additive genetic model as our baseline 678 

comparison as described elsewhere6. Briefly, for each gene, an elastic net model was used to model 679 

expression (alpha = 0.5; selected to match PrediXcan6). As with peaBrain, the models were trained to 680 
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predict the difference in expression as a function of the difference in dosages among the variants within 681 

the 1Mb input sequence (rather than the expression directly). For a linear model, this is no different 682 

from simply predicting the expression; the constant term in this case is expected to be close to 0. The 683 

lambda (regularization) parameter was 3-fold cross-validated on the training dataset, using cv.glmnet 684 

function from glmnet v2.0-10 41. 685 

 686 

Model performance, for all peaBrain and linear models, was assessed using the out-of-sample-r2 (oos-687 

r2), a classical machine learning metric to assessing performing of regression models (often just called 688 

r2)42. oos-r2 is defined as: 689 

 690 

oos-r2 ≡1 −  
∑ (yi −  fi)

2
i

∑ (yi − y̅test)2
i

 691 

 692 

where fi denotes the predicted value using the model fitted on the training data, yi denotes the true value 693 

for, and y̅test is the mean value for all items in the test set.  The denominator of the oos-r2 is the total 694 

sum of squares (proportional to the variance of the data) and the numerator of the oos-r2 is the explained 695 

sum of squares (also called the regression sum of squares). When the explained sum of squares 696 

(numerator) is larger than the total sum of squares (denominator), oos-r2 is below zero and indicates the 697 

model does not have any predictive ability. Regression models with some predictive capacity have oos-698 

r2 values in the range (0, 1]. Stage 1 peaBrain model performance was assessed using 10-fold cross 699 

validation (10% of genes were withheld from the algorithm during training). Stage 2 peaBrain models 700 

and elastic net linear models were assessed using repeated random splits of 95% of subjects for training 701 

and 5% of subjects for testing. Individuals with cryptic relatedness were removed prior to the 702 

training/test split, using GCTA grm-cutoff of 0.025 (see below). 5-10 random training/test splits were 703 

used to assess model performance; 95% confidence interval was estimated using the mean and standard 704 

error, assuming the distribution of oos-r2 was normal. 705 

 706 
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Tissue-specific peaBrain impact score for any given genomic position, as described in text, was 707 

defined as the absolute difference in abundance between the original promoter sequence and a modified 708 

promoter sequence where all the sequence and epigenetic/genomic annotations for that site were set to 709 

zero. The impact score is proportional to the contribution of the genomic position to the average 710 

expression of the gene; genomic positions are readily mapped to genes by virtue of the promoter 711 

definitions. If the genomic position overlapped with the promoter of multiple genes, the maximum 712 

impact across all overlapping genes was taken. Tissue-specific peaBrain impact scores were compared 713 

to phylogenetic p-values (phyloP) using simple linear models (lm base function in R). As briefly 714 

described in the main text, phyloP are nucleotide conservation scores derived from multiple alignments 715 

of 99 vertebrate genomes to the human genome phyloP scores are based on an alignment and a model 716 

of neutral evolution14. A more positive value indicates conservation or slower evolution than expected; 717 

magnitude of the phyloP score corresponds to the -log p-values under the null hypothesis (i.e. neutral 718 

evolution). phyloP scores were downloaded from the UCSC genome browser (see URLs). To compare 719 

peaBrain to other non-coding metrics, a non-tissue-specific peaBrain score was used; defined as the 720 

average impact of each position across all tissues. Non-coding impact scores (combined annotation 721 

dependent depletion [CADD] v1.3, and Eigen v1.1) were downloaded from their respective webpages 722 

(see URLs). CADD is a single meta-score derived from analysis of multiple annotations for variants 723 

that survived natural selection, compared to simulated mutations19. Eigen is an unsupervised score that 724 

synthesizes a combination of functional annotations into one meta-score20. The non-coding somatic 725 

mutations used to assess metric performance were downloaded from the COSMIC v82 (see URLs). 726 

Allele frequency was derived from gnomAD release 170228. For each genomic position, we counted 727 

the number of overlapping somatic mutations. We further limited our analysis to COSMIC census genes 728 

(as a positive gene set); COSMIC census genes possess mutations that have been causally implicated 729 

in cancer. For each task used to compare the non-coding metrics (see text), a logistic model was used 730 

(fitted using the glm function in R, family = “binomial”) with the allele frequency and phyloP as 731 

covariates. Allele frequency and evolutionary conservation scores were included to assess whether the 732 

non-coding impact score adds any additional information to the model, besides that derived from allele 733 

frequency or evolutionary constraint. Positions without a phyloP conservation score were excluded 734 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


30 
 

from model fitting. The confidence interval was obtained using the confint function (derived from 735 

profiling the likelihood function). For the analysis of recurrent somatic mutations, we were interested 736 

in the global performance of each metric at each autosomal chromosome and thus a simple model 737 

sufficed – isolating genes or promoters with “mutation hotspots” would require more sophisticated 738 

approaches to avoid false positives (e.g. it would be necessary to incorporate tumour type, the 739 

proportion of each tumour [sub]type, the background mutation rate at each position/tumour, and more 740 

technical variables such as sequence coverage). The published non-coding impact scores (CADD and 741 

Eigen) depend on curated non-coding annotations and indirectly predict transcriptomic consequences; 742 

that is, there is potential risk of overestimating the performance of these scores in the three tasks (see 743 

Main Text). Allele-specific binding site data and prediction scores for TF binding prediction algorithms 744 

were downloaded from the Supplementary Table appended to Wagih et al.25 (see URLs). For the 745 

comparison between non-coding impact metrics, duplicate sites were filtered (selecting the one with 746 

lowest nominal p-value). For the analysis of causal tissues, we downloaded the summary statistics for 747 

the four lipid traits from the webpage of the Global Lipids Genetics Consortium (see URLs). Local 748 

SNP-heritability for each trait was calculated using HESS (Heritability Estimation from Summary 749 

Statistics). The linear models of local heritability as a function of average peaBrain score per locus were 750 

fitted using the base function lm in R. 751 

 752 

Constrained GCTA heritability analyses. We converted the GTEx whole genome sequencing VCF 753 

to PLINK binary bed file (using Plink v1.9). Using GCTA v1.24.430, we calculated the genetic 754 

relationship matrix (GRM) from all the autosomal SNPs and excluded individuals with grm-cutoff of 755 

0.025. GCTA was used to calculate heritability for similar methods, including predixcan6 and TWAS9. 756 

For each gene, we subsequently limited the GRM to variants within the 1Mb input sequence (centred 757 

on the TSS) and performed constrained GCTA-GREML analysis. Genes with a significant non-zero 758 

heritability (p < 0.01) were included for subsequent analyses. 759 

 760 

Predicative ability of gene embeddings was assessed using a 10-fold cross validation scheme. The 761 

hallmark curated gene sets were downloaded from Molecular Signatures Database v6.043.  Hallmark 762 
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gene sets represent an aggregation of many gene sets and are thought to represent coherent biological 763 

states or processes. For each set, genes were assigned a binary label (1 denoting membership). We 764 

subsequently trained a multi-layer perceptron classifier from scikit-learn v0.19.0, with three hidden 765 

layers (200, 100, and 50 neurons), to predict gene-set membership using the gene’s embedding. We 766 

used a rectified linear unit function as the activation for our hidden layers, and lbfgs for weight 767 

optimization. Lbfgs is an optimizer that belongs to the family of quasi-Newton methods. Cosine 768 

similarity between any pair of embeddings was assessed using eponymous function from scikit-learn, 769 

defined as: 770 

similarity ≡
𝑋 ∙ 𝑌

‖𝑋‖ ‖𝑌‖
 771 

where X and Y denote the embeddings for genes X and Y, respectively. Correlation between the RNA-772 

seq arrays for genes X and Y were calculated using the base cor function in R. 773 

 774 

Correlation with univariate GTEx/Geuvadis eQTL analysis, DeepSEA, and MPRA & BiT-775 

STARR-seq log skew estimates.  To calculate the effects of single variants, artificial sequences were 776 

constructed that differed only at the genomic position of the corresponding variant; with one sequence 777 

containing the reference (ref) allele and one sequence containing the alternate (alt) allele. As Stage 2 778 

peaBrain model predicts the difference between two sequences, we used the (alt – ref) configuration to 779 

estimate an effect size for each variant. Univariate eQTL coefficients were obtained from the GTEx and 780 

Geuvadis datasets (see URLs). Significance of spearman (rank) correlation between the peaBrain 781 

estimate and eQTL coefficient was assessed using the cor.test function in R. Both the univariate eQTL 782 

analysis and peaBrain were obtained using expression data that was rank transformed to normality and 783 

thus are comparable in magnitude (despite slightly different pre-processing protocols). MPRA variant 784 

results were obtained from Supplementary Table 1 of Tewhey et al.11 (see URLs); snp rs ids were 785 

translated to chromosome_position_ref_alt_build nomenclature using Ensembl’s GRCh37 biomaRt and 786 

a simple python script. Any variant that intersected with the peaBrain final variant set was included in 787 

the analysis, that is, variants in the 1Mbps input sequence for genes/models with the 95% confidence 788 

interval for the oos-r2 entirely above zero. The LogSkew.Comb column, corresponding to the log2 789 
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allelic skew from the combined MPRA LCL analysis (alt/ref), was used as the MPRA log skew 790 

estimate. The BiT-STARR-seq data was similarly processed (see URLs).  As with the peaBrain and 791 

eQTL analysis, significance of the spearman (rank) correlation between each of the experimental assays 792 

allelic log skews and the univariate eQTL coefficients was assessed using the cor.test function. To 793 

obtain the logFC for GM12878 annotations, a vcf file of the corresponding eQTLs was uploaded to the 794 

DeepSEA platform (see URLs). 795 

 796 

Comparison of peaBrain, MPRA, BiT-STARR-seq and HiDRA.  The core 15-state model and 797 

DNAse accessibility annotations for the GM12878 EBV-transformed lymphoblastoid cell line (LCLs) 798 

were downloaded from the Roadmap project (see URLs). HiDRA data was downloaded from the GEO 799 

series GSE104001 (see URLs).  HiDRA estimate was defined as the log fold change in average counts 800 

between the alternate and reference group (after normalizing for DNA count); direction did not matter 801 

as only the magnitude was used in this analysis. The MPRA and BiT-STARR-seq data was downloaded 802 

and pre-processed as described above. Notably, the chromatin states/DNA accessibility annotations, the 803 

HiDRA, and MPRA estimates were derived from the same cell line; that is, there is possibility of 804 

overestimating the performance of either method. For any given annotation, we assessed the predictive 805 

ability of the magnitude of the variant estimate (from any of the three approaches) to predict whether 806 

the variant overlapped with the annotation. The magnitude of the variant estimate for each approach 807 

(peaBrain, HiDRA,  BiT-STARR-seq, and MPRA) corresponded to either the transcriptomic impact or 808 

activity of that variant. Only the absolute magnitude, after rank-transformation to normality, of each 809 

variant was used in modelling. For each approach and for each annotation, a logistic model was used 810 

(fitted using the glm function in R, family = “binomial”) and the confidence interval was obtained using 811 

the confint function (derived from profiling the likelihood function). For the granular variant-level 812 

assessment, annotations were downloaded from RegulomeDB (dbSNP 141; see URLs). 813 

 814 

 815 

 816 

 817 
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Code availability statement 818 

peaBrain models are available here: http://www.well.ox.ac.uk/~moustafa/peaBrain.shtml . 819 

 820 

Data availability statement 821 

The primary data modelled in this study are available from the GTEx consortium. Where appropriate, 822 

we have provided a minimal running example with all custom code. Data generated from the models 823 

(e.g. transcriptomic impact scores) have also been made available at: 824 

http://www.well.ox.ac.uk/~moustafa/peaBrain.shtml . 825 

  826 
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URLs 827 

BiT-STARR-seq, https://www.biorxiv.org/content/early/2017/09/27/193136.figures-only 828 

CADD v1.3, http://cadd.gs.washington.edu/download 829 

COSMIC v82, https://cancer.sanger.ac.uk/cosmic/download 830 

DeepSEA, http://deepsea.princeton.edu/job/analysis/create/ 831 

Eigen v1.1, http://www.columbia.edu/~ii2135/download.html 832 

Global Lipids Genetics Consortium, http://csg.sph.umich.edu/abecasis/public/lipids2013/ 833 

GTEx, https://www.gtexportal.org/ 834 

GTRD v17.04, http://gtrd.biouml.org/ 835 

HiDRA GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104001 836 

LDSC Epigenetic Annotations, https://data.broadinstitute.org/alkesgroup/ 837 

MPRA Supplementary Table, 838 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957403/bin/NIHMS787218-supplement-7.xlsx 839 

peaBrain data, http://www.well.ox.ac.uk/~moustafa/ 840 

phyloPl http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP100way/ 841 

Roadmap Annotations, http://egg2.wustl.edu/roadmap/web_portal/ 842 

RegulomeDB, http://www.regulomedb.org/downloads 843 

Transcription factor binding sites (allele-specificity), 844 

https://www.biorxiv.org/content/early/2018/02/01/253427.figures-only 845 

  846 
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Table 1. Tabulated statistics (to two decimal places) from the logistic models for the three non-coding 866 

metrics from tasks A-C. Task A assesses the predictive capacity of the non-coding metric to identify 867 

positions with non-zero incidence of cancer-associated somatic mutations in the core promoter regions. 868 

Task B assesses the predictive capacity of the non-coding metric to identify positions with recurrent 869 

cancer-associated somatic mutations, among all positions with at least one somatic mutation. Task C 870 

assesses the predictive capacity of the non-coding metric to identify variants within the 4kbps core 871 

promoter with allele-specific binding (for a subset of positions for which data was available). All three 872 

tasks were assessed using simple logistic models, with the allele frequency and phyloP incorporated as 873 

covariates. Positions without a phyloP score were excluded from model fitting (see Online Methods).  874 

peaBrain is the only non-coding metric with significant coefficients for all three tasks; we used a non-875 

tissue-specific peaBrain score to facilitate comparison with the tissue-agnostic CADD and Eigen scores 876 

(see Main Text). The bounds for the 95% confidence interval, obtained by profiling the likelihood 877 

function, are tabulated, with significant coefficients denoted in bold. Abbreviations: L, lower; U, 878 

upper.  879 

Metric Task 
Logistic 

Coefficient 
L Bound U Bound p-value 

peaBrain A 29.36 16.63 41.97 5.56 x10-6 

 B 104.50 66.05 142.31 7.66 x10-8 

 C 35.39 12.00 58.67 2.95 x10-3 

CADD A -0.05 -0.08 -0.02 1.57 x10-3 

 B 0.17 0.06 0.28 2.83 x10-3 

 C 0.06 -0.03 0.16 0.20 

Eigen A 0.10 0.08 0.12 < 2 x10-16 

 B 0.06 -0.003 0.12 6.65 x10-2 

 C 0.04 -0.002 0.08 0.07 

880 
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Table 2. In the 113 “captured” genes, eQTL variants with higher peaBrain estimates (i.e. more likely to be functional and with larger predicted transcriptomic 881 

impact) tended to fall in DNase accessible sites and transcriptionally active regions, and were similarly depleted from quiescent and repressed sequences (Task 882 

G). This trend was not observed for variants with large MPRA or BiT-STARR-seq log skew magnitudes, irrespective of whether we assessed performance on 883 

all variants on the platform or limited to univariately-significant eQTLs for the 113 “captured” genes. HiDRA performed better than MPRA and BiT-STARR-884 

seq when using all variants assessed on the assay (all; n = 32,906 variants); performance further dropped when limited to the variants present in the peaBrain 885 

analysis (shared; n = 199).  Point estimates were derived from fitting a simple logistic model with the scores from each assay rank-transformed to normality 886 

(i.e. model coefficients are directly comparable). Nominal p-value is presented in parentheses, but only entries that are significant after Bonferroni correction 887 

are shown in bold. (Green denoting enrichment; orange denoting depletion.) It is important to note that we did not filter based on the significance of the estimate 888 

for any of the methods (see Main Text). By comparing across all variants (without any significance filtering), we are able to show that peaBrain predictions 889 

from a single gene model are more informative (across the entire range of variant effects) than allelic log skew estimates from any of the experimental assays.  890 

 891 
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 peaBrain MPRA log-skew HiDRA BiT-STARR-seq log-skew 

all shared all shared all shared 

DNase 

accessibility 
0.12  

(3.76 x10-5) 

0.01 

(0.463) 

0.21 

(2.64 x10-2) 

0.01 

(0.352) 

-0.05 

(0.732) 
-0.05  

(2.92 x10-13) 

0.09 

(0.438) 

TssA 0.32 

(<2 x10-16) 

0.03 

(0.218) 

0.25 

(2.05 x10-2) 

-0.02 

(0.140) 

0.01 

(0.934) 

0.00 

(0.965) 

0.09 

(0.360) 

TssAFlnk 0.10 

(1.55 x10-2) 

0.06 

(4.72 x10-2) 

0.29 

(2.17 x10-2) 

0.03 

(4.01 x10-2) 

0.61 

(4.23 x10-3) 

-0.02 

(1.28 x10-2) 

0.03 

(0.788) 

TxFlnk -0.13 

(7.69 x10-2) 

-0.01 

(0.81) 

-0.16 

(0.672) 

0.08 

(0.141) 

1.61 

(5.59 x10-2) 

-0.02 

(0.424) 

-0.06 

(0.787) 

Tx -0.02 

(0.297) 

-0.04 

(4.91 x10-2) 

-0.05 

(0.471) 

-0.14 

(6.13 x10-3) 

-0.80 

(9.58 x10-2) 

0.01 

(0.571) 

-0.07 

(0.325) 

TxWk 0.04 

(1.42 x10-2) 

-0.01 

(0.662) 

-0.01 

(0.923) 

0.01 

(0.630) 

0.48 

(0.136) 
0.03 

(4.66 x10-4) 

0.00 

(0.973) 

EnhG 0.04 

(0.547) 

-0.12 

(6.97 x10-3) 

-0.26 

(0.167) 

0.04 

(0.529) 

-0.91 

(4.35 x10-2) 

-0.05 

(1.85 x10-2) 

-0.21 

(0.349) 

Enh 0.03 

(0.345) 

0.01 

(0.693) 

-0.04 

(0.757) 

0.00 

(0.910) 

-0.71 

(3.23 x10-2) 
-0.03 

(1.39 x10-3) 

0.03 

(0.872) 

ZNFRpts -0.07 

(0.176) 

0.05 

(0.310) 

0.03 

(0.858) 

-0.01 

(0.910) 

-0.06 

(0.869) 

-0.01 

(0.724) 

0.16 

(0.137) 

Het -0.14 

(3.00 x10-7) 

0.04 

(0.223) 

-0.22 

(0.169) 

0.05 

(0.303) 

-0.17 

(0.816) 

0.01 

(0.761) 

0.24 

(0.101) 

TssBiv 0.66 

(0.14) 

-0.04 

(0.881) 

1.10 

(0.277) 

-0.01 

(0.958) 

NA -0.05 

(0.381) 

-0.18 

(0.812) 

BivFlnk 0.19 

(0.549) 

-0.22 

(0.293) 

-0.52 

(0.605) 

-0.24 

(9.80 x10-3) 

0.15 

(0.839) 

-0.05 

(0.356) 

-0.19 

(0.800) 

EnhBiv 0.40 

(0.117) 

0.08 

(0.701) 

-0.46 

(0.426) 

0.13 

(0.306) 

NA -0.05 

(0.302) 

NA 

ReprPC 0.20 

(0.129) 

-0.21 

(3.80 x10-2) 

NA -0.05 

(0.653) 

-0.81 

(0.440) 

-0.03 

(0.230) 

-0.26 

(0.735) 

ReprPCWk -0.25 

(<2 x10-16) 

-0.033 

(0.133) 

NA -0.05 

(3.73 x10-2) 

-1.00 

(6.80 x10-2) 

-0.02 

(2.45 x10-2) 

-0.19 

(0.159) 

Quies 0.01 

(0.342) 

0.02 

(0.192) 

-0.02 

(0.667) 

0.00 

(0.718) 

-0.13 

(0.564) 
0.02 

(4.22 x10-4) 

-0.01 

(0.896) 
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Table 3. In the 113 “captured” genes, peaBrain estimates can significantly delineate variants with 894 

established regulatory function (Task H). The log-skew estimates from the experimental assays, both 895 

across all variants assessed on each platform (“all”) and limited to eQTLs for the 113 “captured” 896 

genes (“shared”), are uninformative.  Both the peaBrain estimates and log-skew for the experimental 897 

assays were rank-transformed to normality to facilitate comparison between the methods. The bounds 898 

for the 95% confidence interval, obtained by profiling the likelihood function, are tabulated, with 899 

significant coefficients denoted in bold. Abbreviations: L, lower; U, upper.   900 

Method Variants 
Logistic 

Coefficient 
L Bound U Bound p-value 

peaBrain  0.16 0.04 0.28 7.99 x10-3 

MPRA all 0.10 -0.002 0.19 5.46 x10-2 

 shared 0.25 -0.06 0.56 0.119 

BiT-STARR-seq all -0.03 -0.11 0.04 0.371 

 shared 0.09 -0.16 0.34 0.461 

HiDRA all 0.09 -0.02 0.20 0.107 

 shared 0.11 -0.30 0.51 0.603 

 901 
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FIGURES 903 
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Figure 1. Incorporating genomic and epigenetic annotations improves the performance of peaBrain to 906 

predict the normalized mean abundance across all GTEx. The 4kbps promoter sequence, when 907 

annotated with tissue specific annotations, is sufficient to predict the majority of variance in mean 908 

expression in most tissues, ordered alphabetically from the x-axis. The boxplots highlight the 909 

distribution of the 10-folds used to cross-validate model performance. Prediction using regularized 910 

linear models performs considerably worse (10-fold cross-validated oos-r2 < 0; Supplementary Note 911 

1). Abbreviations: OOS.R2, out-of-sample r2. 912 

 913 
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SUPPLEMENTARY TABLES 916 
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Supplementary Table 1. Tabulated summary of coefficients of the linear function modelling phyloP 919 
conservation scores as a function of tissue-specific peaBrain noncoding impact metric. Generally, 920 
across most tissues and chromosomes, the larger the impact a position has on the mean abundance of 921 
the gene (as indicated by a higher peaBrain impact metric), the more evolutionary conserved it is (i.e. a 922 
positive coefficient). The notable exception is the nucleus accumbens (basal ganglia), where the 923 
opposite trend is noted (negative coefficients; in bold). All coefficients are significant (p < 10-16).  The 924 
results were also consistent with the rank-normalized phyloP and peaBrain scores. The p-values for all 925 
Spearman correlations were also significant (p < 10-16).  Abbreviations: L, lower; U, upper.   926 

 
Linear 

Model 

Coefficient 

L Bound U Bound 

Spearman 

Correlation 

 

AdiposeSubcutaneous 15.79 15.72 15.86 0.03 

AdiposeVisceralOmentum 14.32 14.25 14.39 0.03 

AdrenalGland 0.33 0.27 0.39 0.00 

ArteryAorta 3.51 3.47 3.56 0.01 

ArteryCoronary 5.64 5.59 5.69 0.01 

ArteryTibial 5.89 5.84 5.94 0.02 

BrainAmygdala 9.25 9.19 9.31 0.02 

BrainAnteriorcingulatecortexBA24 6.92 6.85 7.00 0.01 

BrainCaudatebasalganglia 6.19 6.15 6.23 0.02 

BrainCerebellarHemisphere 13.48 13.41 13.55 0.02 

BrainCerebellum 4.78 4.73 4.83 0.01 

BrainCortex 2.70 2.67 2.74 0.01 

BrainFrontalCortexBA9 8.57 8.50 8.64 0.01 

BrainHippocampus 5.09 5.03 5.14 0.02 

BrainHypothalamus 5.17 5.09 5.24 0.01 

BrainNucleusaccumbensbasalganglia -1.32 -1.37 -1.27 -0.01 

BrainPutamenbasalganglia 6.91 6.86 6.96 0.02 

BreastMammaryTissue 4.24 4.19 4.30 0.01 

CellsEBVtransformedlymphocytes 5.92 5.87 5.98 0.02 

CellsTransformedfibroblasts 9.17 9.13 9.22 0.02 

ColonSigmoid 7.28 7.23 7.34 0.03 

ColonTransverse 3.64 3.60 3.69 0.01 

EsophagusGastroesophagealJunction 7.10 7.04 7.16 0.02 

EsophagusMucosa 6.37 6.30 6.44 0.02 

EsophagusMuscularis 8.11 8.03 8.18 0.01 

HeartAtrialAppendage 11.98 11.90 12.07 0.02 

HeartLeftVentricle 7.29 7.21 7.36 0.02 

Liver 2.99 2.94 3.04 0.01 

Lung 7.93 7.86 7.99 0.02 

MuscleSkeletal 4.27 4.23 4.31 0.02 

NerveTibial 6.70 6.63 6.77 0.02 

Ovary 5.39 5.33 5.45 0.01 

Pancreas 11.07 11.00 11.15 0.02 

Pituitary 4.67 4.62 4.71 0.01 

Prostate 13.57 13.51 13.64 0.03 

SkinNotSunExposedSuprapubic 7.43 7.37 7.48 0.02 

SkinSunExposedLowerleg 4.06 4.00 4.12 0.01 
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SmallIntestineTerminalIleum 2.87 2.82 2.92 0.01 

Spleen 3.70 3.63 3.76 0.01 

Stomach 1.55 1.51 1.58 0.01 

Testis 7.36 7.31 7.40 0.02 

Thyroid 5.87 5.80 5.93 0.01 

Uterus 6.54 6.50 6.58 0.03 

Vagina 7.34 7.27 7.41 0.01 

WholeBlood 9.56 9.50 9.62 0.02 

    

    

 927 
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Supplementary Table 2. Tabulated summary of all tasks used to assess peaBrain performance, for both 929 

Stage 1 and Stage 2 models.   930 

Task peaBrain Description  Methods  

(dataset) 

Results 

A Stage 1 Assess Predictive capacity of the 

non-coding metric to identify 

positions with non-zero incidence of 

cancer-associated somatic mutations 

in the core promoter regions. 

 CADD, Eigen 

(COSMIC) 

Table 1 

B Stage 1 Assess predictive capacity of the 

non-coding metric to identify 

positions with recurrent cancer-

associated somatic mutations, among 

all positions with at least one somatic 

mutation.  

 CADD, Eigen 

(COSMIC) 

Table 1 

C Stage 1 Assess the predictive capacity of the 

non-coding metric to identify 

variants within the 4kbps core 

promoter with allele-specific binding 

(for a subset of positions for which 

data was available). 

 CADD, Eigen, 

DeepSEA, 

DeepBIND, GERV, 

gkmSVM 

Table 1 & 

Supplementary 

Note 1 

D Stage 1 Investigate how tissue-specific 

scores can be identify functional 

tissues associated with GWAS signal 

from complex traits 

 RTC (eQTL)-based 

method 

Supplementary 

Tables 3 & 4 

E Stage 2 Compare predictive performance of 

peaBrain to regularized linear model 

 Elastic net Supplementary 

Table 5 

F Stage 2 Assess correlation of variant 

estimates (for the 113 “captured” 

genes) with coefficients from 

univariately-significant eQTLS in 

two different populations  

 DeepSEA, MPRA, 

BiT-STARR-seq 

(GTEx, Geuvadis) 

Supplementary 

Figures 2-4 & 

Supplementary 

Note 2 

G Stage 2 Assess predictive capacity of 

peaBrain estimates to delineate 

variants enriched in transcriptionally-

active chromatin and depleted from 

quiescent/repressed chromatin states 

 MPRA, BiT-

STARR-seq, 

HiDRA 

(Roadmap) 

 

Table 2 

H Stage 2 Assess predictive capacity of 

peaBrain estimates to delineate 

variants with established regulatory 

function. 

 MPRA, BiT-

STARR-seq, 

HiDRA 

(RegulomeDB) 

Table 3 
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Supplementary Table 3. Tabulated p-values for the top five putatively functional tissues per trait (ranked in ascending order by p-value), as predicted by the 932 

peaBrain framework and the RTC (eQTL)-based methodology (Task D). peaBrain p-values have been Bonferroni-corrected for multiple testing; results for all 933 

tissues are available in Supplementary Table 4. Nominal p-values are shown for the RTC (eQTL)-methodology; obtained from Supplementary Table 8 of the 934 

corresponding manuscript28. Across all tested traits, the peaBrain framework identifies more relevant functional tissues per trait than the RTC-based method. 935 

Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein; RTC, regulatory trait concordance. 936 

                                         peaBrain                                      RTC (eQTL)-based 

 Rank Tissue adjusted p Tissue nominal p 

LDL 1 CellsEBVtransformedlymphocytes 1.81 x10-8 SkinSunExposedLowerleg 1.58 x10-17 

 2 AdiposeVisceralOmentum 2.54 x10-8 Pancreas 1.44 x10-9 

 3 CellsTransformedfibroblasts 3.45 x10-8 CellsTransformedfibroblasts 6.38 x10-9 

 4 Liver 4.01 x10-8 NerveTibial 1.18 x10-8 

 5 SmallIntestineTerminalIleum 5.06 x10-8 BrainCerebellarHemisphere 1.65 x10-8 

HDL 1 ArteryTibial 9.46 x10-8 NerveTibial 2.36 x10-18 

 2 Stomach 4.46 x10-8 AdiposeSubcutaneous 8.16 x10-16 

 3 Liver 7.37 x10-8 CellsTransformedfibroblasts 5.41 x10-15 

 4 SmallIntestineTerminalIleum 8.41 x10-8 SkinSunExposedLowerleg 3.54 x10-15 

 5 AdiposeVisceralOmentum 1.07 x10-7 SkinNotSunExposedSuprapubic 6.39 x10-14 

Total Cholesterol 1 Liver 4.73 x10-11 SkinSunExposedLowerleg 5.38 x10-25 

2 CellsTransformedfibroblasts 5.07 x10-11 Liver 2.05 x10-13 

3 AdiposeVisceralOmentum 8.33 x10-10 Pancreas 3.83 x10-13 

4 CellsEBVtransformedlymphocytes 2.02 x10-9 Thyroid 9.85 x10-13 

 5 SmallIntestineTerminalIleum 2.99 x10-9 SkinNotSunExposedSuprapubic 5.70 x10-12 

Triglycerides 1 Spleen 3.98 x10-4 HeartLeftVentricle 1.64 x10-21 

 2 AdrenalGland 8.78 x10-4 Thyroid 4.25 x10-21 

 3 CellsEBVtransformedlymphocytes 1.67 x10-3 SkinSunExposedLowerleg 1.52 x10-20 

 4 ArteryCoronary 1.63 x10-3 Lung 8.04 x10-19 

 5 AdiposeVisceralOmentum 1.69 x10-3 AdiposeSubcutaneous 1.15 x10-17 
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Supplementary Table 4. Causal tissue profiles for all lipid traits.  938 

[Table is too large to embed in word document and is available as a separate spreadsheet.] 939 
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Supplementary Table 5. Performance metrics (confidence and point estimates for oos-r2 from both 942 

classes of models) and estimated GCTA heritability for all genes with significant heritability (GCTA 943 

p < 0.01). 944 

[Table is too large to embed in word document and is available as a separate spreadsheet.] 945 
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Supplementary Table 6. Schematic of the Stage 1 peaBrain model. The number of channels, r, is 948 

determined by the number of epigenetic and genomic annotations included in the model (minimum of 949 

4 corresponding to the 4 DNA letter channels in class A models). The Stage 1 class B models have 32 950 

channels, corresponding to 4 DNA sequence channels and 28 annotation channels (see Online Methods 951 

for details).  952 

Input Sequence: 

4000 x r channels 

1st Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

1st Pooling Layer: 

Pool Size = 5, Pad = 1 

2nd Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

2nd Pooling Layer: 

Pool Size = 5, Pad = 1 

3rd Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

3rd Pooling Layer: 

Pool Size = 5, Pad = 1 

Dropout Layer: 

p = 0.5 

Dense Fully-Connected Layer: 

Number of Units = 1001 

Linear Activation 

Output Layer: 

Number of Units = 1 

Linear Activation 

Output Value: 

Average Gene Abundance 

 953 
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Supplementary Table 7. Schematic of the Stage 2 peaBrain model, which is composed of three 955 

separate networks connected by a dense layer prior to prediction. Values in red denote layers with 956 

differing values between the three networks. The network for the centre split is identical to the Stage 1 957 

peaBrain model for the core promoter region; the networks for the upstream and downstream splits are 958 

identical to the Stage 1 peaBrain model for distal sequences. Thus, Stage 2 peaBrain can be thought of 959 

as a consolidation of the separate Stage 1 models. 960 

 
Input Sequence 

1Mbps x 4 channels 
 

Upstream Split 

0.498Mbps x 4 channels 
Centre Split 

4kbps x 4 channels 
Downstream Split 

0.498Mbps x 4 channels 

1st Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

1st Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

1st Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 

1st Pooling Layer: 

Pool Size = 100, Pad = 1 
1st Pooling Layer: 

Pool Size = 5, Pad = 1 
1st Pooling Layer: 

Pool Size = 100, Pad = 1 

2nd Convolutional Layer: 

Number of Filters = 11 

Size of Filters = 5 

Stride = 1, Pad = 2 

Leaky Rectify Activation 
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SUPPLEMENTARY FIGURES 965 
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Supplementary Figure 1. Using the class-B peaBrain model for MuscleSkeletal (largest tissue by 968 

sample count in GTEx), the 4kbps promoter sequence (+/– 2kbps of annotated TSS) outperforms both 969 

2kbps (+/– 1kbps) and 6kbps (+/– 3kbps) promoter sequences in predicting mean gene abundance. 970 
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Supplementary Figure 2. Scatter (right) and hexa-bin (left) plots of variant-expression effects as 975 

estimated in LCLs by peaBrain (limited to genes whose 95% confidence interval for the oos-r2 is 976 

entirely above 0; n = 113 genes; Task F).  Each point corresponds to a variant that is univariately 977 

significant in the GTEx eQTL analysis (n = 16,019 eQTLs). The y-axis is the magnitude of the 978 

univariate GTEx eQTL coefficient for the corresponding variant. The correlation between the GTEx 979 

coefficient and the peaBrain prediction is positive and significant (Spearman’s rho = 0.09; p = 3.02 x10-980 

32).   981 
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Supplementary Figure 3. Scatter (right) and hexa-bin (left) plots of variant-expression effects as 984 

estimated in LCLs by peaBrain (limited to genes whose 95% confidence interval for the oos-r2 is 985 

entirely above 0; n = 113 genes; Task F).  Each point corresponds to a variant that is univariately 986 

significant in the EU-Geuvadis eQTL analysis (n = 17,279 eQTLs). The y-axis is the magnitude of the 987 

univariate EU-Geuvadis eQTL coefficient for the corresponding variant. The correlation between the 988 

EU-Geuvadis coefficient and the peaBrain prediction is positive and significant (Spearman’s rho = 0.10; 989 

p = 9.60 x10-38).   990 
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Supplementary Figure 4. Scatter (right) and hexa-bin (left) plots of variant-expression effects as 994 

estimated in LCLs by peaBrain (limited to genes whose 95% confidence interval for the oos-r2 is 995 

entirely above 0; n = 113 genes; Task F).  Each point corresponds to a variant that is univariately 996 

significant in the YRI-Geuvadis eQTL analysis (n = 1601 eQTLs). The y-axis is the magnitude of the 997 

univariate YRI-Geuvadis eQTL coefficient for the corresponding variant. The correlation between the 998 

YRI-Geuvadis coefficient and the peaBrain prediction is positive and significant (Spearman’s rho = 999 

0.18; p = 8.64 x10-13).   1000 

 1001 

  1002 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


57 
 

REFERENCES 1003 

 1004 

1 Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide 1005 

association loci for human diseases and traits. Proceedings of the National Academy of Sciences 1006 

106, 9362-9367 (2009). 1007 

2 ENCODE Consortium. Identification and analysis of functional elements in 1% of the human 1008 

genome by the ENCODE pilot project. nature 447, 799 (2007). 1009 

3 Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait 1010 

variants. Nature genetics 45, 124-130 (2013). 1011 

4 Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin structure through 1012 

genomic segmentation. Nature methods 9, 473-476 (2012). 1013 

5 Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934-947 1014 

(2013). 1015 

6 Gamazon, E. R. et al. A gene-based association method for mapping traits using reference 1016 

transcriptome data. Nature genetics 47, 1091-1098 (2015). 1017 

7 Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. The 1018 

American Journal of Human Genetics 99, 1245-1260 (2016). 1019 

8 Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–1020 

based sequence model. Nature methods 12, 931 (2015). 1021 

9 Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. 1022 

Nature genetics 48, 245-252 (2016). 1023 

10 Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible 1024 

genome with deep convolutional neural networks. Genome research 26, 990-999 (2016). 1025 

11 Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a 1026 

multiplexed reporter assay. Cell 165, 1519-1529 (2016). 1027 

12 Kalita, C. A. et al. High throughput characterization of genetic effects on DNA:protein binding 1028 

and gene transcription. bioRxiv, doi:10.1101/270991 (2018). 1029 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


58 
 

13 Wang, X. et al. High-resolution genome-wide functional dissection of transcriptional 1030 

regulatory regions in human. bioRxiv, 193136 (2017). 1031 

14 Kent, W. J. et al. The human genome browser at UCSC. Genome research 12, 996-1006 (2002). 1032 

15 Consortium, G. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 1033 

regulation in humans. Science 348, 648-660 (2015). 1034 

16 Finucane, H. K. et al. Partitioning heritability by functional category using GWAS summary 1035 

statistics. bioRxiv, 014241 (2015). 1036 

17 Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nature 1037 

biotechnology 28, 1045-1048 (2010). 1038 

18 Gasperini, M. et al. Paired CRISPR/Cas9 guide-RNAs enable high-throughput deletion 1039 

scanning (ScanDel) of a Mendelian disease locus for functionally critical non-coding elements. 1040 

bioRxiv, 092445 (2016). 1041 

19 Kircher, M. et al. A general framework for estimating the relative pathogenicity of human 1042 

genetic variants. Nature genetics 46, 310-315 (2014). 1043 

20 Ionita-Laza, I., McCallum, K., Xu, B. & Buxbaum, J. A spectral approach integrating functional 1044 

genomic annotations for coding and noncoding variants. Nature genetics 48, 214 (2016). 1045 

21 Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human 1046 

cancer. Nucleic acids research 43, D805-D811 (2014). 1047 

22 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities 1048 

of DNA-and RNA-binding proteins by deep learning. Nature biotechnology 33, 831 (2015). 1049 

23 Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence. Nature 1050 

genetics 47, 955 (2015). 1051 

24 Zeng, H., Hashimoto, T., Kang, D. D. & Gifford, D. K. GERV: a statistical method for 1052 

generative evaluation of regulatory variants for transcription factor binding. Bioinformatics 32, 1053 

490-496 (2015). 1054 

25 Wagih, O., Merico, D., Delong, A. & Frey, B. J. Allele-specific transcription factor binding as 1055 

a benchmark for assessing variant impact predictors. bioRxiv, 253427 (2018). 1056 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


59 
 

26 Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nature genetics 1057 

45, 1274 (2013). 1058 

27 Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits 1059 

from summary association data. The American Journal of Human Genetics 99, 139-153 (2016). 1060 

28 Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nature genetics 1061 

49, 1676 (2017). 1062 

29 Grundberg, E. et al. Mapping cis-and trans-regulatory effects across multiple tissues in twins. 1063 

Nature genetics 44, 1084-1089 (2012). 1064 

30 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex 1065 

trait analysis. The American Journal of Human Genetics 88, 76-82 (2011). 1066 

31 Brown, A. A. et al. Predicting causal variants affecting expression by using whole-genome 1067 

sequencing and RNA-seq from multiple human tissues. Nature Genetics, doi:10.1038/ng.3979 1068 

(2017). 1069 

32 Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human 1070 

cells using a massively parallel reporter assay. Nature biotechnology 30, 271-277 (2012). 1071 

33 Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. 1072 

Genome research 22, 1790-1797 (2012). 1073 

34 Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 1074 

mammals. Nature 478, 476 (2011). 1075 

35 Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 1076 

507, 455 (2014). 1077 

36 Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by 1078 

exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015). 1079 

37 Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving 1080 

neural networks by preventing co-adaptation of feature detectors. arXiv preprint 1081 

arXiv:1207.0580 (2012). 1082 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/


60 
 

38 Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a 1083 

simple way to prevent neural networks from overfitting. Journal of machine learning research 1084 

15, 1929-1958 (2014). 1085 

39 Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint 1086 

arXiv:1412.6980 (2014). 1087 

40 Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nature 1088 

Communications 8 (2017). 1089 

41 Friedman, J., Hastie, T. & Tibshirani, R. glmnet: Lasso and elastic-net regularized generalized 1090 

linear models. R package version 1 (2009). 1091 

42 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning 1092 

Research 12, 2825-2830 (2011). 1093 

43 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 1094 

interpreting genome-wide expression profiles. Proceedings of the National Academy of 1095 

Sciences 102, 15545-15550 (2005). 1096 

 1097 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2018. ; https://doi.org/10.1101/279323doi: bioRxiv preprint 

https://doi.org/10.1101/279323
http://creativecommons.org/licenses/by-nc/4.0/

