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Abstract 

Background: Cellular memory is a ubiquitous function of biological systems. By 

generating a sustained response to a transient inductive stimulus, often due to 

bistability, memory is central to the robust control of many important biologica l 

processes. However, our understanding of the origins of cellular memory remains 

incomplete. Stochastic fluctuations that are inherent to most biological systems have 

been shown to hamper memory function. Yet, how stochasticity changes the behavior 

of genetic circuits is generally not clear from a deterministic analysis of the network 

alone. Here, we apply deterministic rate equations, stochastic simulations, and 

theoretical analyses of Fokker-Planck equations to investigate how intrinsic noise 

affects the memory function in a mutual repression network.  

 

Results: We find that the addition of negative autoregulation improves the persistence 

of memory in a small gene regulatory network by reducing stochastic fluctuations. Our 

theoretical analyses reveal that this improved memory function stems from an increased 

stability of the steady states of the system. Moreover, we show how the tuning of critical 

network parameters can further enhance memory.  

 

Conclusions: Our work illuminates the power of stochastic and theoretical approaches 

to understanding biological circuits, and the importance of considering stochasticity to 

designing synthetic circuits with memory function.  
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Background 

Memory is ubiquitous in biological systems [1-4]. Characterized by a continued 

response to a transient stimulus [5], cellular memory has been found to aid in the robust 

control of diverse biological functions such as synaptic plasticity [6], differentiatio n [7, 

8], cell cycle transition [9], or gene regulation [10].  Memory in cellular circuitry is 

tightly linked to bistability, i.e. the presence of two stable steady states [11, 12]. To this 

end, memory is achieved if an input signal evokes a switch to an alternative steady state 

where the system remains over time even after the input signal has disappeared [11, 

12]. 

 

Our general understanding of design principles of biological networks has improved 

dramatically during recent years [13]. Feedback loops as elementary components 

provide common control mechanisms of cellular networks [14]. For instance, negative 

feedback can facilitate adaptation and oscillation [15], while positive feedback loops, 

which play pivotal roles in cellular signaling [16], often promote signal amplificat ion, 

bistable switches [17] and memory [11]. Indeed, a common circuit architecture that is 

known to give rise to memory is based on interlinked positive feedback network loops 

[18, 19]. Several experimental and theoretical analyses of such network architectures 

that can give rise to memory have been reported [7, 12, 20, 21, 22-25]. These studies 

have revealed many general properties underlying successful memory, for instance, that 

ultrasensitivity may be sufficient to generate two stable states [26], and that the 

transition periods between the bistable states compose an important characteristic of a 

cellular memory module [19]. In all cases, bistability and memory can use a transient 

input signal to yield a robust cellular system [27, 28]. This property is directly visib le 
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from the characteristic hysteresis behavior observed for bistability and memory 

systems. Experimental examples confirm these findings, such as the presence of 

hysteresis behavior and bistability in the budding yeast galactose-signaling networks 

[18]. Based on these general principles that link network architecture to systems 

behavior, the blossoming field of synthetic biology has contributed many useful designs 

of genetic circuits based on a quantitative understanding of biological networks [29-31] 

with myriad implications for biotechnology, biocomputing and gene therapy [13, 26, 

32]. However, the rational design of a robust memory function can be implemented via 

many alternative mechanisms that remain incompletely understood  [21, 29]. 

 

Importantly, the vast majority of genes in a cell is normally only expressed at very low 

levels, thus giving rise to substantial stochastic fluctuations [33-39]. As a result, the 

analysis and design of biological circuits cannot be based solely on determinist ic 

properties of the network topology alone. In response, much progress has been made in 

better understanding the role of stochasticity to network function [40-44]. For instance, 

careful work has delineated the sources of intrinsic noise in small transcriptiona l 

networks [45] and how noise may propagate through network architectures [38, 40], as 

well as how feedback loops regulate bistability [41, 46] and intrinsic noise [47]. 

Similarly, extensive work has established general principles underlying the design of 

genetic circuits that exhibit bistability and memory [11, 41, 42, 43, 44].  

 

Recent examples of opposing behavior further highlight the importance of considering 

the contribution of stochasticity to cellular circuitry. On the one hand, it has been shown 

that noise can induce multimodality and even stochastic memory in a system that, 

according to a deterministic description, lacks bistability [48, 49]. On the other hand, 
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stochastic fluctuations in gene expression levels often reduce or disrupt the memory 

function of biological networks [21, 50, 51]. Equally importantly, seminal technical and 

conceptual advances have made strong progress in the efficient and accurate 

approximation of multivariate nonlinear stochastic systems [52, 53].  

 

Here, we investigate how a negative autoregulation network architecture can improve 

the sustained memory function of a mutual repression network in a stochastic 

environment. Our work extends the previously published regulated mutual repression 

network (MRN) [12] to the regulated mutual repression network with negative 

autoregulation (MRN-NA) to investigate the effect of a negative autoregulation loop 

on memory function. The network architecture is characterized by a mutual repression 

cycle that can give rise to bistability and memory, adopted from two well-character ized 

mutual repression networks, the system consisting of LacI and TetR in E. coli that 

displays a bistable gene expression memory module [24], and the mutual repression of 

the two repressors cI and Cro that yield a bistable memory module in the bacteriophage 

𝜆 [21].  

 

To explore and compare the memory behavior of MRN-NA network model, as well as 

how it compares to the MRN model, deterministic rate equations, stochastic simulat ions 

and theoretical analyses of Fokker-Planck equations were employed to identify 

principles of the robustness of the memory function. We demonstrate how negative 

autoregulation can reduce intrinsic noise and thus improve memory function by 

increasing the stability of the steady states. Negative autoregulation can for instance be 

achieved by the ability of proteins to bind and sequester their own mRNA. Systematic 

analyses of successful memory as a function of central model parameters that describe 
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the mutual repression cycle highlight principles and limits of memory function in these 

mutual repression networks. Through systematically comparison of these model 

systems under stochastic fluctuations our results contribute important insights into the 

functioning of biological circuits in the presence of noise. Moreover, our work 

highlights the importance of considering stochasticity when designing synthetic circuits 

with memory function.  

 

Results 

To investigate the effect of negative autoregulation and stochasticity on network 

memory function, we constructed a model network following a previously established 

graphical notation [54, 55] (Fig. 1). Specifically, we modelled a mutual repression 

network with negative autoregulation (MRN-NA) that extends our previous ly 

published mutual repression network (MRN) [12].  The network consists of proteins 

𝑦(1), 𝑦(2) and 𝑦(3). An input signal S induces the synthesis of 𝑦(1), which activates 

and represses the syntheses of 𝑦(2) and 𝑦(3), respectively. The syntheses of 𝑦(2) and 

𝑦(3)  are mutually repressed with cooperativity. Moreover, negative autoregulat ion 

controls the synthesis reactions of 𝑦(2) and 𝑦(3) (Fig. 1). The addition of negative 

autoregulation permits to investigate how negative feedback loops may affect memory. 

While modulation of several parameter values should tune the presence of memory, the 

present analysis focuses on a direct back-to-back comparison of two network 

architectures that only differ in the addition of negative autoregulation circuits. To 

compare the memory regions of MRN-NA and MRN networks across our determinist ic, 

stochastic, and theoretical analyses, the values of the corresponding kinetic parameters 

as well as the steady state levels of 𝑦(2) and 𝑦(3) were conserved as much as possible 

in discrete parameter space ([12], Table 1, Texts S1 and S2) (see Methods).  
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MRN-NA model exhibits robust of memory 

Similar to our previously reported results on the memory function of the MRN [12], the 

MRN-NA network exhibits robust memory functionality. The deterministic solution to 

the time evolution of the MRN-NA model showed persistent memory after the end of 

the period during which the signal 𝑆 was applied for both Hill coefficients of 𝑛 = 7 and 

𝑛 = 8 (Fig. 2A). Strong hysteresis behavior was observed for both 𝑦(2) and 𝑦(3) 

levels as a function of increasing and decreasing S (Fig. 2BC, Fig. S1). Stochastic 

simulations of the MRN-NA model as described by the birth and death processes of 

Eqs. (1-3) revealed strong and persistent memory both with Hill coefficients 𝑛 = 7 

(Fig. 2D) and 𝑛 = 8 (Fig. 2E). Importantly, the MRN alone could not sustain memory 

for either 𝑦(2) or 𝑦(3) at 𝑛 = 7 in a stochastic context [12], but the MRN-NA yielded 

strong and sustained memory due to the addition of negative feedback loops (Fig. 2D 

and Fig. S3, S5).  

 

To further understand how the addition of negative autoregulation increases the 

robustness of the memory function, we sought to quantify and compare the intrins ic 

noise in the protein levels of 𝑦(2) and 𝑦(3) in the MRN and MRN-NA models. It is 

well established that noise or a stochastic perturbation can flip gene expression levels 

from one to the other steady state [39, 45]. To obtain a reliable and comparable estimate, 

we computed the coefficients of variation (CVs) of 𝑦(2) and 𝑦(3) during the active 

signal S period; the interval from simulation step 270 to 500 was chosen to allow the 

system to respond to the stimulus for 20 simulation steps. Our analysis of noise in 

protein levels 𝑦(2) and 𝑦(3) as a function of the dissociation constants 𝐾(2) = 𝐾(4) 

confirmed a systematic reduction of stochasticity in 𝑦(2) and 𝑦(3) levels upon the 
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addition of negative autoregulation (Fig. 2F). While maintaining the same steady state 

levels, noise was dramatically reduced for 𝑦(3) (Fig. 2F). Of note, the lower steady 

state 𝑦(3) is more susceptible to noise. Similarly, intrinsic fluctuations in 𝑦(2) during 

the signal period were reduced in the MRN-NA compared to the MRN model in our 

stochastic simulations irrespective of the dissociation constants tested (Fig. 2F). Even 

more important to the stability of the steady states are the intrinsic fluctuations after the 

end of the signal period. The levels of intrinsic noise are overall slightly higher, likely 

because the signal does not stabilize gene expression levels any longer. However, our 

corresponding analysis reveals that the negative autoregulation reduces, as expected, 

variability in the system also after the stop of the signal (Fig. 2G and Fig. S4). Taken 

together, our results suggest that the negative autoregulation played a vital role in 

increasing the persistence of stochastic memory by reducing intrinsic noise. 

 

Negative autoregulation enhances the memory region 

Our analyses show that the MRN-NA model can exhibit memory, which however 

critically depends on persistent mutual repression with strong cooperativity. We next 

set out to systematically map its memory region as a function of Hill coefficient and 

dissociation constants 𝐾(2) = 𝐾(4) in comparison to the previously reported MRN 

[12] (Fig. 3). Successful memory was defined as sustained levels of  𝑦(2) and 𝑦(3) at 

or near their levels during the applied S after the end of the input signal S at simula t ion 

step 500 until the end of the simulations at simulation step 1000. Moreover, for direct 

comparison, the kinetic parameter 𝑘(7) was adjusted to conserve the steady-state levels 

between the two models (Text S1, [12]). Indeed, the high steady-state levels of both the 

models were set to the same expression values, while the low steady-state levels were 

tuned be as similar as possible. Memory was assessed in both the deterministic and 
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stochastic context (see Methods). Accordingly, two memory regions were defined: 

deterministic memory and stochastic memory (Fig. 3).  

 

In both the MRN and MRN-NA models, deterministic memory could be observed for 

Hill coefficients of 𝑛 = 4 or greater (Fig. 3). In contrast, stochastic memory not only 

required higher Hill coefficients, but also posed different limits on the MRN and MRN-

NA models. Without negative autoregulation that suppresses noise, stochastic memory 

in the MRN model required a Hill coefficient of 𝑛 = 8 or greater (Fig. 3). In the 

presence of negative autoregulation that reduces noise in protein levels, stochastic 

memory in the MRN-NA model could be observed from 𝑛 = 7 (Fig. 3). Thus, the 

negative autoregulation relaxes the need for strong cooperativity to generate stochastic 

memory.  

 

The stochastic memory region for the MRN-NA model was found to be larger than for 

the MRN model (Fig. 3, red area), indicating that negative autoregulation of the MRN-

NA enhances memory function by reducing intrinsic noise (Fig. 2F,G). While the 

deterministic memory regions in both networks are essentially the almost same (Fig. 3, 

green area), it was clearly more difficult to maintain a memory effect under noise in the 

MRN than the MRN-NA (Fig. 3; red area). The large discrepancy between the 

deterministic and stochastic memory areas indicate the general challenge of 

maintaining memory function in the context of stochasticity.  

 

Stochastic potential of the MRN-NA  

Prerequisite for memory is normally the presence of bistability in the system. Thus, a 

limited bistable regime could explain why such high levels of cooperativity in the 
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mutual repression between 𝑦(2) and 𝑦(3) were required to yield memory. To map out 

the bistable regimes of the MRN-NA in comparison to the MRN [12], theoretica l 

analyses based on the chemical master equations were employed to support the 

numerical simulation results.  

 

First, the corresponding Fokker-Planck equations (Eqs. (9-13)) describing the time 

evolution of the probability densities for 𝑦(2) and 𝑦(3) levels were derived from the 

three rate equations (Eqs. (1-3)) [see Methods]. We made use of the quasi-steady-state 

assumption to derive a one-variable equation for each system (Text S2, [12]).  While 

there are inherent limitations to it [50], the quasi-steady-state assumption is widely used 

[46]. Since we focus on the steady-state at  t  , applying the quasi-steady-state 

assumption to 𝑦(2) or 𝑦(3) is mathematically reasonable. By using the Fokker-Planck 

equations, we next estimated the two-dimensional stochastic bistable regions, 

characterized through the presence of a double well potential, for the MRN and MRN-

NA models as a function of the Hill coefficient and dissociation constants (Fig. 4, Fig. 

S2; Texts S1, S2, S3 and [12]).  

 

In these theoretical analyses, both the MRN and the MRN-NA models permitted 

bistability starting from a Hill coefficient of 𝑛 = 3 for both 𝑦(2) and 𝑦(3) (Fig. 4 A, 

B). However, the bistable regions in the MRN-NA were larger than those in the MRN 

model (Fig. 4 A, B). To display bistability in a stochastic context, the MRN model 

required dissociation constants 𝐾(2) = 𝐾(4) within a more constrained parameter 

space (Fig. 4 A, B). These analyses established that the MRN-NA more readily exhibits 

stochastic bistability than the MRN. Conversely, a limited bistability regime in the 
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MRN in a stochastic context (Fig. 4 A, B) contributes to explaining why this network 

had a smaller stochastic memory region (Fig. 3). 

 

Mean first-passage time of the MRN-NA model 

Having established that the presence of memory in the MRN-NA model depended on 

both bistability and robustness of the steady states to stochasticity, we next sought to 

further explore the origins and limits of memory functionality in context of fluctua t ing 

protein levels. To this end, the stability of a steady state of a stochastic system can be 

estimated by the mean first-passage time (MFPT). The MFPT quantifies the average 

number of simulation steps it takes for a system to leave a favorable steady state due to 

random events.  As such, the MFPT provides a useful description of the time-scale on 

which a phase transition is likely to happen [56-58]. Thus, because the presence of a 

stochastic bistable region only indicates the bimodality of gene expression as 

prerequisite for memory but not the presence of memory itself, a MFPT analysis can be 

helpful for identifying the precise conditions under which memory can be attained in a 

stochastic context. 

 

Here, MFPT analyses were performed between the two stable steady states under the 

quasi-steady-state assumption (Fig. S2, [12]) (see Methods). Specifically, we calculated 

the MFPTs of 𝑦(2) and 𝑦(3) for the MRN-NA model in comparison to the MRN [12] 

(Fig. 5); the lower and upper steady-states of 𝑦(2) and 𝑦(3) are denoted as st
ly )2( ,

st
uy )2( , st

ly )3(  and st
uy )3( , respectively. Similarly, the MFPTs of leaving the lower (TL) 

and upper (TU) steady states were calculated as a function of the Hill coefficient and 

dissociation constants in the mutual repression cycle for 𝑦(2) and 𝑦(3).  
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Due to the asymmetry in the both MRN and MRN-NA models (Table 2), the MFPTs 

for 𝑦(2) and 𝑦(3) showed opposing behavior, as expected (Fig. 5). While the MFPT 

for 𝑦(2) to leave the lower steady state, ))2(( st
lL yT , is consistently longer than the 

corresponding time to leave the upper steady state, ))2(( st
uU yT , the system is more 

likely to leave the lower steady state of 𝑦(3) as indicated by  ))3(( st
lL yT being much 

smaller than ))3(( st
uU yT  (Fig. 5).  

 

An increase in the Hill coefficient as measure of cooperativity exacerbated this trend 

observed for the MFPTs of 𝑦(2) and 𝑦(3) (Fig. 5A). The prolonged MFPTs as a result 

of increasing Hill coefficients explained why the robustness of sustaining stochastic 

memory improved with increasing cooperativity. For the parameter space explored, the 

lower steady state of 𝑦(2) was more persistent in both models for any Hill coefficients, 

as evident by   ))2(( st

lL yT  > ))2(( st

uU yT   (Fig. 5A).  Moreover, all MFPTs for the MRN-

NA, ))2(( st
lL yT , ))2(( st

uU yT , ))3(( st
lL yT , and ))3(( st

uU yT , were observed to be longer 

than their equivalents for the MRN model, for any Hill coefficient (Fig. 5A). These 

results confirm an increased persistence of the steady states upon introduction of 

negative autoregulation in MRN-NA compared to MRN, which explains the improved 

memory function in the MRN-NA system. Specifically, the residence times at the upper 

and lower steady states of 𝑦(2) and 𝑦(3) were extended to achieve the persistent 

memory after the stop of the signal (Fig. 3D in [12], Fig. 2D). 

 

Next, we investigated the effect of the dissociation constants in the mutual repression 

cycle on the MFPTs of 𝑦(2) and 𝑦(3) (Fig. 5B). Consistently, the MFPTs for all steady 

states, ))2(( st
lL yT  , ))3(( st

lL yT  , ))2(( st
uU yT  and ))3(( st

uU yT ,were found to be longer 
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in the MRN-NA than the MRN for any dissociation constants (Fig. 5B). For both 

models, all MFPTs, ))2(( st
lL yT , ))2(( st

uU yT , ))3(( st
lL yT  and ))3(( st

uU yT gradually 

decreased with an increase in the dissociation constant, suggesting that strong binding 

in the mutual repression cycle is necessary for persistent memory. We also studied the 

MFPTs for the MRN-NA as a function of the negative autoregulation constants 𝑘(9) =

𝑘(10) (Fig. 5C).  The MFPTs for the MRN-NA at all steady states, ))2(( st
lL yT  , 

))3(( st
lL yT  , ))2(( st

uU yT  and ))3(( st
uU yT , were found to increase with increasing 

strength of the negative autoregulation. In summary, these MFPT analyses illumina ted 

in detail how memory in the mutual repression networks improved with increasing 

stability of the steady states as a function of cooperativity or binding strength.  

 

Probability densities of the steady-state levels in the MRN-NA  

The previous analyses revealed a strong dependency of sustained memory on the 

robustness of the steady-states. To formally establish the probability densities 

associated with populating the upper and lower steady states of 𝑦(2) and 𝑦(3), we 

calculated the probability densities from the Fokker-Planck Equations (Eq. (15)) as a 

function of the Hill coefficient and dissociation constants (Fig. 6). The probability 

density of the upper steady state of 𝑦(2) increased while that of the corresponding 

lower steady state decreased with an increase in the Hill coefficient for both the MRN 

and the MRN-NA models (Fig. 6A). The addition of negative autoregulation in the 

MRN-NA system visibly made the upper steady state level of 𝑦(2) more dominant 

(Fig. 6A). 
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The probability density of 𝑦(3)  clearly illustrated the evolution of bistability and 

subsequent increased probability densities of the lower steady states with increasing 

Hill coefficient (Fig. 6B). At low Hill coefficient (𝑛 = 3)  the MRN lacked a 

pronounced probability density of a lower steady state (Fig. 6B, solid blue line) while 

in the MRN-NA the probability density did not separate well the peaks at lower and 

upper levels of 𝑦(3) (Fig. 6B, dashed blue line). This result of weak bistability was 

consistent with our previous analysis of the bistability regions (Fig. 4). In turn, higher 

Hill coefficients of 𝑛 = 8  and 𝑛 = 12  promoted first the emergence and then 

separation of two clearly populated steady states (Fig. 6B). While the upper steady state 

of 𝑦(3) was dominant for at 𝑛 = 12 the system switched to a dominant lower steady 

state for 𝑦(3) (Fig. 6B). Moreover, the addition of negative autoregulation strongly 

promoted the population of the lower steady state at all Hill coefficients analyzed (Fig. 

6B, dashed lines). By buffering intrinsic noise, this analysis thus confirmed that the 

negative feedback loops stabilized particularly the low expression states of 𝑦(3), i.e. 

those that are most susceptible to fluctuations. 

 

Similarly, the probability densities of 𝑦(2) and 𝑦(3) were found to quantitatively and 

qualitatively also depend on the dissociation constants 𝐾(2) and 𝐾(4) in the mutual 

repression cycle (Fig. 6C,D). At low 𝐾(2) = 𝐾(4) = 15, the upper steady state of 𝑦(2) 

was dominant in the MRN and MRN-NA models with slightly higher probability 

density for the MRN-NA model (Fig. 6C). In general, with decreasing values of 𝐾(2) 

and 𝐾(4) the upper steady states became more pronounced in both models, even more 

so in the MRN-NA (Fig. 6C). In turn, the probability density of the lower steady state 

of 𝑦(3) became dominant with decreasing the dissociation constants in both the models 

(Fig. 6D). Moreover, lower values for 𝐾(2)  and 𝐾(4)  as well as negative 
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autoregulation favored more pronounced bistability (Fig. 6D). The MRN-NA model 

increased the probability density of the upper steady-state of 𝑦(2) and the lower steady-

state of 𝑦(3) more than the MRN model. This result can support the persistent memory 

of the upper steady-state of 𝑦(2) and lower steady-state of 𝑦(3) after the stop of the 

signal (Fig. 6D). Taken together, these results established the theoretical basis for our 

observation that the MRN-NA model displays an improved memory function in a 

stochastic context.   

 

Consistency between the stochastic simulation and the Fokker-Planck 

equation 

To verify the quasi-steady-state assumption for our case, we validated that the solutions 

to the Fokker-Planck equations were consistent with the probability densities obtained 

by stochastic simulation of the full system (Figs. 7, 8). The Fokker-Planck equations 

provided almost the same probability density as the Gillespie stochastic simula t ion 

(Figs. 7, 8). We examined the comparison of the numerical and theoretical simula t ion 

method in both normal and log scale (Fig. 8). It is shown that lower steady states (first 

peaks) are quickly transitioning to the upper steady state than second peaks (Fig. 8). 

This is a sampling issue because initially there are low concentrations of molecules, 

which can easily move to the upper steady state. 

 

 

Discussion 

By applying numerical integration of the rate equations, stochastic simulations and 

theoretical analysis of the Fokker-Planck equations, we here investigated the 
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mechanism by which negative autoregulation can improve the memory function in a 

mutual repression network. Previous work had established the regulated mutual 

activation network (MAN) and mutual repression network (MRN) as good model 

systems to study fundamental properties of cellular memory as encoded in genetic 

circuitry [12]. Here, we systematically decoupled contributions of additional negative 

autoregulation, as well as strength of cooperativity and dissociation constants in the 

mutual repression cycle, to the persistence of memory function.  

 

Stochasticity decreased the memory in both models. The MRN-NA however achieved 

robust, persistent memory in both the deterministic and stochastic approaches at lower 

cooperativity 𝑛 = 7. Our results suggest that the robustness of the stochastic memory 

of the MRN-NA could be further improved by increasing the binding strength of the 

repressor proteins. Moreover, they highlighted the need for finely-tuned parameters 

combinations to achieve robust memory, as evident from the small stochastic memory 

regions. 

 

In the present work, defined and validated sets of kinetic parameters were used instead 

of exhaustive searches for alternative parameter combinations that also give rise to 

memory.  To generalize our findings, phase diagrams of the memory region were 

derived as a function of the two most critical and previously identified parameters [12]. 

By doing so, we were able to reveal fundamental insights into the determinants 

underlying robust stochastic memory. Future work will expand how greater variability 

in parameter choices, for instance reflecting additional external cellular regulation of 

constituent genes, may allow to sustain stochastic memory.  
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Despite accurately simulating the time evolution of protein concentrations in stochastic 

systems, the Gillespie algorithm is known for its limited power in characterizing 

sustained memory in more complex networks due to its computational cost. Many time -

consuming simulations are required to determine reliably if a model exhibits persistent 

stochastic memory or not. These shortcomings can be overcome with theoretica l 

approaches. The quasi-steady state assumption of analyzing steady states separately is 

widely used, performs in general well and is reasonably justified in the presented work. 

Notably, very recent seminal conceptual and technical advances have provided 

advanced approximation methods that now start to make even multivariate and 

nonlinear chemical masters equations and related Fokker-Planck equations amenable 

to theoretical analyses. For instance the recently introduced linear-mapp ing 

approximation converts a nonlinear system to a linear problem via a mean-fie ld 

approximation [53]. Multivariate systems still become very rapidly too complex for 

fully analytical solutions. However, these new techniques will vastly improve accuracy 

and computational efficiency for future analyses of stochasticity in networks.  

 

Equally important for a better understanding of cellular memory is the study of 

networks of increased complexity that more directly reflect the underlying biology.  

Known biological examples readily hint at such increased complexity that awaits to be 

further characterized. For instance, a Notch-Delta mutual repression network serves to 

communicate between neighboring cells [59] where an increase in Notch activity within 

a cell decreases that in its neighboring cell. The Notch-Delta mutual repression provides 

inhomogeneous or opposite protein synthesis in homogeneous cell populations. To 

capture this phenomenon would require to consider spatial changes in gene expression.  
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Finally, recent papers have outlined many fundamental principles of how to achieve 

bistability in small networks [60, 61, 62]. The present work here extends these findings 

by a comparative network analysis that allows to delineate the effect of adding negative 

autoregulation on cellular memory.  

 

Conclusions 

The addition of negative autoregulation comes at the cost of increased model 

complexity but clearly improves the robustness of the memory function of a small gene 

regulatory network in a stochastic context. While the current work has only explored 

one possible network modification that increases memory, exploration of additiona l 

parameter combinations will likely expand our understanding of trade-offs in attaining 

memory. In summary, we have shown that the addition of negative autoregulation can 

reduce intrinsic noise and generate persistent stochastic memory. Our mathematica l 

comparison and theoretical analysis of the two networks contributes to an improved 

understanding of how genetic circuits can encode biological function and may aid the 

rational engineering of memory networks for applications in synthetic biology, 

medicine and biotechnology. 

 

 

Methods  

MRN-NA model 

We constructed a simple model of a gene regulatory network that consists of two genes 

encoding a transcription factor that we visualized according to the graphical notation 
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[54, 55] (Fig. 1). Our mutual repression network with negative autoregulation (MRN-

NA) consists of proteins 𝑦(1), 𝑦(2) and 𝑦(3). The input signal S induces the synthes is 

of 𝑦(1), which in turn activates the synthesis of 𝑦(2) and represses production of 𝑦(3). 

Furthermore, the synthesis reactions of both of 𝑦(2) and 𝑦(3)  are mutually repressed 

with cooperativity, negative autoregulation governs synthesis reactions of 𝑦(2) and 

𝑦(3). This system can be bistable and exhibits memory. In formulating our model, we 

made deliberate use of Michaelis-Menten approximations under the assumption that 

substrate concentrations are in excess and association equilibria quickly attained. The 

model is described by the following equations (1-3): 
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All parameters are described in Table 1.  
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Systems modeling and determination of successful memory 

The time evolution of the gene expression levels of 𝑦(1) , 𝑦(2)  and 𝑦(3)  were 

simulated both deterministically and stochastically. For a deterministic systems 

description, the ordinary differential equations (Eqs. 1-3) were solved in MATLAB 

(Mathworks) with standard solvers. Stochastic trajectories were simulated with the 

Gillespie algorithm [63].  

 

In all model simulations, the deterministic and stochastic time courses of 𝑦(1), 𝑦(2) 

and 𝑦(3) were simulated for 1,000 simulation time steps. The input signal S was 

applied from simulation step 250 to 500. Deterministic memory was defined as 

sustained protein levels in the numerical integration of the rate equations during the 

subsequent period from simulation steps 500 to 1,000 after stop of the signal S. 

Similarly, stochastic memory was assessed as sustained protein levels in the stochastic 

simulations in the period from simulation steps 500 to 1000 after stop of the signal S. 

While arbitrary, a threshold of 1000 simulation time steps yielded a robust and readily 

accessible criterium to assess memory. Due to the probabilistic nature of the stochastic 

simulations, robust stochastic memory for a given set of parameters was defined as 

successful memory if 18 out of 20 stochastic simulations, i.e. 90%, yielded persistent 

memory [12]. 

 

Theoretical model comparisons 

All parameters were set as to render the MRN and MRN-NA models as comparable as 

possible (Tables 1, 2) [12, 64].  With the exception of the additional negative 

autoregulation loops, this meant using the same parameters throughout. The parameters 

of the negative autoregulation were tuned to conserve the steady state levels of 𝑦(2) 
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and 𝑦(3) between the MRN and MRN-NA models (Tables 1, 2). Indeed, the high 

steady-state levels of both the models were set to the same, while the low steady-state 

levels of them could be as similar as possible. Note that it is impossible to set the low 

steady-state levels to the same. Given the asymmetry of the models (activation of 𝑦(2) 

and suppression of 𝑦(3) by 𝑆), the deterministic steady-state levels of 𝑦(2) and 𝑦(3) 

always show opposing behavior: when the steady-state level of 𝑦(2) is high, that of 

𝑦(3) is low and vice versa. Our parameters choices conserved both the low and high 

steady states of 𝑦(2) and 𝑦(3) between the MRN and MRN-NA models (Texts S1, S2, 

[12]) 

 

To systematically identify parameter choices that can give rise to successful memory, 

phase diagrams of the memory region as a function of the two most critical parameters, 

the Hill coefficient and dissociation constants in the mutual repression cycle, were 

computed by successive simulation at different parameter combinations.  

 

Intrinsic noise in gene expression was quantified by computing the coefficient of 

variation (CV) of the levels of 𝑦(2) and 𝑦(3)  during the input signal S from the 

stochastic simulations. To eliminate transition effects, we considered the period from 

simulation step 270 to 500, i.e. omitting the first 20 simulation steps of the signal period 

(Fig. 2F).  In the same manner, we estimated the CVs of the levels of 𝑦(2) and 𝑦(3) 

after stop of the signal, for the period from simulation step 500 to 750 (Fig. 2G). 

 

Stochastic potential and probability density function 

The reaction rate equations (Eqs. (1-3)) were converted into 𝑓MRN−NA2 (𝑦)  and  

𝑓MRN−NA3 (𝑦)  (Text S2). Using the quasi-steady-state assumption, we solved the 
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probability density at the steady state (at 𝑡 → ∞). At 𝑡 → ∞  𝑦(2) and 𝑦(3) definite ly 

approach to the steady state, i.e., 0
)2(


dt

dy
 and 0

)3(


dt

dy
. Therefore, we assumed 

0
)3(
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dt

dy
to solve the ODE of 

dt

dy )2(
at 𝑡 → ∞ . In a similar manner, we assumed 

0
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dt

dy
to solve the ODE of 

dt

dy )3(
 at 𝑡 → ∞. 

Here, we illustrated how a one-variable equation 𝑓MRN−NA2 (𝑦)  in a stochastic 

environment is given by:     
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This equation can be described by the birth-and-death stochastic processes [12, 21, 48, 

65]:                        
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  where ssy is given by Eq. (5) 

 

The corresponding chemical master equation was given by: 
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where 𝑃(𝑦, 𝑡) was the probability density of protein concentration y. Next, the chemica l 

master equation was transformed into the Fokker-Planck equation [12, 21, 49, 65-67]: 
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and ssy is given by Eq. (5). The noise function is given by: 
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where ssy is given by Eq. (5). In the same manner, the Fokker-Planck equations of the 

four one-variable equations including 𝑓MRN−NA2 (𝑦) were solved under the following 

conditions (Text S2): 
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Finally, we consider the stochastic potential analysis. The limit of 𝑃(𝑦, 𝑡) at 𝑡 → ∞ 

yields 𝑃st(𝑦), the stationary probability density function of 𝑦 [12, 21, 58, 65], which is 

given by: 
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where 𝑁𝑐 is the normalization constant. Eq. (14) can be recast in the form: 
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is called the stochastic potential of 𝑓(𝑦) [56, 57, 65].  

 

Mean first-passage time analysis  

In gene expression, the stability of a steady state has to be estimated in the presence of 

noise. The stability of a steady state of a stochastic system can be estimated by the mean 

first-passage time (MFPT), which describes the expected time within which the system 

leaves a stable steady state due to random fluctuations. An equilibrium point can exit 

from its minimum potential due to the effect of noise. The exit time depends on the 

specific realization of the random process; this is known as the first passage time. The 

MFPT is the average of the first passage times over many realizations. In the context 

of anticipating phase shifts, the MFPT provides a useful tool to characterize the time -

scale on which a phase transition is likely to occur. 
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Let us consider 𝑦𝑙
st  and 𝑦𝑢

st  (𝑦𝑙
st < 𝑦𝑢

st) as two steady states corresponding to a low and 

a high protein concentration, respectively, separated by the unstable steady state 

defining the potential barrier 𝑦𝑏
un (i.e., the unstable equilibrium point). The basin of 

attraction of the state 𝑦𝑢
st extends from 𝑦𝑏

un to +∞, as it is to the right of 𝑦𝑙
st. Let 𝑇(𝑦)

 

be the MFPT to state 𝑦𝑏
un  starting at 𝑦 > 𝑦𝑏

un . 𝑇(𝑦) satisfies the following ordinary 

differential equation [21, 58, 66, 67]:                                               
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By solving Eqs. (17-18), the MFPTs of 𝑦𝑢
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with 𝑦0 = 0  for the 𝑦𝑢
st → 𝑦𝑙

st transition and 𝑦0 = 𝑦𝑏
un  for the 𝑦𝑙

st → 𝑦𝑢
st  transition. A 

high value of the MFPT of a steady state protein level indicates that the level is 
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sustained for a longer time, whereas a low value indicates that the protein can readily 

leave the steady state and quickly transition to another level. 
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Figure Legends 

Fig 1. Schematic of the mutual repression network models with negative 

autoregulation. 

Wiring diagram of the mutual repression network with negative autoregulation (MRN-

NA) model. The added negative autoregulation reactions that regulate the protein 

synthesis of 𝑦(2) and 𝑦(3) are highlighted in red. All reaction rate constants k and 

dissociation constants K are listed in Tables 1 and 2. In this work, the MRN-NA is 

compared to the previously published MRN [12] that is identical with the exception of 

the negative autoregulation loops.  

 

 

Fig 2. Deterministic and stochastic simulations of the MRN-NA model 

(A) Deterministic simulation of proteins 𝑦(1) , 𝑦(2)  and 𝑦(3)  at different Hill 

coefficients. The input signal 𝑆  is applied from simulation steps 250 to 500. The 

dissociation constants are set to 𝐾(2) = 𝐾(4) = 43; all other corresponding parameter 

values are set as the same as the previously published MRN [12] (Table 2). The 

simulated time evolution is shown for 𝑦(2) and 𝑦(3) at 𝑛 = 7 (red and magenta lines), 

and at 𝑛 = 8 (black and cyan lines). (B) The hysteresis curves of 𝑦(2) at different Hill 

coefficients 𝑛 = 7 and 𝑛 = 8 are consistent with the numerical integration of the rate 

equations (C) The hysteresis curves of 𝑦(3) at different Hill coefficients 𝑛 = 7 and 

𝑛 = 8  are consistent with the numerical integration of the rate equations. (D) 

Trajectories of the stochastic simulation of 𝑦(1), 𝑦(2) and 𝑦(3) at Hill coefficient 𝑛 =

7 . (E) Trajectories of the stochastic simulation of 𝑦(1) , 𝑦(2)  and 𝑦(3)  at Hill 
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coefficient 𝑛 = 8. (F,G) Stochastic fluctuations in the MRN and MRN-NA models 

during the interval from simulation step 270 to 500 (F) and during the period from 

simulation steps 500 to 750 (G). The coefficients of variation (CVs) are computed from 

the simulated stochastic trajectories during the signal period as a function of changing 

dissociation constants 𝐾(2) = 𝐾(4) at Hill coefficient 𝑛 = 8 . For more optimal 

comparability between the two models, the parameters associated to the negative 

autoregulation reactions were tuned to conserve the high steady state levels between 

both models. Shown are the CVs of 𝑦(2) (MRN: red line; MRN-NA: black line), and  

𝑦(3) (MRN: magenta line; MRN-NA: cyan line).  

 

 

Fig. 3 Phase diagram of the memory regions for the MRN and the MRN-NA 

models  

Comparison of the memory regions of the MRN and MRN-NA models. The 

deterministic (solid line) and stochastic (dotted line) memory regions of the MRN are 

shown together with the deterministic (green area) and stochastic (red area) memory 

regions of the MRN-NA as function of the Hill coefficient and dissociation constants.   

 

 

Fig. 4 Phase diagram of the stochastic bistable regions 

Phase diagrams of the stochastic bistable regions as a function of Hill coefficient and 

dissociation constant in the mutual repression cycle for 𝑦(2) in the MRN (dotted line 

area) and MRN-NA (red area) (A), and for 𝑦(3) in the MRN (dotted line area) and 

MRN-NA (cyan area) (B) models.  
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Fig. 5 Mean first passage time (MFPT) analysis  

(A) The logarithmic MFPTs of the lower and upper steady states of 𝑦(2) (𝑇𝐿 and 𝑇𝑈) 

and 𝑦(3) (𝑇𝐿 and 𝑇𝑈) are shown for the MRN and MRN-NA models as a function of 

the Hill coefficient 𝑛 at dissociation constants 𝐾(2) = 𝐾(4) = 15. 

(B) The logarithmic MFPTs of the lower and upper steady states of 𝑦(2) and 𝑦(3) 

denoted as above are shown for the MRN and MRN-NA as a function of the 

dissociation constant𝐾(2) = 𝐾(4) at the Hill coefficient 𝑛 = 3. (C) The logarithmic 

MFPTs of the lower and upper steady states of 𝑦(2) and 𝑦(3) denoted as above are 

shown for the MRN-NA as a function of the negative autoregulation constants 𝑘(9) =

𝑘(10) at the dissociation constants 𝐾(2) = 𝐾(4) = 15  and Hill coefficient 𝑛 = 3. 

 

 

Fig. 6 Probability density of the steady-state levels  

 (A) Probability density of 𝑦(2) in the MRN and the MRN-NA as a function of the Hill 

coefficient. (B) Probability density of 𝑦(3) in the MRN and the MRN-NA as a function 

of the Hill coefficient at the dissociation constant 𝐾(2) = 𝐾(4) = 12  (A, B). (C) 

Probability density of 𝑦(2)  in the MRN and the MRN-NA as a function of the 

dissociation constant. (D) Probability density of 𝑦(3) in the MRN and the MRN-NA as 

a function of the dissociation constant at the Hill coefficient 𝑛 = 3 (C,D).  
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Fig. 7 Probability density profile of the MRN-NA model 

Probability densities are computed from the Fokker-Planck equations of the MRN-NA 

model. (A, B) Probability density of 𝑦(2) (A) and of 𝑦(3) (B). The parameters are 

given as  𝑆 = 0 , 𝑘(1) = 100 ,  𝑘(2) = 1 , 𝐾(1) = 𝐾(3) = 9 ,  𝐾(2) = 𝐾(4) =

43, 𝐾(5) = 𝐾(6) = 9, 𝑘(3) = 𝑘(6) = 18.1, 𝑘(9) = 𝑘(10) = 4.1, 𝑘(4) = 61.04 > 

𝑘(7) = 43.1, 𝑘(5) = 𝑘(8) = 0.8, 𝑛 = 8 in the MRN-NA model. 

 

Fig. 8 Probability density profile of the MRN and MRN-NA models in log space 

Probability densities are computed from the Fokker-Planck equations of the MRN and 

MRN-NA models. (A, C) Probability density of 𝑦(2) (A) and of 𝑦(3) (C) in the MRN 

model. The parameters are given as 𝑆 = 0, 𝑘(1) = 100,𝑘(2) = 1, 𝐾(1) = 𝐾(3) =

9, 𝐾(2) = 𝐾(4) = 43, 𝑘(3) = 𝑘(6) = 18.1, 𝑘(4) = 61.23 > 𝑘(7) = 43.1, 𝑘(5) =

𝑘(8) = 0.8, 𝑛 = 8. (B, D) Probability density of 𝑦(2) (B) and of 𝑦(3) (D) in the 

MRN-NA model. The parameters are given as 𝑆 = 0,𝑘(1) = 100,𝑘(2) = 1,𝐾(1) =

𝐾(3) = 9 , 𝐾(2) = 𝐾(4) = 43 , 𝐾(5) = 𝐾(6) = 9, 𝑘(3) = 𝑘(6) = 18.1 , 𝑘(9) =

𝑘(10) = 4.1 , 𝑘(4) = 61.04 >  𝑘(7) = 43.1 , 𝑘(5) = 𝑘(8) = 0.8 , 𝑛 = 8 . For 

stochastic simulations, three independent trajectories are shown.  
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Tables 

Table 1. List of kinetic parameters used in the two gene regulatory networks 

Kinetic parameters Definition 

𝑘(1), 𝑘(3), 𝑘(4), 𝑘(6), 𝑘(7) protein synthesis rate constants 

𝑘(2), 𝑘(5), 𝑘(8) degradation rate constants 

𝐾(1), 𝐾(2), 𝐾(3), 𝐾(4) dissociation constants of activators / 

repressor 

𝑘(9), 𝑘(10) protein synthesis rate constants of 

negative autoregulation 

𝐾(5), 𝐾(6) dissociation constants of negative 

autoregulation 

n  Hill coefficient 
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Table 2. Settings of the kinetic parameters for the two models  

 MRN MRN-NA 

Common parameters 

between the MRN and 

MRN-NA 

100)1( k  
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Specific parameters to 

the MRN-NA 
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