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Abstract

The relation between design principles of signaling network motifs and their
robustness against intrinsic noise still remains illusive. In this work we investi-
gate the role of cascading for coping with intrinsic noise due to stochasticity in
molecular reactions. We use stochastic approaches to quantify fluctuations in
the terminal kinase of phosphorylation-dephosphorylation cascade motifs and
demonstrate that cascading highly affects these fluctuations. We show that this
purely stochastic effect can be explained by time-varying sequestration of up-
stream kinase molecules. In particular, we discuss conditions on time scales
and parameter regimes which lead to a reduction of output fluctuations. Our
results are put into biological context by adapting rate parameters of our mod-
eling approach to biologically feasible ranges for general binding-unbinding and
phosphorylation-dephosphorylation mechanisms. Overall, this study reveals a
novel role of stochastic sequestration for dynamic noise filtering in signaling
cascade motifs.

Keywords: Retroactivity, Signaling cascade, Stochastic modeling, Dynamic
sequestration

1. Introduction

Intracellular signaling pathways are known to function reliably and are ro-
bust to all kinds of perturbations and noise. They are often controlled by a
complex regulation structure involving network motifs such as positive and neg-
ative feedback and feed-forward loops, and a multitude of examples demonstrate
that network architecture is tightly related to a robust functioning (Batchelor
and Goulian, 2003; Bliithgen and Legewie, 2013; Caicedo-Casso et al., 2015).
In particular, the interplay between interlinked positive and negative feedback
is often crucial for a precise tuning of these pathways and thus to enable a
reliable functioning. Examples include robustness due to negative feedback
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such as in MAPK signaling (Fritsche-Guenther et al., 2011; Clodong et al.,
2007), robustness of oscillations via coupling of feedback loops (Cheng et al.,
2001; Wagner, 2005), or fine tuning of thresholds in bistable systems via nested
negative feedback mechanisms (Justman et al., 2009). Another well-studied
kind of motif that is related to thresholding and switching behavior is multi-
site phosphorylation (Gunawardena, 2005; Whitmarsh and Davis, 2016) and,
as a special case, cascades of phosphorylation-dephosphorylation (PD) cycles
as they can be found in several pathways such as the MAPK or AKT signaling
pathway (Angeli et al., 2004). Cascading prolonges the duration of signal propa-
gation and hence acts as a low-pass filter which filters out high frequencies (Paul
and Radde, 2016). Moreover, even in signaling cascades without explicit feed-
back, where one PD cycle activates the next PD cycle downstream, information
does not only propagate from upstream to downstream molecules, but also in
the opposite direction, an effect that is called retroactivity (Del Vecchio et al.,
2008; Del Vecchio and Sontag, 2009; Ventura et al., 2008, 2009, 2010). The
presence of retroactivity has been verified theoretically and experimentally for
example in the MAPK signaling pathway (Kim et al., 2011b, 2010). From a
clinical perspective, retroactivity is of particular interest because it facilitates
off-target effects of kinase inhibitors, a class of extremely effective anti-cancer
agents (Wynn et al., 2011). Moreover, retroactivity acts as an implicit feedback
and therefore plays an important role in the dysregulation of signaling networks
(Wynn et al., 2011). Therefore retroactivity, in general, has been considered
as a design trade-off which must be minimized or attenuated as far as possible
to facilitate unidirectional signal propagation in signaling pathways (Shah and
Vecchio, 2017). However, in this work we reveal a new effect of retroactivity,
which can contribute to reducing intrinsic noise and fluctuations in the activity
of the terminal kinase of a double PD cycle cascade. We compare models of a
simple double PD cycle motif (Fig. 1, model A) and a cascade of two of such
motifs (Fig. 1, model B) in terms of stochastic simulations and variations in
the activity of the terminal kinase. We observe that in model B time-varying
sequestration of ppX plays a significant role in regulating the extend of intrinsic
noise in ppY. This is a purely stochastic phenomenon and has no counterpart
in deterministic regimes. Therefore, we named it dynamic sequestration. We
put our results into a realistic biological context by using biologically feasible
ranges of rate parameters. Overall, our results elucidate the role of stochastic
sequestration dynamics for the regulation of output variability in double PD
cycle cascade motifs without explicit feedback control.
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Fig. 1. Different cascade motifs of phosphorylation-dephosphoryation cycles.
(Left) A double PD cycle motif (model A) and (Right) a cascade of two of such motifs (model
B) are compared in this study. X and Y are different proteins, pX and ppX denote single and
double phosphorylated forms of protein X, and the same notation holds for the protein Y.
Phosphorylation and dephosphorylation are triggered by kinase and phosphatase molecules,

Eyin and E;(ﬁz, respectively.

2. Results

We use Gillespie’s direct stochastic simulation algorithm to generate stochas-
tic sample paths for models A and B. Therefore, we model phosphorylation and
dephosphorylation by kinase and phosphatase molecules by adopting the two
step enzyme-substrate kinetics to describe the corresponding biochemical reac-
tions (see Section 4.1 for more details). The notations that we use throughout
the paper are listed in Table 1. Expectation values are estimated via the gen-
eration of many sample paths and Monte Carlo integration and refer to an
equilibrium state in which the expectation is time-invariant. Variability in the
outputs is mainly compared via coefficients of variation (CV), which is, unlike
the standard deviation or the variance, a dimensionless quantity and is appro-
priate for a comparison of variables with different units or with large differences
in their mean values.
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Table 1. Notation

Notation Meaning

ppX’ Total number (including complexes) of doubly phos-
phorylated X protein molecules

Y +pY! Total number of not doubly phosphorylated Y protein
molecules

Ve Total number Y protein molecules, considered as a
conserved quantity

E[ppX], E[ppY] Expected number of unbound ppX and ppY molecules
in steady state

E[ppiXt] Expected number of total ppX molecules in steady
state

kon, ko, and keag Binding, unbinding and catalytic rate constants for

a two step enzyme-substrate kinetics (see Section 4.1
for more details)

Bix_py kon, kog and ke, values of the X protein and the Y
protein modules are pairwise equal
ka{( 5 eaty =" ey kof and keay of the Y protein module are r € Ry

times that of the X protein module

cy Coefficient of variation of model output (ppX or ppY,
respectively) in steady state

M Coefficient of variation of steady state output of
model M

P Pearson’s correlation coefficient

Ty Spearman’s correlation coefficient

2.1. Retroactivity via dynamic sequestration reduces output variability in cas-
cades of PD cycles

We compared CVs of both model outputs by first using the same set of
parameters for the X protein and the Y protein module exemplarily for three
different numbers of kinase molecules (Fig. 2). An interesting observation is that
for all values of Ey;y,, the value of ¢i* for E[ppY] of model Byx_,v are found
to be lower than that of model A. This observation appears counterintuitive
at first glance since adding a further stochastic module might increase rather
than decrease intrinsic noise, as stated e.g. in Klipp and Liebermeister (2006).
Since both modules are identical, the reduction must be caused by the different
input signals those modules face. While the X protein module faces Ey;, as
a constant input, since Ey;, is assumed a conserved quantity, the Y protein
module is subject to ppX as input, which is a random variable that changes
over time. The reduction in the CV could either be caused by differences in

Exin and E[ppX], or by the fact that ppX is a time-dependent variable.

To differentiate between both causes, we recorded the values of E[ppX] for

a range of kinase molecules, as illustrated in Fig. 3 (left). While E[ppX] is
lower than Ey;, if Exn is set to 20 molecules or below, it exceeds Ey;, when
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Fig. 2. The coefficient of variation c}° decreases for cascaded architectures. For
models A and B, ¢;® are computed for 15, 20 and 25 Ey;, molecules from an ensemble average
of 1000 SSA realizations. Parameter values are summarized in Table 2.

Exin is higher than 21 molecules. For Ey, = 21 molecules both values are
almost identical, suggesting that the reduction in the CV we observed in Fig. 2
is caused by stochastic fluctuations in ppX. Indeed, a comparison of the CVs of
model B and of the Y protein module when facing the constant input E[ppX] for
Exin = 21 molecules (Fig. 3 (right)), shows that the coefficient of variation is
much larger in the latter case, which supports our suggestion that the stochastic
dynamics in ppX is responsible for the reduction in the CV of model B.

Since the underlying stochastic process is characterized by sequestration of
ppX by the Y protein module, in a next step we increased the sequestration rate

by setting By —0.01%kX , which causes ppX-Y and ppX-pY complexes

off, cat off, cat

to accumulate{ due t}o slow 1{1nbinc}ling and catalytic rates. This further decreased
the values of ¢J®, as shown in Fig. 4a, confirming that the output variability is
indeed controlled by stochastic dynamic sequestration of ppX. With the same
analysis as used before, we explicitly excluded differences in mean values of the
input of the Y protein module to be responsible for this further reduction of the

cs? (Figs 4b and 4c).

2.2. Sensing the downstream module via stochastic dynamic retroactivity

As discussed in the introduction, retroactivity is a well known effect in mod-
ular signaling motifs. Here, the phosphorylation state of the X protein molecule
is regulated by the downstream molecule Y. Such an effect has experimentally
been observed for example in Kim et al. (2011a), where the amount of dou-
bly phosphorylated ERK in the MAPK signaling pathway has been shown to
correlate with the number of ERK substrate molecules. The more substrate
molecules are available, the more ppERK is sequestered by binding to these
substrates. Since those ppERK molecules are temporarily not available for the
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Fig. 3. Constant input to the Y protein module does not contribute to the
reduction in the value of c¢3° of E[ppY]). (a) E[ppX] is quantified across a range of Eyi,
molecules. At Ey;, = 21 molecules, the amount of free ppX takes almost the same value,
providing a good reference for further comparisons. (b) Taking Ey;, = 21 molecules, c5®
values are compared between model B and the case where the Y protein module of model B is
fed with a constant input which is set to the expected number of free ppX molecules E[ppX].

Table 2 summarizes the rest of the parameter values.

phosphatase, this sequestration affects the ratio of phosphorylated and unphos-
phorylated ERK towards higher phosphorylation levels. In this way, ERK can
adapt its activity to the number of available substrates.

We investigated if a similar effect is also visible in our model setup and the
X system is able to adapt to the state of the Y system. Therefore, we mimicked
experiments in Kim et al. (2011a) by calculating the correlation coefficient r;

between E[prt] and YT. Results are shown in Fig. 5.
Shown are representative sample paths of ppX? for both Byx_jv (Fig. 5a)
and Byy ey =001k (Fig. 5b) for YT = 15 (light gray and red lines,

{o {off, cat}
respectively) and Y7 = 200 molecules (dark gray and red lines, respectively).
Thus, model B is able to capture this experimentally observed behavior, con-
firming that the X molecule senses the needs of the Y molecule via sequestration
and adapts to the state of the Y system.

However, in our simulation scenarios in Fig. 4, Y7 is a conserved quantity.
Thus, retroactivity cannot be directly explained by variations in Y. The quan-
tity that fluctuates stochastically in our setting is the number of Y molecules
that take part in the sequestration, i.e. those Y molecules Y!+ pY* that are not
fully phosphorylated. We anticipate that the X protein module is able to sense
these fluctuations and to adapt accordingly such that less fully phosphorylated
Y molecules trigger a shift in the X protein module towards ppX, resulting in
a dynamic correlation between ppX? and Y!+ pY!. We furthermore anticipate
that the strength of these dynamic correlations is highly dependent on the dy-
namic range in which the whole system operates. For example, the X protein
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Fig. 4. The coefficient of variation c}° of the cascaded architecture further de-
creases for slow timescales of the unbinding and catalytic reactions (a) A comparison
of ¢;® for model B and model B with 100 times smaller kog and kcat values for the Y protein
module, (b)-(c) the same analysis as in Fig. 3 was performed to ensure that this further reduc-
tion is indeed primarily caused by the increased sequestration rate of ppX. Table 2 summarizes
the rest of the parameter values.

module must be fast enough compared to fluctuations in the Y protein module
in order to be able to react to those changes. If this is not the case, the X
protein module is too slow to adapt and fluctuations are averaged out.
Therefore, we analyzed the dynamic correlations between ppX! and Y!+
pY! directly of the sample paths in different settings. Results are illustrated
in Figure 6, which are arranged in a similar manner as in Fig. 5. Figs 6a and

6b show representative sample paths for Byx_,v and B,y X ,
{off, cat {off, cat}

respectively. Simulations were performed with a total number of YT 100
molecules. Respective distributions of correlation coefficients p obtained via
1000 simulation runs are shown in Fig. 6¢c. Both settings show correlations that

}:0.0l*k
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Fig. 5. The X protein module senses Y7 via adaptation of the sequestration
rate. Sample paths for ppX* in simulations with Y7 = 15 and Y7 = 200 molecules for

models Byx_,v (a) and B,y —0.01xkX (b). Both settings result in a perfect rank
{off, cat} V- {otf, cat}

correlation between Y7 and E[prt].

are significantly different from zero. In the first scenario, time scales for the
dynamics in the X and the Y protein modules are comparable, leading to a
time delay in the reaction of the X protein module to changes in the Y protein
module, which results in an overall negative correlation between ppX? and Y*+
pYt. In the second scenario, where the Y protein module has a much slower
dynamics, the X protein module is able to follow changes in the phosphorylation
state of the Y protein module instantaneously, and the correlation is positive
instead.

As expected, correlations become smaller with decreasing number of YT
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Fig. 6. Stochastic sequestration dynamics causes a reduction in output
variability of model B. Sample paths of ppX! and Y!+ pY? for Byx_,v (a) and
for YT = 100 molecules (b). (c) Distributions of correlation co-

k%{off, cat}:0'01*k%(off, cat}
efficients p for both settings that have been inferred via 1000 SSA simulations. Parameter
settings are listed in Table 2. Param values: Y7 = 100, Eyj, = 21 molecules, u1 = —0.3068,
o1 = 0.0447 (black) pu2 = 0.3287, o2 = 0.0672 (red)

molecules, as exemplarily shown in Fig. A.9 in the appendix, where we have
used Y7 = 15 molecules.

Overall, our analysis shows that stochastic sequestration dynamics affects
variability in the activity state of the downstream protein of cascades of double
PD cycle motifs. Of note is that this form of retroactivity can only be observed
in a stochastic environment and has no counterpart in a deterministic regime.
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2.3. Dynamic sequestration in biological systems

In order to put our results into biological context, we decided to set model pa-
rameters within biologically feasible ranges where applicable. For this purpose,
we adopted our parameters by using values recorded in Table 1 of Dhanan-
janeyulu et al. (2012). These values have been inferred from experiments on the
Ras/MEK/ERK signaling cascade in mammalian cells, as described in Fujioka
et al. (2006). Resulting parameter values are listed in Table 3. Using these
values, we performed the same analysis as in Fig. 2. Results are recorded in
Fig. 7.

While Fig. 7a clearly shows the reduction in the coefficient of variation c;°
from model A (denoted AP*) to model B (Bb°) and model B with reduced

rate constants for the Y protein module (B}z{? —0.01xkX ) for the range
{off, cat} ™ " * {off, cat}

Exin = 60 — 90 kinase molecules, model B has a considerably higher output
variability for the case Ey;, = 50 molecules as compared to model A.

10
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Fig. 7. Stochastic sequestration dynamics in a biological context. (a) Same analysis
as in Fig. 2. Different model variants are compared in terms of their coeflicients of variations
c5%. (b)-(e) Sample path and correlation analysis for Ey;, = 50 molecules for model BP®© (b-c)

and model BPio C0.015EX (d-e). Parameters are recorded in Table 3.
{off, cat} {oft, cat}

To explain this behavior, we did a sensitivity analysis via dose response
curves, in which we analyzed model outputs with respect to different input

11
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values. Results are shown in Fig. 8 for the 'non-biological’ context (left col-
umn) and the biological context (right column). The left column shows that

E[ppX] and E[ppY] are both in a highly dynamic range for Ey;, = [15 — 25]
(indicated by shaded regions). For this regime, E[ppX] approximately spans a
range between 5 and 50 molecules, the respective range for E[ppY] is between
30 and 60 molecules. Thus, both variables are highly sensitive to variations in
the input, although E[ppY] to a lesser extent. For B,y

{off, cat}
E[ppY] curve increases much faster and is in saturation at about E[ppY] = 60
molecules already at Ey, = 10.

_ the
=001k 1t cary’

12
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Fig. 8. Dose-repsonse curves for model outputs. Expectation values for model outputs
as functions of Ey;, for the 'non-biological’ context (left) and the biological context (right).

Thus, E[ppY] is extremely insensitive to variations in Ey;, and to stochastic
fluctuations in ppX. The results for simulations in the biological context are
illustrated on the right. Especially for Ey;, = 50 molecules, E[ppX] is still at
an extremely low value with a small sensitivity, while E[ppY] has just reached
the start of its dynamic range and thus shows a high sensitivity with respect to

variations in Ey;,, which explains the increase of the coefficient of variation in

13


https://doi.org/10.1101/278929
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/278929; this version posted March 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 7a. As before, for Bziyo —0.015kX , E[ppY] has reached saturation

{off, cat} {off, cat}
for the range of Ey;, values that are considered here and hence shows extremely

low sensitivities and low coefficients of variation. For higher Ey;, values, E[ppX]
rapidly comes into its dynamic range, while E[ppY] is already almost saturated
for Eyin, = 60 molecules, explaining the immense decrease in the coefficient of
variation in model B from Eyi, = 50 to Ei;, = 60 molecules.

Taken together, this analysis shows that the dynamic range in which the
system operates is crucial for the effect of cascading on the output variation

and also highly influences stochastic sequestration dynamics.

3. Discussion and conclusions

In this study we compared a double PD cycle model (model A) and a cas-
cade of two of such models (model B) with respect to stochastic variations in
the activity of the downstream protein. Our analysis revealed an ambivalent
role of stochastic sequestration dynamics for the regulation of the Y protein
module variability, here measured in terms of coefficients of variation in doubly
phosphorylated Y, ppY. Sequestration of doubly phosphorylated X, ppX, by the
Y protein module constitutes a kind of retroactivity. Via sequestration, the X
protein module senses and reacts to the state of the Y protein module, and hence
information is propagated from the downstream to the upstream molecules in
these protein cascades. This effect causes a correlation in the sample paths of
ppX? and those molecules of the Y system that are not fully phosphorylated, Y*
and pY?, and results in a reduction of the coefficient of variation of ppY in most
of the cases that we considered. Moreover, we also investigated conditions for
stochastic dynamic sequestration to have a notable effect, which highly depends
on the dynamic range in which the whole system operates. We argued that the
time scale of the X protein module must be fast enough such that it can dynam-
ically adapt to changes in the state of the Y protein module, otherwise those
changes are averaged out and the correlation in the sample paths disappears.
Moreover, the sequestration rate of ppX must have an impact on the X protein
module, which is for example not the case if the total number of Y molecules,
YT, is too small. Depending on operating regimes in the dose response curves of
the system, we revealed that dynamic sequestration can also have the opposite
effect, namely enhancing output variability. This is the case if the system oper-
ates in a regime where ppY is highly sensitive to changes in Ey;, and at the same
time the X protein module is too slow to react instantaneously to state changes
in the Y protein module. In this case we observe stochastic oscillations in ppY
around its nominal value. The Y protein module reacts sensitively to stochastic
changes in ppX, and the response of the X protein module lacks behind. Similar
to a negative feedback with a time delay, this leads to oscillating behavior in
the state of the Y protein module, and the variation in ppY is increased in this
particular case.

So far, retroactive effects have mainly be studied via deterministic approaches.
In a recent study (Shah and Vecchio, 2017) it was mathematically shown that
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retroactivity is attenuated in cascaded phosphorylation and phosphotransfer
systems with single and/or double PD cycles with kinase as input, when main-
taining a low-high substrate concentration pattern like the MAPK signaling
model in Huang and Ferrel (1996). The same architecture with substrate as
input is incapable of attenuating retroactivity. Until now, different effects of
retroactivity have been described, including the conversion of a graded response
into a switch-like response in the context of transcription factor decoy sites
(Lee and Maheshri, 2012). Of note, retroactivity via stochastic dynamic seques-
tration has no direct deterministic counterpart, and it remains a challenging
question for the future whether its effect is relevant in real biological systems.

4. Materials and Methods

4.1. Model representation and assumptions

Models A and B described in the Fig. 1 are expanded using an enzyme-
substrate kinetics,

kon
S+E = ES -t pyE, (1)
Kott

where S denoted the substrate. The enzyme F is, depending on the particu-
lar reaction, either the kinase Eyj, or the phosphatase E,. Enzyme-substrate
complex and product are denoted E'S and P, respectively. Superscripts X and Y
refer to the X and the Y protein modules, respectively. In Model B, ppX acts as
a kinase for the Y protein. The parameters kqp, kog and ke, are stochastic rate
constants for binding, unbinding and catalytic reactions, respectively. Further-
more, we consider a distributive kinetics for double phosphorylation/dephos-
phorylation cycles, which requires two separate enzyme-binding events (Salazar
and Hofer, 2009).

4.2. Parameters and implementation details

Initial number of molecules Xinit Yinit Eifho Egho
100 100 20 20
Stochastic rate constants kX kX kX,
0.01 0.02 0.08

Table 2. Parameters for Figs 2, 3, 4, 5, 6, 8a, 8c, 8¢, and A.9. Stochastic rate
constants k%, (binding), kX (unbinding) and kX, (catalytic) (see Section 4.1 for more details)
have units of (molecule™!'time—!), (time~!) and (time~!) respectively.
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Initial number of molecules Xinit Yinit Effho Egho
757 567 32 32
Stochastic rate constants kX kX kY, kXs
phosphorylation 0.0016 0.01 0.0021 0.01
dephosphorylation 0.0141 0.01 0.0141 0.01

Table 3. Parameters for Figs 7, 8b, 8d, and 8f. In Dhananjaneyulu et al. (2012),
the values of the Michaelis-Menten (MM) constants of phosphorylation and dephosphoryla-
tion reactions for both the X and the Y potein modules are given together with the catalytic
rate constants. Here, first a value of kog = 0.01 time™! is taken, which is within the range
of [1073 — 1071] for a typical mammalian cell (Milo, 2013). Subsequently, respective val-

ues for kon are calculated using the relation K = %, where K is the MM constant.

For the X system, we denote the MM constants for phgsphorylation and dephosphorylation
reactions by K;(ho and Kziiepho’ respectively. The same notation applies for the Y system.
The values for K;(ho,Kﬁ(epho,tho, and K(};pho were set to 120, 22,110, and 22 molecules,
respectively, according to Dhananjaneyulu et al. (2012). The corresponding kcat values are
0.18571,0.3571,0.22571 and 0.3 s~ !, respectively (Dhananjaneyulu et al., 2012). Values for
the range of the number of kinase molecules chosen here, Fy;, = [50,60,70,80,90] is in the
same order of magnitude as the value Fy, = 94 recorded in Dhananjaneyulu et al. (2012).

4.83. Numerical simulations

The set of biochemical reactions described by Eq. 1 are simulated using Gille-
spie’s direct stochastic simulation algorithm implemented in the software Dizzy
(Ramsey et al., 2005). the expectation values in the steady state and coefficient
of variations are obtained from an ensemble of 1000 realizations. To generate
individual sample paths, we used our own version of the SSA implemented in
MATLAB 2016b (MATLAB, 2016). All simulations were carried out with a
laptop equipped with OS X Yosemite Version 10.10.5 having an Intel core i7
processor with a frequency of 2.5 GHz and a memory of 16 GB of type DDR3
with a frequency of 1600 MHz.
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Appendix A. Additional figure
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Fig. A.9. Parameter values: Y7 = 15, Eyj, = 21 molecules, p; = —0.2544, o1 = 0.0297
(black), po = 0.0739, o2 = 0.0745 (red)
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