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Abstract 

Understanding how gene expression is translated to phenotype is central to modern 

molecular biology, but the success is contingent on the intrinsic tractability of the 

specific traits under examination.  However, an a priori estimate of trait tractability 

from the perspective of gene expression is unavailable.  Motivated by the concept of 

entropy in a thermodynamic system, we here propose such an estimate (ST) by gauging 

the number (N) of different expression states that underlie the same trait abnormality, 

with large ST corresponding to large N.  By analyzing over 200 yeast morphological 

traits we show that ST is constrained by natural selection, which builds co-regulated 

gene modules to minimize the total number of possible expression states.  We further 

show that ST is a good measure of the titer of recurrent patterns of an expression-trait 

relationship, predicting the extent to which the trait could be deterministically 

understood with gene expression data.  

 

Introduction 

A complex system is characterized by the microscopic configuration of its 

constituents (or microstate) and the macroscopic property of the system (or macrostate) 

(Ladyman et al. 2013).  Cell is a typical complex system in which the expression of 

genes represents microstate and cellular phenotype represents macrostate (Komili and 

Silver 2008).  Disentangling the relationships between expression microstate and 

phenotypic macrostate has been the aim of numerous studies in molecular cell biology, 

with a focus recently on the production of large-scale data and the development of 
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sophisticated analyzing methods (Janes et al. 2005; Segal et al. 2005; Lee et al. 2008; 

Zhu et al. 2008; Ayroles et al. 2009; Chen et al. 2009; Civelek and Lusis 2014; Gamazon 

et al. 2015; Ritchie et al. 2015; Gusev et al. 2016).  Despite enormous achievements, 

the availability of many methods per se indicates the limitation of the data and the lack 

of generality of the methods (Amin et al. 2014; Lloyd et al. 2015; Volm and Efferth 

2015), highlighting the fact that the success of the extrinsic research efforts is 

contingent on the intrinsic tractability of the focal relationships.  The importance of 

knowing a priori the tractability of a question to be addressed is widely recognized in 

mathematics, physics, and chemistry (Ayoub 1982; Feldman and Crutchfield 1998; 

Allu and Oprea 2005; Lopezruiz et al. 2010).  For example, the competition for finding 

a general formula for solving equations of degree five had lasted ~300 years since the 

successes in equations of degree three and degree four in the 16th century, and ended in 

the 19th century when the impossibility of such a general formula was proved; the 

subsequently developed group theory that gives an effective criterion for the solvability 

of all polynomial equations formed the basis of modern algebra (Ayoub 1982; Rosen 

2016).  However, biology as a branch of science dominated by empirical solutions has 

seldom been guided by such wisdoms.   

 

Results 

We reason that here a critical issue is, for a given phenotypic macrostate, how many 

expression microstates there could be.  Similar to the situation in thermodynamic 

systems, a large number (N) of possible microstates would suggest a strong uncertainty 
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underlying the given macrostate, understanding of which may rely on stochastic 

thinking more than the prevailing deterministic thinking in biology.  In contrast, 

straightforward understandings would be readily available if the N is small.  In 

research practice each time often a particular trait, which represents a single dimension 

of the multidimensional macrostate of the system, is examined.  For a trait considered 

qualitatively (e.g., normal versus abnormal), the information flow from genotypes to 

the same phenotype could be mediated by either the same or different expression 

microstates (Fig. 1A).  Here, the expression state of an individual gene can be 

categorized as 0, 1, and -1 for no expression difference, up-regulation, and down-

regulation relative to a reference level, respectively.  If the trait abnormality is 

described quantitatively, individuals with similar trait values can be treated as 

qualitatively the same.   
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Figure 1 (A) Two models of the information flow from genotype to phenotype that 

differ in the number of the intermediate expression microstates.  (B) The workflow of 

calculating ST using the 1,345 yeast mutants. 

 

Measure the divergence of the expression programs underlying a trait 

We propose a measure (ST) of the number of different expression states that 

underlie the same trait abnormality.  Previous studies measured quantitatively 216 
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morphological traits (e.g., cell size, bud growth direction, area of nucleus region, and 

so on) of 1,345 yeast Saccharomyces cerevisiae gene-deletion mutants whose genome-

wide expression profiles are also available (Supplemental Table 1) (Materials and 

Methods), permitting us to study the expression microstates of a large number of traits 

simultaneously (Ohya et al. 2005; Kemmeren et al. 2014).  For each morphological 

trait we ranked the 1,345 yeast mutants in an ascending order according to the focal 

trait values (Fig. 1B).  Because of the large number of mutants assessed, neighbouring 

mutants often showed highly similar trait values (Supplemental Fig. 1).  We then 

computed the average expression divergence (D) between two neighbouring mutants 

using the formula: 

𝐷 = ∑E(𝑀𝑖, 𝑀𝑖+1)/(𝑛 − 1)      (1)

𝑛−1

𝑖=1

 

, where n (=1,345) is the total number of mutants, Mi and Mi+1 represent the mutants 

ranked i and i+1, respectively, and E is the Euclidean distance of the expression profiles 

of the two mutants (Materials and Methods).  Note that here neighbouring mutants 

had commonality only in one dimension (i.e., the focal trait) of the phenotypic 

macrostate.  To gauge the expression divergences that represent dimensions 

independent from the focal trait, we computed Do, which is the D of the n mutants that 

are randomly sorted.  By repeating the randomization of the mutants 1,000 times we 

obtained the mean (𝐷𝑜
̅̅̅̅ ) and standard deviation (𝜎) of Do, and then had: 

𝑆𝑇 =
𝐷 − 𝐷𝑜

̅̅̅̅

𝜎
      (2) 

Thus, by controlling for the expression divergence unrelated to the focal trait ST 

measured specifically the divergence of the expression programs underlying the (nearly) 
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same trait alterations.   

Using this formula we obtained ST for each of the 216 yeast traits (Supplemental 

Table 2).  It varied substantially among traits, ranging from ~ -7 to ~2 (Fig. 2A).  

Because ST was effectively the Z-score transformation of D in the distribution of Do, -2 

< ST < 2 meant no significant difference between D and Do at the level of P ≈ 0.05.  

Thus, -2 < ST < 2 suggested no higher than expected expression convergence underlying 

the same/similar trait alterations; in contrast, ST < -2 suggested that the same/similar 

trait alterations of different mutants be mediated by shared expression programs.  

Notably, the observation -2 < ST < 2 cannot be explained by strong trait dissimilarity 

between neighbouring mutants (Supplemental Fig. 2).  The across-trait variation of ST 

was insensitive to the number and the identity of the mutants examined, suggesting that 

ST represent an intrinsic feature of the traits (Fig. 2B).   

 

Figure 2 (A) Distribution of ST of the 216 yeast morphologic traits.  

Approximately 40% of the traits show -2 < ST < 2, a range indicating no higher 

expression similarity than expected by chance between mutants of similar trait values.  

(B) The relative ST of the 216 traits is insensitive to the reduced number of mutants 

included.  Pearson’s R between ST-all based on all 1,345 mutants and ST_N based on 

randomly sampled N mutants, where N = 1200, 1000, 800, 600, 400, and 200, 

respectively, is shown.  Ten rounds of random sampling are considered for each N, 

and the mean Pearson’s R is plotted with the error bar showing one standard deviation.  

The comparison of ST-all and ST-200 derived from one random sampling is shown as 

an inset.  
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ST is shaped by natural selection that builds co-regulated gene modules 

It is interesting to know what determines the ST of a trait.  We noted that ST is 

analogous to the entropy of a thermodynamic system.  The second law of 

thermodynamics predicts that the entropy of a thermodynamic system always increases 

over time unless external forces are applied to the system.  We reasoned that natural 

selection is the only possible external force able to constrain a biological system.  We 

simulated how selection could shape an expression network that underlies traits by 

considering a previously proposed gene-trait architecture (Chen et al. 2016) (Materials 

and Methods).  The results suggested two insights: 1) Co-regulated gene modules can 

dramatically reduce ST; and 2) such co-regulations tend to evolve among genes 

responsible for evolutionarily more important traits (Supplemental Fig. 3).  This is 

because that the number of possible expression states could be astronomical if the 

involved genes lack co-regulation.  For example, there would be up to 250 or ~1015 

possible expression states for 50 genes each with two states (on and off) if every gene 

expresses independently.  Provided that distinct expression states can lead to similar 

trait alterations, the likelihood of observing similar expression states for similar trait 

alterations would be very low.  However, the number of possible expression states 

would reduce dramatically if the 50 genes are subject to co-regulation (the number 

would be 2 for perfect co-regulation).  As a consequence, the likelihood of observing 

similar expression states for similar trait alterations would be high.  Because co-

regulated gene modules must be built and/or maintained by selection, genes responsible 

for an unimportant trait subject to little selection are unlikely to evolve co-regulation.   

https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Isolated_system


9 
 

Although the simulation was conducted with arbitrary settings, it provided clues 

on how natural selection might be involved in shaping ST.  An immediate prediction 

is that the yeast traits with ST < -2 should be more important than those of -2 < ST < 2.  

Following previous studies (Ho and Zhang 2014; Chen et al. 2016), we used cell growth 

rate as a proxy of fitness, which was reasonable for the single-celled yeast, and 

calculated the correlation with fitness for each of the 216 traits (Supplemental Table 2) 

(Materials and Methods).  Traits that are strongly correlated with fitness can be 

regarded as evolutionarily important and subject to strong selective constraints.  In 

support of the prediction, the ST of a trait was well explained by the trait importance 

(Pearson’s R = -0.78, n = 216, P < 10-16; Fig. 3A); the pattern held when 31 exemplary 

traits that are less related with each other were considered (Pearson’s R = -0.80, n = 31, 

P < 10-7; inset of Fig. 3A) (Materials and Methods).  The result cannot be explained 

by the varied genetic complexity of the traits (Supplemental Fig. 4), which is defined 

by the fraction of genes whose deletion effects are statistically significant, or the varied 

measuring repeatability (Supplemental Fig. 5).   
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Figure 3 (A) ST is explained by the trait’s evolutionary importance (Pearson’s R = 

-0.78, n = 216, P < 10-16).  A similar pattern is shown as an inset for exemplary traits 

that are largely independent from each other (R = -0.8, n = 31, P < 10-7).  (B) The c-

ST of 78 protein complexes in the 31 exemplary traits that are sorted by trait importance.  

Different traits show a different spectrum of significant c-ST (< -2 or -4), suggesting 

trait-specific effects provided by the protein complexes.  (C) More significant c-ST are 

found for important traits, suggesting that the selection for maintaining the expression 

coordination of the protein complexes be mediated through these morphological traits.  

(D) Frequency distribution of the numbers of exemplary traits that are affected by each 

of the 78 protein complex (c-ST < -2).  (E) The expression profile of an example 

protein complex in the top 5 mutants of the traits D109_C and D197_C, respectively; 

shared expression profiles are found in neighboring mutants of D109_C (c-ST < -4), the 

evolutionarily more important trait that measures the distance from neck to bud's 

nucleus. 

According to the simulation and reasoning, natural selection reduces ST through 

promoting co-regulated gene modules to reduce the number of possible expression 

states that lead to the same phenotypic outputs.  We examined the yeast genes forming 

protein complexes, which are known to be co-regulated (Teichmann and Babu 2002).  

We considered 78 core yeast protein complexes each encoded by at least five different 
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genes (Materials and Methods) (Supplemental Table 3).  Because the traits examined 

here represent nearly all dimensions of the yeast morphology, it is likely that, for at 

least some of the protein complexes, their co-regulations are due to the selective 

constraints on these traits.  For each protein complex we computed complex-specific 

ST (c-ST for short) by using the same formula but considering only the few genes 

encoding the focal protein complex (Materials and Methods).  Consistently, c-ST < -2 

suggested similar expression profiles of the protein complex genes given the 

same/similar trait alterations.  If the co-regulation within a protein complex is 

built/maintained by selection irrelevant to the morphological traits, no correlation 

would be expected between c-ST and the strength of selection on these traits.  However, 

we found that, for many of the protein complexes, c-ST tends to be significant (< -2 or 

even < -4) in important traits (Fig. 3B-C).  This result suggested that natural selection 

acting on these morphological traits account for the co-regulations of the protein 

complexes genes.  Notably, to achieve this, the protein complexes must causally 

influence the traits instead of being reactive to the traits, because selection on a trait is 

unable to shape the genes just reactive to the trait.  There was a different spectrum of 

significant c-ST even among the important traits (Fig. 3B), and also the number of 

exemplary traits that are presumably influenced by each protein complex varied 

substantially (Fig. 3D).  This heterogeneity suggested that the significant c-ST cannot 

be not explained by a single factor, such as the response to growth reduction.  Thus, 

by associating known protein complexes with the many morphological traits we 

revealed both common and trait-specific mechanistic insights into the yeast traits 
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(Supplemental Table 4).  For example, the Isw1 complex involved in modifying 

chromatin structure appeared to underlie C102_C, a trait measuring the contour length 

of budding cell; and the TRAPP complex involved in transporting vesicles from ER to 

plasma membrane appeared to affect D109_C, a trait measuring the distance from neck 

to budding cell’s nucleus.  These understandings provide rich information for future 

studies on cell morphology.  To better explain the analysis of this part, using the 

protein phosphatase type 2A complex as an example we plotted the expression profiles 

of the 7 member genes of this complex in the top 5 mutants of an important trait 

D109_C and an unimportant trait D197_C, respectively (Fig. 3E).   

 

ST is an indicator of recurrent patterns of an expression-trait relationship 

Recurrent patterns are the prerequisite for revealing rules from empirical data 

(Ohnomachado 2001; Veer and Bernards 2008).  Since ST effectively measures the 

titer of recurrent patterns of an expression-trait relationship, it may predict how much 

we could possibly learn from an expression-trait relationship.  This point is supported 

partly by the above analysis of protein complexes that were found primarily for the 

traits with ST < -2.  To make a more general demonstration of the issue, we may seek 

for analytical rather than just empirical evidence.  We considered machine learning, 

which is often more capable than humans in dealing with complex expression-trait 

relationships.  To ensure that the learning is mathematically tractable we studied the 

multiple linear regression model and gauged the learning performance using the 

correlation between observation and prediction.  We showed analytically that ST well 
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approximates the learning performance (Materials and Methods, with details in 

Supplemental Text).  To gain further empirical support we analyzed the yeast 

expression-trait data by machine learning.  For every trait we used the same set of 

mutants as training data, ran the same learning processes without artificial feature 

selection, and tested the learned models in the same testing mutants (Materials and 

Methods).  This design made the prediction performance for different traits 

comparable.  Consistent with the analytical demonstration, the varied prediction 

performance for the different traits by linear models was well explained by ST (Fig. 4 & 

Supplemental Fig. 6).  We also tested a non-linear support vector regression (SVR) 

model.  We found that the prediction performance was also highly correlated with ST 

(Fig. 4 & Supplemental Fig. 6), although we were not able to prove analytically the 

relationship between ST and the prediction performance for non-linear models.  We 

noted that the predictions could be improved with more sophisticated models that can 

capture high-order gene interactions or with the inclusion of pre-existing knowledge.  

However, the strong correlations suggested that ST be a good measure of the relative 

titer of recurrent patterns, which determine the success of any learning practice based 

on empirical data.   
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Figure 4 ST underlies the prediction performance of the linear model (A) and the 

SVR model (B) for all the traits (Pearson’s R = -0.78 or -0.72, n = 216, P < 10-16) or the 

exemplary traits (inset) (Pearson’s R = -0.73 or -0.67, n = 31, P < 10-5 and P < 10-4 

respectively).  Here the prediction performance is measured by Pearson’s correlation 

coefficient between observed and predicted trait values of the testing mutants.   

 

Discussion 

The central question addressed in this study is about the number (N) of different 

expression states that underlies a given trait abnormality.  We developed a simple 

statistic (ST) for describing such an N-to-one expression-trait relationship.  Using 

yeast data we showed that ST is constrained by natural selection, which helps 

build/maintain co-regulated gene modules to reduce N, and that ST well predicts the 

relative tractability of over 200 expression-trait relationships.  Considering the 

similarity to the entropy of a thermodynamic system, ST can be viewed as the expression 

entropy of a biological trait.  Accordingly, stochastic thinking might be necessary to 

deal with the strong expression uncertainty of a trait with ST ≥ 0, a proposition 

reminding biologists of the paradigm shift in modern physics from classical mechanics 

to statistical mechanics.  Because the definition of ST is independent of the yeast 

system and natural selection as the ultimate determinant of ST applies to all organisms, 
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the main conclusions of this yeast-based study are likely to be of general meaning, 

although further work is certainly required to test the findings in other organisms.  
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Materials and Methods 

Data 

The microscopic images of triple-stained yeast cells are generated and analysed by 

Ohya, et al. (2005), characterizing quantitatively 501 morphological traits for 4,718 

different yeast mutants each lacking a non-essential gene (SCMD).  A proportion of 

the morphological traits (220 traits) with information of individual cells are considered 

by Ho, et al. (2014).  We consider just 216 traits that show consistent information 

between the two previous studies in this analysis.  The 216 morphological traits are 

also characterized for 122 wild-type yeast cell populations by Ohya, et al. (2005).  For 

each trait the mean and standard variation of the 122 wild-type values are computed, 

and the raw trait value of a mutant is then scaled into Z-score using the mean and 

standard deviation of the wild-types.  In addition, the cell growth rate of 4,449 yeast 

gene-deletion mutants are measured by Qian, et al. (2012), and the microarray-based 

expression profile of 1,484 mutants are generated by Kemmeren, et al. (2014).  

Because there are 6,123 genes covered in the microarray, the cutoff of defining 

expression up-regulation or down-regulation relative to wild-type is set to p < 0.0001 

(the number of expected expression changes by chance is ~0.6).  With manual 

corrections for the annotation of the different datasets, there are 1,345 mutants each 

with all the information of 216 morphological traits, growth rate, and expression profile. 

A total of 409 yeast core protein complexes are determined by Benschop et al. (2010), 

and 78 encoded by at least five different genes are considered in this study. 

 

Define the terms or concepts used in this study 

ST and c-ST: The Euclidean distance of the expression profiles of two neighboring 

mutants (E(𝑀𝑖, 𝑀𝑖+1)) is calculated as Eq. 1 for ST, where ei,j is the expression state of 

gene j in mutant i.  

E(𝑀𝑖, 𝑀𝑖+1) = √∑ (𝑒𝑖,𝑗 − 𝑒𝑖+1,𝑗)26,123
𝑗=1   (1) 

The c-ST is computed similarly to ST but considering only the few genes encoding the 

focal protein complex and using a modified Euclidean distance (E(𝑀𝑐𝑖, 𝑀𝑐𝑖+1)) as 

Eq. 2 to controls for the gene number (Nc). 

 E(𝑀𝑖, 𝑀𝑖+1) = √∑ (𝑒𝑖,𝑗 − 𝑒𝑖+1,𝑗)2N𝑐
𝑗=1 N𝑐⁄   (2) 

Exemplary traits: The 216 traits are not independent, and 31 exemplary traits are 

derived by clustering analysis (R package, ‘apcluster’, negDistMat, r = 2, Bodenhofer, 

et al., 2011) of the 1,345 mutants with. 

Trait evolutionary importance: The Pearson’s R between the absolute Z-score of a 

morphological trait and cell growth rate is computed among the 1,345 yeast mutants.  

Because cell growth rate is a reasonable proxy of fitness for the single-celled yeast, 

morphological traits with a stronger correlation with fitness (larger R) are regarded as 
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evolutionarily more important than those with a smaller R. 

Trait dissimilarity: To make the different traits more comparable, for each trait the 

average |Zi – Zi+1| / (|Zi| + |Zi+1|) is used to represent the trait dissimilarity between 

neighboring mutants, where Zi and Zi+1 are the Z-score trait value of the sorted mutant 

i and i+1, respectively (i = 1, 2, …, 1344). 

Genetic complexity: The genetic complexity of a trait is measured by the fraction of 

non-essential yeast genes that affect the trait (fgenes), which is obtained from Ho, et al 

(2014).  

Trait measuring repeatability: Often a few hundred cells of a mutant are examined in 

Ohya, et al (2005).  We randomly divide the individual cells of each mutant into two 

equal halves and compute the traits for each half separately.  For each trait the 

Pearson’s R between the two halves among the 1345 mutants is considered as the 

measuring repeatability of the focal trait.  

 

Simulation of the evolution of a gene network 

Suppose a network consisting of 50 worker genes regulated by four regulators and 

four traits each determined by a non-overlapping group of ten worker genes (remaining 

ten workers not associated with any trait).  The value of a trait is the geometric average 

of the absolute expression levels of the specific ten workers underlying the trait.   

To build the initial network structure we assign regulator-worker interactions by 

assuming equal probability for all regulator-worker pairs so that on average a regulator 

controls 10 workers.  The regulatory strength of a regulator-worker interaction 

considers two parameters: a regulator-specific trans-coefficient q, and a cis-coefficient 

r that is specific for each regulator-worker interaction.  All q and r values are randomly 

chosen from standard normal distribution.  The relative expression of worker 𝑗 is 

then given by Eq. 3, where 𝑐 = 2 is a constant baseline expression level for every 

worker, 𝑅 is the number of regulators that control worker 𝑗. 

𝑔𝑗
′ = 𝑐𝑒∑ 𝑞𝑖+𝑟𝑖𝑗

𝑅
𝑖=1   (3) 

Assuming a simple resource allocation model for expressions, the absolute expression 

level of worker j is given by Eq. 4, where C = 100 is the total expression capacity (only 

workers’ expressions are considered).  

𝑔𝑗 = 𝐶𝑔𝑗
′/ ∑ 𝑔𝑗

′50
𝑗=1   (4) 

With this network structure unaltered, we simulate 100 scenarios each with 

different q and r values to derive the initial trait values.  The average of the 100 values 

is used as the expected initial value t’ of a trait.  We define the optimal value of trait k 

in environment l by Eq. 5, where d acts as the “direction” factor to determine the 

direction of selection for optimality, and s is a random number of the uniform 

distribution between –1 and 1, which provides additional variability for the optimal trait 

values in different environments. 

𝑡𝑘𝑙
∗ = 𝑡′𝑑𝑒𝑠  (5) 

A total of ten environments are considered, and, for each trait, d equals to 100 in five 
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environments and to 0.01 in the other five environments.  In addition, for the ten 

environments considered, the trans-coefficient q of a regulator may vary across 

different environments (for each regulator there are different q values drawn from 

standard normal distribution in the initial network), but the cis-coefficient r of a 

regulator-worker interaction remains constant across the environments. 

The fitness of a specific network in environment l is calculated as Eq. 6, where wk 

is the fitness weight for trait k (w1 = w2 = 0.1, w3 = w4 = 10), and tkl is the value of trait 

k in environment l.   

𝑓𝑙 = 𝑒∑ −𝑤𝑘|log (𝑡𝑘𝑙 𝑡𝑘𝑙
∗⁄ )|4

𝑘=1 /4  (6) 

The combined fitness of a network is the harmonic average of the ten environment-

specific fitness.  

To simulate the evolution of the network we consider a population of 100 

individuals.  For each individual, four kinds of mutations are applied independently 

each with 10% probability: (i) adding a random number drawn from the uniform 

distribution between –0.1 and 0.1 to a random qil; (ii) adding a random number drawn 

from the uniform distribution between –0.1 and 0.1 to a random rij; (iii) creating an 

interaction for a random regulator-worker pair; and (iv) deleting an random regulator-

worker interaction.  After the mutations are applied, the new fitness of each 

individual/genotype is calculated.  The 100 individuals/genotypes of the next 

generation are obtained by drawing with replacements randomly from the current 100 

individuals/genotypes according to the new relative fitness of the individuals/genotypes.  

This process contains mutation, selection and drift, and is repeated for 10,000 

generations.   

 

Analytical demonstration of ST as an approximation of the machine learning 

performance (with details in Supplemental Text) 

For a multiple linear regression model, the response vector 𝑦⃗ is formulated by 

feature matrix X as (7): 

𝑦𝑖 = 𝑦̂𝑖 + 𝜀 = 𝑋𝑖𝛽 + 𝜀𝑖 ,    𝜀𝑖~𝑁(0, 𝜎𝜀
2)       (7) 

, where yi and ŷi are the observed and predicted value of a response variable in ith 

sample, and Xi denotes the ith row of X.  According to the routine training-testing 

paradigm with L-2 regularization in machine learning, β is analytically estimated by (8), 

and λopt is an optimal hyper-parameter determined by cross validation. 

β = (𝑋𝑇𝑋 + 𝜆𝑜𝑝𝑡𝐼)−1𝑋𝑇𝑦⃗     (8) 

R2, which is square of Pearson’s R in a linear regression analysis, is given by (9) 

when data is normalized before learning. 

𝑅2 =
∑(𝑦̂𝑖 − 𝑦̅)2

∑(𝑦𝑖 − 𝑦̅)2
≈

𝑦⃗𝑇(𝑋𝛽)

𝑦⃗𝑇𝑦⃗
     (9) 

The denominator 𝑦⃗𝑇𝑦⃗ in (9) can be assumed to be constant under normalization when 

the sample size is fixed.  Thus, R2 is determined (10). 

𝐹0 = 𝑦⃗𝑇(𝑋𝛽)     (10) 

Combining (8) with (10), we get: 
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𝐹0 = (𝑦⃗𝑇𝑋)(𝑋𝑇𝑋 + 𝜆𝑜𝑝𝑡𝐼)−1(𝑦⃗𝑇𝑋)𝑇     (11) 

By singular value decomposition (SVD), X = P ∑ 𝑄𝑇, where P and Q are orthogonal 

matrices.  Then F0 can be rewritten as:  

𝐹0 = (𝑦⃗𝑇𝑋𝑄)Ω((𝑦⃗𝑇𝑋𝑄)𝑇     (12) 

, where Ω = diag(
1

𝜎1+𝜆𝑜𝑝𝑡
, … ,

1

𝜎𝑛+𝜆𝑜𝑝𝑡
), and σi (i = 1, 2, …, n) is the square of ith 

singular value of X. With a common larger than the maximum of
i . The final form 

of F0 can be approximated by (13) based on Talyor expansion (details in Supplement 

Text).   

𝐹 =
1

𝜆
‖𝑦⃗𝑇𝑋‖2     (13) 

F can be reversely determined further to Fr based on rearrangement inequality as (14) 

(details in Supplemental Text): 

𝐹𝑟 =
1

𝜆(𝑚 − 1)
∑(∑ |𝑋𝜎−1(𝑖)𝑗 − 𝑋𝜎−1(𝑖+1)𝑗|

𝑖

)2

𝑗

     (14) 

, where m is the sample size and j = 𝜎−1(𝑖) represents the jth term of vector y ranked 

ith when sorted ascendingly.  Finally, we can get the approximate relationship between 

Fr and ST as (15) since the arithmetic mean is less than and approximate to the square 

average (details in Supplemental Text):  

F𝑟 ≤
1

𝜆
∑ 𝐷𝑖

2 ≥
𝑚 − 1

𝜆
𝑆𝑇

2

𝑖

     (15) 

, where Di is the Euclidean distance between 𝑋𝜎−1(𝑖) and 𝑋𝜎−1(𝑖+1). 

 

Empirical performance of machine learning 

Supervised machine learning is conducted to infer an expression-trait function for 

each of the 216 traits using the 1345 mutants.  The mutants are divided into a training 

set and a testing set with a ratio of 4:1.  For each trait, the input features are all genes’ 

expression levels and the output is the corresponding trait value.  A linear model and 

the non-linear support vector regression (SVR) model are considered.  A ten-fold 

cross validation for the linear model or a five-fold cross validation for the SVR model 

is first carried out in the training set to tune the hyper-parameters; normal learning 

processes are then run in the same training set.  The trained models are tested in the 

testing set.  For each trait the performance of the trained models is evaluated by 

Pearson’s R between observed and predicted trait values, normalized root mean squared 

error (NRMSE), and mean absolute error (MAE), respectively.  Below are the details 

of the two models. 

Multiple linear model:  The hypothesis of multiple linear model is represented as 

(16), where X is an m by n matrix of expression levels, y is an m by 1 vector of trait 

values (m is the number of samples considered and n is the number of features), β is the 

parameters to be learned from training set and is defined as the minimizer of the cost 
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function of (16), as shown by (17), where λ is the controller of contribution on the cost 

function by the regularization term. 

y X     (16) 

2 2

2 2

1
=arg min ( )

2nR
X y

m
   


    (17) 

Gradient descent algorithm written in conventional MATLAB code is used to estimate 

β under the optimal λ determined by cross validation. Then performance of the learned 

model with estimated β is tested in the testing set. 

Support vector regression (SVR) model:  Epsilon-support vector regression is a 

non-linear regression model through kernel transformation of original features 

(Pedregosa et al., 2011).  The hypothesis of SVR is represented as (18) with Gaussian 

(RBF) kernel shown as (19), where N, X and xi represents the number of support vectors, 

original m by n feature matrix and a support vector, respectively. 

iy (X) + (x ,X) +
N

T

i

i

w b w K b        (18) 

2

( , ) exp( )i j i jK x x x x     (19) 

SVG solves a primal optimization problem given as (20).  

*

*

, , ,
1

i

*

i

*

1
min ( )

2

(x ) b ,

(x ) b ,

, 0, 1,...,m

i i

m
T

i i
w b

i

T

i i

T

i i

i i

w w C subject to

y w

w y

i

 
 

 

 

 



   

    

    

 



  (20) 

The SVR function with sequential minimal optimization (SMO) algorithm embedded 

in the cikit-learn package of Python achieves optimization process above.  Two hyper-

parameters, C and γ is tuned by grid search approach combined with a five-fold cross 

validation.  Learned model in training set is evaluated in testing set. 
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Supplemental text - The theoretical analysis of the connection of ST and R2 

 

The mathematical essence of predicting phenotype based on gene expression 

profile with linear model is conducting a multiple linear regression from feature matrix 

Xm×n to response vector 𝑦⃗𝑚×1.  The model is commonly expressed as (1). 
2

. (0, ),iidi i i i iy y X N         ，  (1) 

, where yi and ŷi are the observed and predicted value of response variable in ith sample, 

and Xi denote the ith row of X.  According to the routine training-testing paradigm 

with L-2 regularization in machine learning, β is analytically estimated by (2). 
1(X X )T T

opt I X y     (2) 

, where λopt is the optimal hyper-parameter, determined by cross validation.  

To evaluate the performance of a model, R2 called coefficient of determination in 

regression analysis, or the square of multiple correlation coefficient (Pearson’s R 

between observed and predicted value), is often used, given by (3). 

 
 

2

i
2

2

i

y
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y
R

y


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




 (3) 

For convenience, feature variables and response variable are usually normalized 

before learning since the normalization process does not change prediction results.  

Thus, R2 can be approximated by (4) due to normalization and the orthogonality of ε⃗ 

and 𝑦⃗̂𝑖. 

 
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     
    
    

 (4) 

The denominator 𝑦⃗𝑇𝑦⃗  in (4) can be approximated to be constant under 

normalization and fixed sample size.  Thus, R2 is approximated by F0 given by (5). 

0

T

F y X  (5) 

Combining with (2), we get (6): 

   1 T 1

0 (X X ) (X X )
TT T T

T T

opt optF y X I X y y X I y X       (6) 

By singular value decomposition (SVD), we get 
TX P Q   (7) 

, where ∑ is m by n matrix with singular value in the diagonal positions, and P and Q 

are orthogonal matrices satisfying 



T TPP QQ I   (8) 

Thus, 
TX X ( ) ( )T T T T T T TQ P P Q Q P P Q Q Q         (9) 

, where 1( ... )ndiag     satisfying 1 ... 0n     in which σi is the square of jth 

largest singular value.  

Thus,  

 
1

T 1(X X ) T T

opt optI Q I Q Q Q 


      (10) 

, where 

1

1 1
( ,..., )

opt n opt
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   

 
 

  (11) 

A common λ, which is larger than σ1, is used in place of λopt.  Based on Taylor 

expansion, 
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 (12) 

Combine (6) - (12), we get (13) (data not shown), 
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Thus, F0 is approximately determined by a quadratic form given by (14), denoted 

as F . 

 
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i

F y X


  (14) 

Equation (14) gives us another elegant predictor independent of learning process. 

However, its meaning is hard to be interpreted in empirical science.  

Then, set 

1
1(i)

(i)j i ij j

i i

g y X y X
 


    (15) 

, where 1j (i)   represents that the jth term of vector y ranks ith when sorted from 

smallest to largest.  

And we can get 

2
21 1
=j jF g g

 
    (16) 

We can further deduce from (16) according to the logic below.  Set λ fixed and F 



is maximum when each of absolute gj is maximum.  In terms of y, absolute gj is 

maximum when X.j has the same or reverse order with y according to Rearrangement 

Inequation, which is further approximately reversely equivalent to a form given by (18).  
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, where σ-1(i), defined by a response variable, is consistent with the previous description.  

Based on the fact that the arithmetic mean is less than the square average, we can 

find that (17) has a form consistent with arithmetic mean, and our ST defined based on 

biological logic has a form consistent with arithmetic mean, too.  Here, we build the 

approximate relationship between Fr and ST by seeking a common quadratic form as 

their common upper limit, given by (18). 
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 (18) 

, where m is the sample size and Di is the Euclidean distance between 𝑋𝜎−1(𝑖)  and 

𝑋𝜎−1(𝑖+1). Then we set 

21
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D D
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

 (19) 

D2 defined in (19) is just the common quadratic form and is also a predictor.  ST, 

which is a different form of F or Fr, can be better interpreted as the titer of patterns 

underlying a response variable.  In our circumstance, smaller ST means smaller 

expression distance between neighboring trait values, which means less recurrent 

patterns underlying a focal trait, and better tractability of the trait. 

 

 

Some remarks: 

1. β in the proving is an approximation of βtrain which is determined in training set. 

2. In practice, the performance is evaluated in testing set due to the overfitting in train 

set, because λopt is also an approximation by cross validation.  In our deduction, we 

assumed λopt is the truly optimal parameter and R2 can be evaluated in the total set. 

3. In the deduction, we have used a common λ which is larger than the square of the 

largest singular value in place of the λopt.  The approximation between the prediction 

based on λ and that based on λopt is shown in the following figure.  



 

In the above figure, the x-axis and the y-axis are Pearson’s R between observed and 

predicted trait values with λopt and common λ equal to 1.21×106, respectively.  The 

maximum of σi is less than 1.21×106.  The approximation between two results are 

supported by the high correlation between them (Pearson’s R=0.92, P < 10-16). 

4. Reverse approximation between F and Fr 

A sequence is an ordered set {ai} and the sum of neighboring distances is calculated 

by  

1

1

1
i

n
n

i ia
i

S a a






   for an n-element ordered sequence.  The minimal value of 

 i

n

a
S  is denoted as min

nS  which is obtained when {ai} is organized in a monotonous 

order.  For example, we can get            min 1,2,3 3,2,1 1,3,2 2,3,1 3,1,2 2,1,3

nS S S S S S S      .  

A sequence ordered from smallest to largest or from largest to smallest is called 

complete ordered sequence and denoted as  *

ia .  For convenience,  *

ia  is referred 

to be ordered from smallest to largest below by default since the reverse ordering is 

equivalent.  Here we want to prove the equivalence relationship between  *

ia  and

min

nS .  In other words, we want to prove min

nS  is obtained if and only if  ia  is 

ordered as  *

ia . 

We first map {ai} onto a number axis, in which each point corresponds to a number 

in {ai} and arranged from the smallest to the largest.  
 i

n

a
S  is equivalent to the track 

length defined as the sum of corresponding segment length on the axis of a track, plotted 

outside the axis and through every number according to the order in {ai} without circles.  

In the track, each number has a degree of 2 except the first and the last which have a 

degree of 1, and all the numbers are on the same track, which are two properties of the 

track not constrained.  Thus,  *

min

n

ia S  is equivalent to that the track length is 

minimal in the situation of continuously joining from the smallest to the largest.  

(i).  *

min

n

ia S  with mathematical induction:  

When {ai} has two elements and 1 2a a ,  1 2

2 2

min 1 2 ,
=

a a
S a a S  .  So 
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ia S . Assuming that  *

min
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ia S  for n k , we can get 
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



   ( n k ).  So we can derive that continuously joining 

according to  *

ia  gives the minimal track length for n k .  Next, we will prove 

 *

min

n

ia S  is satisfied for = +1n k  with proof by contradiction.  Assuming that 

 *

min

n

ia S  is not satisfied for = +1n k , therefore, there must exist a track whose track 

length is less than the track from the smallest to the largest defined in  *

ia .  There 

must exist repeated covering without any vacancy intervals which are defined as 

intervals not covered by any corresponding segment of the track.  Otherwise, the track 

is just the track defined in  *

ia  which has no repeated covering and vacancy intervals, 

too, which produces contradiction.  When the track has repeated covering, it can’t has 

a track length less than the track defined in  *

ia  and thus produce contradiction.  

Thus, there must exist at least a vacancy interval.  Based on assumption for n k , the 

two parts separated by this interval must be ordered as  *

ia .  Thus, there must exist 

four number, the first and the last and the two on both sides of this interval.  This is 

contradicted to the track property that all the numbers are on the same track.  

Therefore,  *

min

n

ia S  is satisfied for 1n k  and further any n. 

(ii)  *

min

n

ia S : 

All tracks must cover the whole segment from the smallest to the largest, which is 

obvious.  Thus, the length of any track must be no less than track length of  *

ia  

which only covers one time for each sub-segment of the whole segment. Then, 

 *

min

n

ia S . 

 

 

Legends of supplementary tables 

Supplemental Table 1 Identity of the 1,345 gene-deletion mutants. 

Supplemental Table 2 Characterized features of the 216 morphological traits, 

including ST, trait dissimilarity, evolutionary importance, measuring 

repeatability, genetic complexity, prediction performance by linear model 

and by SVR model, respectively, being exemplar or not, and the general 

trait description. 

Supplemental Table 3 Information of the 78 protein complexes. 

Supplemental Table 4 The c-ST of the 78 protein complexes in each of the 216 traits. 

 

 

 

 

 

 



Supplemental Figures 

 

 

Supplemental Fig. 1 Highly similar trait values between neighbouring mutants.  The 

average trait dissimilarity between neighbouring mutants is shown at the x-axis for the 

216 yeast traits. 

 

 

 

 

 

Supplemental Fig. 2 Traits with large ST (> -2) do not show strong trait dissimilarity 

between neighbouring mutants.  The correlation between ST and trait dissimilarity is 

even slightly negative (Pearson’s R = -0.32, n = 216, P < 10-5).   

 



 

Supplemental Fig. 3 With the course of evolution the reduction of ST and the increase 

of co-expression are stronger for important traits (red and blue lines) than unimportant 

traits (green and pink lines).  The co-regulation/co-expression of genes underlying the 

same trait is measured by the average Pearson’s R of the expression levels in the ten 

environments among the genes.  The gray line shows the Pearson’s R calculated using 

all gene pairs that do not affect the same trait.  The ST and R are calculated and plotted 

every 10 generations. 

 



 

Supplemental Fig. 4 Genetic complexity measured by fgenes does not account for the 

relationship between ST and trait importance.  (A) There is a slightly negative 

correlation between ST and fgenes (Pearson’s R = -0.31 n = 216, P < 10-5).  The three 

red dashed lines mark fgenes = 0, 0.05, and 0.1, respectively.  The strong negative 

correlation between ST and trait importance holds for traits with different levels of 

genetic complexity: (B) fgenes = 0; (C) 0 < fgenes ≤ 0.05; (D) 0.05 < fgenes ≤0.1; (E) fgenes > 

0.1.  

 

 

 

 

Supplemental Fig. 5 Trait measuring repeatability does not account for the 

relationship between ST and trait importance.  (A) There is a weak negative correlation 

between ST and trait measuring repeatability (Pearson’s R = -0.31, n = 216, P < 10-5).  

The red dashed line marks the measuring repeatability of 0.9.  (B) The strong negative 

correlation between ST and trait importance hold for the 67 traits with good measuring 

repeatability (> 0.9).  



 

 

Supplemental Fig. 6 Same as Fig. 4, except that the prediction performance is 

measured by the normalized root mean squared error (NRMSE) or the mean absolute 

error (MAE) between observed and predicted trait values of the testing mutants 

(Pearson’s R = 0.54, 0.53, 0.73, and 0.73 respectively, n = 216, P < 10-16 in all cases). 
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