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Abstract

We present the DeepProfile framework, which
learns a variational autoencoder (VAE) network
from thousands of publicly available gene expres-
sion samples and uses this network to encode a
low-dimensional representation (LDR) to predict
complex disease phenotypes. To our knowledge,
DeepProfile is the first attempt to use deep learn-
ing to extract a feature representation from a vast
quantity of unlabeled (i.e, lacking phenotype in-
formation) expression samples that are not incor-
porated into the prediction problem. We use Deep-
Profile to predict acute myeloid leukemia patients’
in vitro responses to 160 chemotherapy drugs. We
show that, when compared to the original features
(i.e., expression levels) and LDRs from two com-
monly used dimensionality reduction methods,
DeepProfile: (1) better predicts complex pheno-
types, (2) better captures known functional gene
groups, and (3) better reconstructs the input data.
We show that DeepProfile is generalizable to other
diseases and phenotypes by using it to predict
ovarian cancer patients’ tumor invasion patterns
and breast cancer patients’ disease subtypes.

1. Introduction

Learning robust prediction models based on molecular pro-
files (e.g., expression data) and complex phenotype data
(e.g., drug response) is a crucial step toward realizing the
many benefits of personalized medicine. However, most
expression datasets are high-dimensional (i.e., #samples <
#variables) and therefore, it is challenging to use them to
learn accurate prediction models. Learning a function that
maps observed molecular features to an informative low-
dimensional representation (LDR) is the key to success in
overcoming the bane of dimensionality.

We present DeepProfile, which uses VAEs to learn an un-
supervised neural network model of gene expression from
thousands of cancer patients, and then uses this model to
encode an LDR to predict complex phenotypes of patients
excluded from network training. To our knowledge, Deep-
Profile is the first attempt to predict complex phenotypes

using an LDR based on an unsupervised deep learning-based
method that is completely blind to both expression and phe-
notype data from the test samples. DeepProfile has three
unique aspects. First, since DeepProfile learns an unsuper-
vised model in the training step, it can use a vast quantity of
samples from which only gene expression data is available.
Second, it can encode an LDR for a new cancer patient
by transferring network information learned by the trained
model from a much greater number of individuals. Finally,
this newly encoded LDR can be effectively used to predict
any phenotype information for the new patient.

Since it learns an LDR based on a deep neural network
(DNN), DeepProfile has a potential to capture complex, non-
linear relationships between expression and phenotype data.
Consistent with that, our experimental results show that
DeepProfile better reveals hidden structures within the data.
It highly improves prediction of in vitro drug response of
acute myeloid leukemia (AML) patients to 160 chemother-
apy drugs when compared to the original features (i.e., ex-
pression levels) and LDRs learned based on two commonly
used dimensionality reduction methods — PCA and k-means
clustering — trained on the same large set of samples Deep-
Profile is trained on. Moreover, the LDR learned based
on DeepProfile can reconstruct input expression data and
capture known gene pathways more accurately than LDRs
based on PCA or k-means. Consistent results from addi-
tional applications of DeepProfile to ovarian cancer (OV) to
predict tumor histopathology and breast cancer (BRCA) to
predict patient subtypes imply that DeepProfile is a general
framework applicable to any cancer with a large number of
publicly available samples and various cancer phenotypes.

2. Related Work

We first describe studies that applied unsupervised deep
learning to expression data, then we mention machine learn-
ing methods used for drug response prediction, the main task
which led us to design and build the DeepProfile framework.

Tan et al. (2014) used denoising autoencoders and examined
the learned LDR in terms of its association with known
breast cancer features. Others used different autoencoder
models to learn an LDR for gene expression to improve the
clustering performance (Gupta et al., 2015; Cui et al., 2017).
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Rampasek et al. (2017) built semi-supervised VAE models
to improve drug response prediction accuracy using pre- and
post-treatment cell lines. Way & Greene (2017) used VAE
to learn biologically relevant latent space from The Cancer
Genome Atlas (TCGA) pan-cancer data. Chiu et al. (2018)
used autoencoders to predict drug response for various can-
cers using expression and mutation data. DeepProfile is
different from all these approaches because it is the first to
predict complex cancer phenotypes using an LDR learned
based on a VAE trained from almost all of the available
GEO patient expression samples for a cancer.

Drug response prediction has been addressed by several
authors most commonly by using ridge or elastic net regres-
sion (Garnett et al., 2012; Barretina et al., 2012; Jang et al.,
2013). Several other studies used more complex models
such as support vector machine and random forest to im-
prove prediction accuracy (Stetson et al., 2014) as well as
multitask learning (Costello et al., 2014; Yuan et al., 2016).
DeepProfile is separated out from these studies as it transfers
information from many patients with the same cancer type
using a deep autoencoder to predict drug response. Also,
DeepProfile uses only a small subset of genes while past
studies show performance on the entire set of genes.

3. Methods
3.1. The DeepProfile Framework

As shown in Fig. 1, DeepProfile: (1) learns a network repre-
sentation from the gene expression of thousands of AML pa-
tients in an unsupervised way, (2) uses the learned network
to encode an LDR for 30 held-out AML patient samples
whose in vitro responses to 160 drugs are available, and (3)
predicts the drug response of these patients using the en-
coded LDR. DeepProfile adopts a VAE (Kingma & Welling,
2013) to learn a network representation for the gene expres-
sion. VAE, an extension of a standard autoencoder (AE), is
an unsupervised DNN which uses variational inference to in-
fer the posterior distribution of latent embeddings. A VAE’s
objective is to minimize the error between the input data and
the data reconstructed from the embeddings; but it also as-
sumes that the posterior is normally distributed. It adopts a
standard Gaussian prior on the embeddings, which generally
yields an LDR more relevant and informative about the input
data, and more generalizable to unseen data compared to an
LDR learned by an AE. Our VAE model consists of encoder
and decoder networks, each with three dense layers. We
used sum of mean squared error (MSE) between input and
reconstructed data and Kullback-Leibler (KL) divergence
between the posterior and prior as an objective function and
trained using Adam method (Kingma & Ba, 2014). We built
our VAE model, available at https://github.com/
suinleelab/DeepProfile, using Keras with Tensor-
flow backend.
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Figure 1. The DeepProfile framework. We combined standardized
expression data collected from 96 studies and corrected batch
effects both within each study and across studies. The genes with a
median absolute deviation (MAD) higher than the mean MAD are
selected and clustered. The VAE network is trained using a total
of 300 gene clusters of 6,534 samples. Using the trained network,
an 8-dimensional LDR is learned for each of the 30 AML patient
samples, for which we have the in vitro response to 160 drugs. We
use the LDR as an input of an L1-regularized linear regression to
predict the response to each drug.

3.2. Data Collection and Experimental Setup

Genome-wide gene expression data consists of thousands of
variables (i.e., genes) and requires a large number of training
samples to learn a network representation that is relevant
to the biological mechanisms and generalizable to broader
populations. Thus, we trained our VAE models using a large
number of publicly available expression samples that we
collected from the National Center for Biotechnology Infor-
mation (NCBI) Gene Expression Omnibus (GEO) database
(Edgar et al., 2002) using a script we coded to automatically
download GEO data. We used microarray data from two
platforms with the highest number of samples in GEO —
Affymetrix HG-U133 plus 2.0 and Affymetrix HG-U133A.
Excluding healthy samples and cell lines resulted in a total
of 6,534 patient samples to be used by DeepProfile. To our
knowledge, we included all available AML patient samples
in GEO from the aforementioned two platforms.

To integrate data from various platforms, we took 13,237
genes available for all datasets. A study might have different
sample batches submitted on different dates. Therefore, we
corrected for the potential batch effects within each study
using ComBat (Johnson et al., 2007). We then standard-
ized (i.e., made zero-mean and unit variance) each gene in
each dataset to ensure that different input features (here,
gene expression levels) were on the same scale. We applied
batch effect correction to the entire data set once again using
ComBat, considering each study to be a separate batch in
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order to minimize the effect of potential confounders due
to experimental variations. We then removed the genes that
had a median absolute deviation (MAD) below the mean
MAD. As a result, 5,393 genes were selected, which we
divided into 300 clusters (using agglomerative clustering) so
that those with similar expression patterns were grouped to-
gether, reducing the noise and dimensionality of the feature
space. We used centroids of the learned 300 clusters to train
the VAE model. Then we used the network learned by VAE
to encode an 8-dimensional LDR for each of the 30 AML pa-
tient samples from Lee and Celik et al. (2018), which were
collected by the University of Washington Medical Center
and measured in terms of genome-wide gene expression and
in vitro response to 160 chemotherapy drugs. We used the
encoded LDR in an L1-regularized linear regression setting
and measured drug response prediction performance for
these patients separately for each drug. We computed the
prediction error using a cross-validation (CV) test and also
performed an additional CV on training samples to select
the regularization parameter A. Since the VAE model is non-
convex, the learned LDR is not unique and may depend on
the initial network weights. To ensure that our results con-
sidered the potential variation in the prediction performance
due to the variation in the learned LDRs, we trained the
VAE model ten times and retrained the prediction models
for each of the ten different 8-dimensional LDRs. Our re-
sult figures include the error bars representing one standard
deviation across predictions.

Next, we applied DeepProfile to additional two cancers and
used the learned LDRs to predict tumor invasion pattern for
OV and tumor subype for BRCA. For each of these addi-
tional applications, we applied the exact same procedures
for GEO data collection and preprocessing and CV tests as
for AML application. To our knowledge, for these cancers
as well, we used all GEO samples from the same two plat-
forms we used for AML. The only difference is that we used
a logistic regression since these are classification tasks.

Additional applications - OV and BRCA: We trained VAE
models for OV using a total of 2,714 training samples and
300 clusters learned from 4,572 genes with a MAD higher
than the mean MAD. Then, using the trained network, we
encoded an LDR for the expression of 85 TCGA OV sam-
ples (Network, 2011) for which we have the invasion pattern
phenotype (infiltrative or expansile) that was provided by
Celik et al. (2016). We then predicted the invasion pattern
phenotype using the encoded LDR. Similarly, we trained
VAE models for BRCA using a total of 11,963 training sam-
ples and 300 clusters learned from 3,048 genes with a MAD
higher than the mean MAD. Then, using the trained network,
we encoded an LDR for the expression of 493 TCGA BRCA
samples and predicted these samples’ subtypes (Basal-like,
Her2-enriched, Luminal-A, Luminal-B) provided by TCGA
(Network, 2012).
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Figure 2. (a) Comparison of drug response prediction MSEs av-
eraged over all 160 drugs or 15 drugs commonly used for AML
patients. (b), (c) Comparison of pathway recovery performance
between DeepProfile and (b) PCA and (c) k-means. Each dot
represents one of the 1,077 pathways. Horizontal and vertical
lines represent the statistical significance threshold p = 0.05. (d),
(e) Scatter plot of Spearman correlation between the original and
reconstructed expression comparing DeepProfile to (d) PCA and
(e) k-means. Test samples are marked in black.

4. Results

We compared DeepProfile to the original gene expression
features and LDRs from two commonly used dimension-
ality reduction methods — PCA and k-means — applied to
the same set of 6,534 AML patient samples from GEO. We
evaluated our method in three ways: (1) measuring how
well the learned LDR predicts drug response, (2) analyz-
ing how learned latent variables match known, biologically
meaninful gene pathways, and (3) computing the Spearman
correlation between the original and VAE-reconstructed data
for each sample in the training and test sets.

We first compared the MSE obtained by DeepProfile trained
from all microarray samples to the gene expression levels of
30 AML test patients and 8 LDR features learned by PCA
and k-means. The goal of this experiment is to determine
whether the transferred network learned in an unsupervised
manner from large amounts of data from a cancer type would
help with the task of phenotype prediction for new patients
with the same type of cancer. For k-means clustering, we
learned 8 gene clusters and used the cluster centroids as
LDR, while for PCA, we used top 8 principal components.
Fig. 2a compares MSEs averaged over all 160 drugs avail-
able in the dataset, and MSEs averaged over the subset of
drugs commonly used for AML treatment as provided by
Lee and Celik et al. (2018); DeepProfile outperformed all
other methods for both set of drugs.

Next, we checked whether the genes that belong to
known functional pathways (1,077 Reactome, BioCarta,
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and KEGG GeneSets from the C2 collection of the cur-
rent version of MSigDB (Subramanian et al., 2005) are
highly ranked by DeepProfile. We computed the weights
of each gene for each of the 8 LDR features (i.e., how
much each gene contributed to the value of each LDR
feature) learned based on PCA, k-means, or DeepPro-
file. We determined gene weights using the Keras imple-
mentation of the Integrated Gradients method (Sundarara-
jan et al., 2017) provided at https://github.com/
hiranumn/IntegratedGradients. We computed
the ranking of each gene based on its weight magnitude
and performed a permutation test to check whether the aver-
age ranking of the genes in the pathway was higher than it
would be by a random chance. We performed 10,000 ran-
dom permutations for each of the methods, and compared
DeepProfile to PCA and k-means in terms of the permu-
tation p-values. Of the well-captured pathways (i.e., the
ones that are captured by at least one of the methods with a
p-value < 0.05), 441 were better captured by DeepProfile
than by PCA (Fig. 2b) and 385 were better captured than
by k-means (Fig. 2¢). For each pathway, we performed the
permutation test for the top LDR feature from each method
(i.e., the embedding with the highest average ranking of the
pathway genes) because it is common that in a DNN model
like VAE, each hidden node captures a separate functional
unit that contributes to the learned meaningful representa-
tion of the data. Thus, we believe that it is reasonable to
assume that each pathway, which can be viewed as a func-
tional unit of gene expression, is represented by the LDR
feature that leads to the highest average ranking of the genes
in it.

Fig. 2d, e compare the Spearman correlation between the
original and reconstructed AML training and test samples.
DeepProfile achieved a better reconstruction correlation for
both training and test samples than PCA or k-means. Since
k-means provides a hard assignment of genes to clusters, we
could not use any cluster membership weights of the genes
while reconstructing data from the cluster centroids. That is
likely the reason for the significantly lower reconstruction
performance observed for k-means than for PCA.

Results from OV and BRCA: When used for OV tumor in-
vasion classification (Fig. 3a) and BRCA tumor subtype
classification (Fig. 3f), DeepProfile again achieved a lower
classification error than the original expression features of
the test samples and LDRs based on PCA and k-means
trained on the same set of samples as DeepProfile. DeepPro-
file trained for OV could capture 372 pathways significantly
better than PCA (Fig. 3b) and 353 pathways significantly
better than k-means (Fig. 3c). It also outperformed these
two methods in terms of the data reconstruction performance
(Fig. 3d, e). Similarly, DeepProfile trained for BRCA could
capture 314 pathways significantly better than PCA (Fig.
3g) and 364 pathways significantly better than k-means (Fig.

OVARIAN CANCER (OV)
(a) (b)

o
o

0.3
0.28
50.26
©0.24
E 0.22
= 0.2
-}EO-I 0 1 2 3 4 5 w0 1
£0.16
L30.14 @2 ' 20
0 12 8 SAMPLES

0.1

~
IS

~
[

log(p-values) for DeepProfile
N @

)

log(p-values) for DeepProfile
@

o

2 3 4 5
-log(p-values) for PCA -log(p-values) for k-means

=
il
~
>
N

o

o
Y

PCA}
2 o ®

k-means
o
»

<" SAMPLES

o o o o

N

DeepProfile
o
N
Correlation for DeepProfile

Correlation for DeepProf

0 0
0 02 04 06 08 1

Correlation for k-means

0 02 04 06 08 1
Correlation for PCA

gene expression

BREAST CANCER (BRCA)
(f)

&) (h)

)
)

0 02 04 06 08 1
Correlation for PCA

0 02 04 06 08 1
Correlation for k-means

2 2
0.34 2 2
. o I 364
0.32 §4 %4 PATHWAYS
a
= 0.3 > 2
S08 53 53 PATHWAYS
on @ n 4i
c 0.26 2% 3 ﬁi /
50.24 2.3 S s
£0.22 S £ iy
Y 0.2 S0 80
2 0 "0 1 2 3 4 5 "0 1 2 3 4 5
©0.18 -log(p-values) for PCA -log(p-values) for k-means
) .
%‘ 0.16 (U= 1 9729 /() 2 1 11810
0.14 S SAMPLES S SAMPLES S
0.12 %0.8 0.8 M
N o %
0.1 ; 8 8
N g < E ] e 0.6 006
o v & 8 s 4
25 3% 504 ‘o4 SA;/ISPSLES
o £ % £ 2
0 @ kS
S So2 T
g ~ 9 ° 302
a) S ]
v O 0 8 0
c
L
=)

Figure 3. OV and BRCA results. (a) and (f) compare the error ob-
tained by different methods for classifying the OV tumor invasion
patterns and BRCA tumor subtypes, respectively. See the text or
Fig. 2 caption for the details of the scatter plots in (b-e) and (g-j).

3h), and again outperformed these two methods in terms of
the data reconstruction performance (Fig. 31, j).

5. Discussion

We present the DeepProfile framework, which adopts a vari-
ational autoencoder (VAE) to learn a network representation
(LDR) from publicly available, unlabeled gene expression
data and uses that to predict drug response of new AML
patients. Although expression samples used in VAE train-
ing were obtained from many different studies, DeepProfile
successfully disentangles data discrepancies and learns an
informative LDR that accurately predicts complex pheno-
types for different cancers.

Our future directions include but are not limited to: (1)
training DeepProfile using samples from different cancers
which would significantly increase the sample size, thus,
statistical power, and yield a resulting model which could be
used for predicting phenotypes from different cancers, and
(2) extending the scope of DeepProfile by using multi-omics
data to create more informative embeddings for cancer.
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