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Detailed mapping of genetic and environmental influences on the functional connectome is a
crucial step toward developing intermediate phenotypes between genes and clinical diagnoses
or cognitive abilities. Historical attempts to estimate the genetic etiology of the connectome
have focused on large-scale brain networks - obscuring possible heterogeneity among or novel
communities of small network subcomponents. In the current study, we analyze resting-state
data from two, adult twin samples - 198 twins from the Colorado Longitudinal Twin Sample
and 422 twins from the Human Connectome Project - to examine genetic and environmental
influence on all pairwise functional connections between 264 brain regions (~35,000 functional
connections). We find high non-shared environmental influence across the entire connectome,
moderate heritability in roughly half of all connections, and weak-to-moderate shared environ-
mental influences. The pattern of genetic influence across the connectome is related to a priori
notions of functional brain networks but also highly heterogeneous as confirmed by a hierar-
chical clustering analysis of the genetic profile of all 264 regions. Additionally, we confirm
genetic influences on connections are independent of genetic influences shared with a global
summary measure of brain connectivity - an important validation analysis for future, high-
dimensionality genetic neuroimaging studies. Together, our analyses reveal a novel genetic
taxonomy of brain regions and have implications for studies employing multivariate signals
for prediction purposes. Variation across the population in those neurobiological signals is
influenced by genes and the environment in different spatial locations and to different degrees
suggesting genetic risk factors may be limited to a subset of the connectome.
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The functional connectome refers to intrinsically corre-
lated activity between brain regions when individuals are
not engaged in a particular task (i.e., measured during the
“resting state”; [Fox and Raichle, 2007]). Patterns within the
functional connectome are associated with clinical diagnoses
(for reviews see [Greicius, 2008, Zhang and Raichle, 2010])
and individual differences in cognitive abilities (for a broad
review of 125 studies see [Vaidya and Gordon, 2013]). Re-
cent work has showcased reliable and generalizable pre-
dictive models of individual differences in behavior that
utilize many measurements of the connectome as fea-
tures [Rosenberg et al., 2016, Finn et al., 2015] suggesting
patterns of connectivity may be candidate intermediate
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phenotypes (i.e., endophenotypes; [Hall and Smoller, 2010,
Kendler and Neale, 2010]) between genes and traits if ge-
netic influences exist. However, no work has quantified ge-
netic and environmental influences on the connectome at the
level of analysis of small regions of interest as used in multi-
variate predictive models.

The unit of analysis for studies investigating the functional
connectome spans several orders of magnitude - from func-
tional connections between a small number of large networks
with correlated activity [Yeo et al., 2011] and related func-
tion [Smith et al., 2009] to functional connections between
nearly a million individual voxels. Due to the computational
power needed to perform classic twin models at the level
of voxels or small regions, current efforts have focused on
quantifying genetic and environmental influence on either
global summary measures of functional connectivity, resting-
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state networks (i.e., large and spatially-separated groups of
regions that are all moderately correlated at rest and thus ap-
propriate to model as a single unit), or large regions of in-
terest (ROIs). At the coarsest level of detail, several studies
have revealed moderate heritability (i.e., “h2” or the propor-
tion of phenotypic variance explained by genetic variance; h2

= 0.43 - 0.64) of the degree to which an individual’s connec-
tome is globally efficient (i.e., maximizes information trans-
fer while reducing long path lengths and unnecessary con-
nections; [van den Heuvel et al., 2013, Fornito et al., 2011,
Sinclair et al., 2015]). However, while global efficiency may
be an informative phenotype, it may not be a thorough
summary of the entire connectome, possibly summarizing
only connections amongst the brains’ densely connected and
metabolically costly hub regions [Heuvel et al., 2012].

At the level of networks, functional connectivity of a
network implicated in internal mentation functions, the de-
fault network [Andrews-Hanna, 2011], is moderately herita-
ble as a whole (h2 = 0.42), while connectivity of subcompo-
nents of the default network are weakly-to-moderately her-
itable (h2 range: 0.10 to 0.42; [Glahn et al., 2010]), repli-
cating observations from the anatomical literature that her-
itability estimates may be higher for large versus small
pieces of cortex [Eyler et al., 2012]. Other work has re-
ported moderate heritability of a precuneus-dorsal posterior
cingulate network, visual network, default network, fron-
toparietal network, and dorsal attention network (range h2:
0.23 - 0.65), non-significant heritability for the salience and
sensory-somatomotor networks, and evidence of environ-
mental effects on functional connectivity between networks
[Yang et al., 2016]. Finally, a recent study investigated the
genetic etiology of functional connections among seven net-
works and pairwise connections between 51 brain areas, find-
ing moderate-to-strong heritability of seven networks (range
h2: ~0.60 - ~0.75) using a linear mixed effects model ap-
proach to account for unreliability across multiple resting-
state scans [Ge et al., 2017]. At the level of the 51-region
parcellation, the authors found heritability estimates for com-
ponents of some network, such as the default network, were
consistent, but also found evidence of heterogeneity for re-
gions of other networks such as the limbic and cognitive con-
trol networks.

In summary, existing studies have provided heritability
estimates for functional connectivity at global, network, or
large ROI levels of analysis. Generally speaking, parcella-
tions that include many regions (e.g., 200 - 500) claim to
divide the brain into units with distinct specific functions (as
opposed to vague overarching functional labels assigned to
large networks, such as vision). Although coarser levels of
analysis are undoubtedly informative, they preclude an ex-
amination of key questions that can only be addressed by tak-
ing a finer-grained approach. In particular, examining heri-
tability at the network level assumes that areas within the net-

works are homogeneous in terms of their genetic connections
to areas in other networks. Moreover, individual differences
in within-network connectivity cannot be examined, and
these individual differences may have important implications
for behavior (i.e., as contributors to “fingerprints” of cogni-
tive processes or psychopathology [Rosenberg et al., 2016]).
Important questions that can be examined at a finer level
of analysis are 1) Do within- and between-network con-
nections show similar levels of genetic and environmen-
tal influences? 2) Are networks homogeneous in terms of
their genetically influenced connectivity to other networks?
That is, is the best way to conceptualize genetic influences
on connectivity really in terms of a priori networks? Fi-
nally, 3) Does a summary measure of the connectome like
global efficiency capture most of the genetic variance in lo-
cal connectivity (c.f., as a global measure of cognition cap-
tures most of the genetic variance in specific cognitive abil-
ities [Petrill, 1997, Panizzon et al., 2014])? Answering these
questions speaks to recent efforts to “carve nature at its
joints” and thus has important implications for how we con-
ceptualize resting state connectivity as a biomarker or candi-
date endophenotype for behaviors of interest.

To answer these questions, we analyzed resting state data
from two comparably-aged adult twin samples: the Colorado
Longitudinal Twin Study (LTS; N = 251, including 54 com-
plete monozygotic [MZ] and 45 complete same-sex dizy-
gotic [DZ] pairs), and the Human Connectome Project (HCP;
N = 422, including 136 complete MZ and 75 complete same-
sex and opposite-sex DZ pairs). The inclusion of both sam-
ples allowed us to examine replicability of general patterns
rather than significance of specific effects, which is important
given that the size of each sample is not large for a twin study,
although it is large for a neuroimaging study. We decom-
posed the functional connectome of each individual into pair-
wise correlations between 264 individual regions (referred
to as connections) from a widely used and independently
derived brain parcellation ([Power et al., 2011]; i.e., 34,716
functional connections). This parcellation was developed
to reflect functional distinctions between small parts of cor-
tex [Wig et al., 2011], is accompanied by metadata assigning
each region to one of 14 function-specific resting-state com-
munities (e.g., visual network, default network, etc.), and is
within a window of optimum dimensionality that maximizes
reproducibility [Thirion et al., 2014].

We addressed the first two questions by applying a clas-
sic univariate twin model to each connection (see Materials
and Methods - Genetic Models) to estimate the proportion
of variance in connection strength explained by additive ge-
netic influence (A or heritability; the sum of a large number
of genetic variants that additively influence a trait), shared
environmental influence (C; influences that increase similar-
ity of siblings), and non-shared environmental influence (E;
influences that decrease similarity of siblings). The result-
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ing high-resolution genetic and environmental maps allowed
us to investigate differences between within-network and
between-network connections (question 1) and also investi-
gate the distribution and patterns of genetic influence within
a priori resting state networks compared to novel clusters of
regions (question 2). We addressed question 3 by examining
genetic and environmental decompositions of the correlation
between each local connection and a single, global summary
measure of the connectome (global efficiency) using bivari-
ate genetic models. The bivariate models allow us to depict
where there are genetic influences on connections that are
independent of the genetic influences on global efficiency
as well as genetic influences on connections that are shared
with global efficiency. If residual genetic influence is present
across the connectome, this analysis supports high-resolution
analysis approaches as independent and complementary to
analyses that utilize summary measures of the connectome.
Together, these analyses elucidate differences in the genetic
and environmental etiology of connections of different type
and function, and demonstrating that these genetic influences
are independent of genetic influences that have been previ-
ously described.

Materials and Methods

The current study is a parallel analysis of resting-state
data from a sample of adults recruited from the Colorado
Longitudinal Twin Study (referred to as LTS throughout the
manuscript) and 422 adults from a publicly available data set
from the Human Connectome Project (referred to as HCP
throughout the manuscript).

Participants

Participants from the LTS sample were 251 individuals
(Mage = 28.7 years, SDage = 0.57 years; 97 males) after 15
participants were removed due to excessive movement dur-
ing the scanning session based on the criteria of greater than
2 mm translation (motion in X, Y, or Z plane) or 2 degrees
rotation (roll, pitch, or yaw motion) (n = 14), and failure of
the presentation computer to display a fixation cross during
the resting scan (n = 1). Of the 251 individuals, there were
54 pairs of MZ twins, 45 pairs of DZ twins, 24 MZ twin
singletons, and 28 DZ twin singletons. Singletons are mem-
bers of twin pairs whose co-twins either did not participate
or were excluded from analysis. We did not utilize singletons
in the genetic analyses but did utilize them when investigat-
ing the relationship between individual differences in local
connection strength and global efficiency. All participants
were recruited from the Colorado Longitudinal Twin Study
which recruited from the Colorado Twin Registry based on
birth records. Comparisons with normative data on several
measures suggests that the sample is cognitively, academi-
cally, and demographically representative of the state of Col-
orado. Based on self report, the LTS sample is 92.6% White,

5.0% “more than one race”, <1% American Indian/Alaskan
Native, <1% Pacific Islander, or did not report their race
(1.2%). Hispanic individuals composed 9.1% of the sample.
Additional information about the LTS sample can be found in
[Rhea et al., 2006, Rhea et al., 2013]. Participants were paid
$150 for participation in the study or $25 per half hour for
those who did not finish the entire three-hour session. The
study session involved the administration of behavioral tasks
that measured EF ability as well as acquisition of anatomical
and functional brain data via magnetic resonance imaging.

HCP participants were 422 individuals (Mage = 29.2 years,
SDage = 3.46 years, Range = 22 - 35 years; 171 males)
selected from the most recent HCP data release because
they were part of complete pairs of twins who completed
the anatomical and functional imaging components of the
study. This subset of HCP participants were 136 MZ pairs
and 75 DZ pairs with race reported as 82.7% White, 11.3%
Black/African American, 4.5% Asian/Nat. Hawaiian/Other
Pacific Is., and <1% Unknown/Not reported, More than one,
or Am. Indian/Alaskan Nat. each.

Procedure

Testing took place in a single three-hour session. Follow-
ing review and obtainment of informed consent, participants
were familiarized with the imaging procedures. If both twins
of a pair participated on the same day, the twins completed
the protocol sequentially (twin order randomized) with the
same ordering of behavioral testing and imaging acquisition.
The resting-state scan always occurred first in the imaging
protocol, before tasks. All study procedures were fully ap-
proved by the Institutional Review Board of the University
of Colorado Boulder. All participants read and agreed to the
informed consent document prior to their initial enrollment
in the study and at each follow-up assessment. Testing for
the HCP sample participants has been explained thoroughly
in prior work [Van Essen et al., 2013].

Brain Imaging

Participants from the LTS sample were scanned in a
Siemens Tim Trio 3T scanner. Neuroanatomical data were
acquired with T1-weighted MP-RAGE sequence (acquisition
parameters: repetition time (TR) = 2400 ms, echo time (TE)
= 2.07, matrix size = 320 x 320 x 224, voxel size = 0.80
mm x 0.80 mm x 0.80 mm, flip angle (FA) = 8.00 deg., slice
thickness = 0.80 mm). Resting state data was acquired with
a 6.25 minute T2*-weighted echo-planar functional scan (ac-
quisition parameters: number of volumes = 816, TR = 460
ms, TE = 27.2 ms, matrix size = 82 x 82 x 56, voxel size
= 3.02 mm x 3.02 mm x 3.00 mm, FA = 44.0 deg., slice
thickness = 3.00 mm, field of view (FOV) = 248 mm). Dur-
ing the resting-state scan, participants were instructed to re-
lax and stare at a fixation cross while blinking as they nor-
mally would. Resting-state acquisition in the HCP sam-
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ple is described in detail elsewhere [Smith et al., 2013], but
briefly, each participant completed an anatomical and four,
15-minute resting state scans (eyes fixated) in the context of
a large imaging and behavioral testing battery. In the cur-
rent study, the first two 15-minute resting state scans were
utilized.

Preprocessing and Connectome Extraction

All processing of LTS brain data was performed in a stan-
dard install of FSL build 509 [Jenkinson et al., 2012]. To ac-
count for signal stabilization, the first 10 volumes of each
individual functional scan were removed, yielding 806 vol-
umes per subject for additional analysis. The functional
scans were corrected for head motion using MCFLIRT, FSL’s
motion correction tool. Brain extraction (BET) was used to
remove signal associated with non-brain material (e.g., skull,
sinuses, etc.). FSL’s FLIRT utility was used to perform a
boundary-based registration of each participant’s functional
scan to his or her anatomical volume and a 6 degree of free-
dom affine registration to MNI152 standard space. LTS scans
were subjected to AROMA, an automated independent com-
ponents analysis-based, single-subject denoising procedure
[Pruim et al., 2014]. Signal was extracted from masks of the
lateral ventricles, white matter, and whole brain volume and
regressed out along with a set of 6 motion regressors and as-
sociated first and second derivatives. Finally, the scans were
band-pass filtered (.001 - .08 Hz band).

Preprocessing for HCP data is described in
[Glasser et al., 2013]. Briefly, HCP scans were subjected to
a minimal preprocessing and FIX, a semi-automated single-
subject denoising procedure [Salimi-Khorshidi et al., 2014].
Additionally, we regressed out the mean greyordinate time
series from each scan as a proxy for the global signal
(as suggested by [Burgess et al., 2016]). HCP scans were
band-pass filtered (0.001 - 0.080 Hz band).

For each participant, we extracted the BOLD time se-
ries from each of 264, 1 cm spherical ROIs, drawn from
[Power et al., 2011], which serve as the nodes for the present
analysis. We used these nodes as they are drawn from a
meta-analysis of functional activations and have a commu-
nity structure that agrees with task-based functional net-
works (i.e., are organized into networks such as default
mode network and frontoparietal task control network). One-
centimeter spherical ROIs were chosen, as they provide the
largest possible size for a given ROI but preclude overlap
with neighboring ROIs. Within each participant, all pair-
wise Pearson’s r correlations were calculated, yielding a
264 x 264 correlation matrix. All Pearson’s r-values were
subjected to the Fisher’s z transformation to normalize the
variance in correlation values. All analyses used the per-
participant 264 x 264 z-correlation matrices as input. Bi-
variate analyses utilized a global summary measure of each
participant’s connectivity matrix which was calculated as

the reciprocal of the average shortest path length between
all 264 regions as calculated on a proportionally thresh-
olded (15%) connectivity matrix using the Python pack-
age networkx [Hagberg et al., 2008]. Calculation and ma-
nipulation of connectivity matrices as well as plotting was
also done in Python using the Pandas [McKinney, 2010],
Seaborn (http://seaborn.pydata.org/), and Matplotlib pack-
ages [Hunter, 2007].

Genetic Models

Global	Efficiency

A C E

Connectivity	
between	Region	X	

and	Region	Y

A C E
x1

x2

x3
y1 z1

y3 z3y2
z2

Figure 1. Bivariate Cholesky model. Additive genetic (A),
shared environmental (C), and non-shared environmental (E)
latent variables (left side) predicting global efficiency (via
paths x1, y1, and z1) and functional connectivity (via paths
x2, y2, and z2). Functional connectivity has residual A, C,
and E influences (right side). The variance explained by each
influence is obtained by squaring the paths (e.g., x3, y3, and
z3). The phenotypic correlation of global efficiency and lo-
cal functional connectivity that is predicted by share genetic
influences (Gr) is obtained by multiplying x1 * x2. The uni-
variate model of global efficiency is equivalent to left side of
the figure (i.e., removing the local connectivity measure).

All genetic analyses conducted were run as struc-
tural equation models in R through the OpenMx
[Boker et al., 2011] and UMX packages [Bates, 2017].
As all measures were continuous, these models utilized
maximum likelihood estimation [Bentler and Weeks, 1980].
Univariate genetic models were run on each connection. A
univariate model decomposes total phenotypic variation in a
connection into additive genetic (A), shared environmental
(C), and non-shared environmental (E) components. MZ
twins share all of their genes, whereas DZ twins share on
average 50% of their genes by descent, and both types are
reared together. Genetic influences (A) are indicated when
the MZ twin correlation is higher than the DZ correlation;
shared environmental influences (C) are indicated when the
DZ correlation is greater than half the MZ correlation; and
non-shared environmental influences (E), which can include
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measurement error, are indicated when the MZ correlation is
less than unity.

For the association between connections and global ef-
ficiency, we utilized bivariate Cholesky decompositions
(pictured in Figure 1). The Cholesky decomposition
is a common form of bivariate twin analysis, and can
be used to calculate the genetic correlation and correla-
tion predicted from A, C, and E overlap (for more see
[Neale and Cardon, 1992]). In this Cholesky decomposition,
the first set of A, C, and E latent variables predicting global
efficiency are also allowed to predict the local connection
(via paths x2, y2, and z2), and the local connection also has
residual A, C, and E variances (obtained by squaring paths
x3, y3, and z3). Two results from this analysis are of inter-
est. First, the matrix of residual A variances (i.e., squared
x3 paths) enables us to ascertain whether the finely detailed
genetic map of the connectome is simply a redescription of
a global summary measure of the connectome. That is, it
depicts where there are genetic influences on connections
that are independent of the genetic influences on global ef-
ficiency. If residual genetic influence is present across the
connectome, this analysis supports high-resolution analysis
approaches as independent and complementary to analyses
that utilize summary measures of the connectome. Second,
the phenotypic correlation between global efficiency and a
connection can be decomposed into the correlation explained
by genetic influences common to both traits (Gr = x1 * x2),
that explained by common shared environmental influences
(Cr= y1 * y2), and that explained by common non-shared en-
vironmental influences (Er = z1 * z2), with these three com-
ponents summing to the total phenotypic correlation. The
Gr matrix thus reveals where the phenotypic correlations be-
tween global efficiency and local connections are explained
by shared genetic influences.

Clustering Analysis

We clustered patterns of heritability estimates -
rows/columns of Figure 2a. Ward clustering was im-
plemented in Python using the Fastcluster [Mullner, 2013]
and Scikit-learn packages [Pedregosa et al., 2011]. We
applied clustering to the 264 x 264 matrix of A estimates to
find 2-100 clusters of regions. To estimate the stability of
each clustering solution, we calculated the silhouette score
for each sample and averaged all scores for each clustering
solution (Figure 4a). The silhouette score compares the
distance between a region and other members of its cluster to
the distance between that region and the nearest neighboring
cluster in similarity space. In the current analysis, similarity
was defined as the Euclidean distance between two regions’
vectors of heritability estimates. The silhouette analysis
The silhouette analysis revealed several “stable” solutions in
which the average silhouette score reached a local maximum,
as seen in the peaks of Figure 4a at solutions of k = 3, 11,

26, 46, and 65. We describe the clustering results at the
coarsest levels in the main body because they are a valid
demonstration of novel genetic communities without the
added complexity of describing 26, 46, and 65 clusters. We
provide a description of a high dimensionality solution in
Supporting Information.

Data Availability

Upon publication, A, C, and E estimates for all pairwise
connections for the HCP sample will be available for down-
load at https://github.com/AReineberg/genetic_connectome

Results

Group Average Connectomes

Visual comparison of mean phenotypic connectivity
matrices for each sample to one another and to ma-
trices reported in prior work using independent sam-
ples (e.g., Figure 3 of [Cole et al., 2014]; Figure 2 of
[Reineberg and Banich, 2016]) reveals striking similarity, es-
pecially in the prominence of resting-state networks along
the diagonals (Figure S1 [LTS] and Figure S2 [HCP]).

Univariate Twin Models

Connection-wise estimates of additive genetic influence
for the LTS and HCP samples are shown in Figure 2a, b
(lower triangles). In the LTS sample, additive genetic influ-
ence was moderate and bimodally distributed across the con-
nectome such that 18,077 of 34,716 unique connections were
estimated as having approximately zero heritability while a
separate, positively-skewed distribution described the heri-
tability of 16,639 connections (M = 0.140, SD = 0.097, Skew
= 0.748, Range = 0.010 - 0.574). Similarly, for the HCP
sample, 13,546 of 34,716 unique connections were estimated
as having approximately zero heritability while a separate,
positively-skewed distribution described the heritability of
21,170 connections (M = 0.131, SD = 0.083, Skew = 0.578,
Range = 0.010 - 0.504).

Shared environmental influences generally explained less
variance than genetic influences, as shown in Figure 2a, b
(upper triangles). In the LTS sample, shared environmental
influence was weak to moderate and bimodally distributed
across the connectome such that 22,520 of 34,716 unique
connections were estimated as having approximately zero
shared environmental influence while a separate, positively-
skewed distribution described the shared environmental in-
fluence of 12,196 connections (M = 0.106, SD = 0.076, Skew
= 0.834, Range = 0.01 - 0.470). Similarly, for the HCP sam-
ple, 20,598 of 34,716 unique connections were estimated as
having approximately zero shared environmental influence
while a separate, positively-skewed distribution described
the shared environmental influence of 14,118 connections
(M = 0.098, SD = 0.065, Skew = 0.690, Range = 0.01 -
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0.368). Although C estimates were low, several pieces of the
connectome have moderate shared environmental influence
such as within-default network connections, within-sensory
somatomotor connections, and default-to-other connections.

In both samples, non-shared environmental influences,
which include measurement error, were high across the en-
tire connectome (MLTS = 0.893, SDLTS = 0.102; MHCP =

0.877, SDHCP = 0.087) and negatively skewed (SkewLTS =

-0.832, SkewHCP = -0.468). Connection-wise estimates of
non-shared environmental influences are shown in the lower
and upper triangles of Figure S3 for the HCP and LTS sam-
ples, respectively. It should be noted that even though E es-
timates include measurement error, reliability of connections
was tested for the HCP sample and found to be high (M =

0.849, SD = 0.061; see Supporting Information - Relia-
bility), suggesting that the high E estimates across the con-
nectome are unlikely to solely reflect random measurement
error.

Within- and Between-Network Connections

To examine whether high resolution mapping of ge-
netic influence reveals differences in within- versus between-
network connections, (question 1), we investigated heritabil-
ity estimates for connections of those types. First, we con-
sidered average heritability across all connections considered
to be within the same a priori network versus all between-
network connections. In both samples, within-network con-
nectivity was more heritable than between network connec-
tivity (Table S1a; whole connectome results). This effect
was present even when controlling for the estimated test-
retest reliability of each connection in the HCP sample (see
Supporting Information - Reliability).

We also quantified differences in heritability for within
and between network connections at the level of each a pri-
ori network, as shown in Figure 3. In both samples, within-
network connections tended to be more heritable on aver-
age than between-network connections. In both samples, the
default, sensory-somatomotor hand, dorsal attention, visual
network had significantly higher heritability for within- than
between-network connections (Table S1b), but the subcorti-
cal and uncategorized networks had significantly higher her-
itability for between- than within-network connections. Al-
though within-network connections tended to be more herita-
ble on average than between-network connections, the distri-
butions of between-network connections tended to be more
positively skewed, perhaps suggesting there are a minimal
number of highly heritable between-network connections.

Finally, we quantified differences in heritability for
within- and between-network connections at the level of re-
gions (each of the 264 regions of the parcellation). Of re-
gions that had significantly higher heritability for within-
than between-network connections in the LTS (n = 61) and
HCP (n = 83) samples, 32 regions showed the effect in both

samples (See Table S2). These regions were predominantly
from the sensory-somatomotor (6), default (15), and visual
(10) networks, as well as a single salience network region.
None of the regions that had significantly higher heritability
for between-network connections in either sample showed
the effect in both samples.

Clustering Reveals Unique Genetic Communities

The distribution of A estimates within a priori networks
(Figure 3) partially answers the question of whether genetic
influences are homogeneous within any given resting-state
community (question 2). While these distributions of heri-
tability estimates suggest heterogeneity in the magnitudes of
genetic influence, patterns of genetic influence for the dif-
ferent regions of each network are also of interest. Thus,
we conducted a data-driven hierarchical (Ward) clustering
analysis to group together regions with similar patterns of
heritable connectivity. Ward clustering groups rows of the
additive genetic influence matrix (Figure 2) that show sim-
ilar patterns of heritable connectivity with all other regions,
while attempting to minimize within-cluster variance. This
analysis could reveal that the 264 regions cluster together
in a manner similar to a priori networks or in a novel way
(e.g., a cluster of regions with highly heritable connectiv-
ity to some default and frontoparietal network regions, but
minimally heritable connectivity to other regions). We ana-
lyzed average silhouette scores for clustering solutions (i.e.,
k-values) from 2 to 100, shown in Figure 4a, and discovered
stable solutions at k-values of 3, 11, 26, 46, and 65 in the
HCP sample and k-values of 2, 3, and 4 in the LTS sample.

Because stable solutions existed at a k-value of 3 in both
samples, we explored that clustering solution first. This level
provides the highest level overview of patterns of genetic
influence across the connectome. The three clusters from
the k = 3 stable solution will be referred to as super-clusters
throughout the remainder of the manuscript. The 3-cluster
solution for the HCP sample is shown in Figure 4b. Figure
4c provides a summary of how the three super-clusters differ
on genetic influence. Figure 5 provides an overview of both
the spatial location of the regions in each super-cluster (a-
c) and also the composition of those super-clusters in terms
of the regions assignments to a priori networks (right-most
column of Figure 4a-c).

Overall, the results revealed that regions do not geneti-
cally cluster based on an a priori notion of resting-state com-
munity structure. Super-cluster 1 was composed of 42 re-
gions with connectivity very minimally influenced by genes
(less than 5% variance explained by genetic sources, on av-
erage). While regions in super-cluster 1 belonged to all a
priori networks, subcortical and unassigned regions made up
a large percentage of the super-cluster. Super-cluster 2 re-
gions had especially heritable connectivity to default, fron-
toparietal, salience, dorsal attention, and visual network re-
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a. b.

Figure 2. Connection-wise estimates of additive genetic (A) and shared environmental (C) influences. Matrices contain
estimates from univariate twin models with the spatial location of each cell (estimate) corresponding to the functional con-
nection between two regions. Assignment to a priori networks is represented by colored bars along x and y axes. Because
triangles are redundant, different estimates are displayed in upper and lower triangles. a. LTS sample A and C estimates are in
the lower and upper triangles, respectively. b. HCP sample A and C estimates are in the lower and upper triangles, respectively.
CO = cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM = sensory/somatomotor, VA = ventral attention.

gions. Super-cluster 2 was composed of 100 regions that can
best be summarized as the majority of the default network
as well many fronto-parietal regions, among others. Super-
cluster 3 regions had especially heritable connectivity to pure
sensory and sensory-somatomotor regions as well as mod-
erately heritable connectivity to regions from cognitive net-
works (default, cingulo-opercular, frontoparietal, and atten-
tion networks). Super-cluster 3 was composed of 121 regions
from a variety of pure sensory (e.g., visual) and sensory-
somatomotor networks. The k = 3 solution of the LTS sample
maps closely on to the k = 3 solution of the HCP sample with
only a few notable difference (discussed further in Support-
ing Information - Clustering).

Higher-order clustering solutions from the HCP sample
give insight into how these large genetic communities break
down into more specific patterns of genetic influence. Fig-
ure SX shows the composition of sub-clusters from the 11-
cluster solution. Super-cluster 1 did not break down in this
higher dimensionality solution. Super-cluster 2 broke down
into three sub-clusters (2-4). Notably, each of these sub-
clusters (2, 3, and 4) contained a roughly equal percentage
of the default network, supporting the conclusion that the
default network contains several sets of regions that have
unique patterns of heritable connectivity across the connec-
tome. Super-cluster 3 broke into several smaller sub-clusters

in the 11-cluster solution. Some of these sub-clusters (7, 8,
10, and 11) contained regions from a single modality (e.g.,
visual and sensory-somatomotor regions), while others were
a conglomeration of regions from several a priori networks
mixed between higher-level cognition and lower-level cogni-
tion network types.

Bivariate Analyses

To ascertain whether global efficiency captures most of
the genetic variance in local connectivity (question 3), we
conducted a bivariate genetic analysis of local connections
and global efficiency. These bivariate analyses quantify the
degree to which local functional connectivity is genetically
separable from a summary measure of the connectome.

We found global efficiency was more heritable in the HCP
sample than in the LTS sample. In the HCP sample, 36.6%
of the variance in global efficiency was attributed to additive
genetic influences. In the LTS sample, 6.3% of the variance
in global efficiency was attributed to additive genetic influ-
ences. Given this difference, estimates of global efficiency
may be sensitive to the short scan length or the smaller sam-
ple size of the LTS data.

Regarding question 3, residual additive genetic influence
after accounting for genetic influence shared with global effi-
ciency (i.e., residual A variances or specific A) for each func-
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a.

b.

Figure 3. Connection-wise estimates of additive genetic
influence summarized by a priori networks. Violin plots
of distribution of additive genetic (A) estimates grouped by
a priori networks reveal higher heritability for within- than
between-network connections in both LTS (a) and HCP (b)
samples. CO = cingulo-opercular, DA = dorsal attention, FP
= frontoparietal, SSM = sensory/somatomotor, VA = ventral
attention.

tional connection (i.e., squared x3 paths; see Figure 1) was
distributed bimodally in a manner similar to the univariate
A estimates. In the HCP sample, approximately 64.5% of
connections (22,400) had 0 residual A variance with a sepa-
rate positively skewed distribution describing the remaining
12,316 connections (M = 0.117, SD = 0.073, Skew = 0.726,
Range = 0.010 - 0.524). In the LTS sample, approximately
75.8% of connections (26,318) had 0 residual A variance,
with a separate positively skewed distribution describing the
remaining 8,398 connections (M = 0.127, SD = 0.087, Skew
= 0.926, Range = 0.010 - 0.520). The matrix of specific
A estimates is displayed in Figure 6 for the HCP and LTS
samples (lower and upper triangle respectively). These re-
sults suggest that there are genetic influences specific to lo-
cal functional connections. That is, the genetic influences on
finer-grained measures of functional connections are not sim-
ply reflecting the genetic influences on global efficiency. Fu-
ture work should synthesize the spatial distribution of these
global and specific effects.

The bivariate models also serve as an example of how
a multivariate signal (here, 34,716 connections) associated
with individual differences in a trait (here, global efficiency)

a. Ward silhouette analysis

b. Ward k=3 clustering solution

c. Heritable connectivity profile for 3 clusters 

Su
pe

r-c
lu

st
er

s
1

2
3

A

Figure 4. Ward 3-cluster solution. Row-wise clustering
of HCP additive genetic (A) estimates reveals several stable
clustering solutions of regions with similar patterns of con-
nectivity heritability. Super-clusters (k = 3) are described
in detail. a. Silhouette analysis revels stable clustering solu-
tions at k-values of 3, 11, 26, 46, and 65. b. Clustered version
of HCP A estimates for k = 3 solution. c. Average connec-
tivity heritability for super-clusters 1, 2, and 3 organized by
a priori network of connection. Super-cluster 1 is character-
ized by weakly heritable connections. Super-clusters 2 and 3
have high connectivity heritability globally with particularly
high heritability of higher level cognitive (Super-cluster 2)
and sensory-somatomotor (Super-cluster 3) connections. CO
= cingulo-opercular, DA = dorsal attention, FP = frontopari-
etal, SSM = sensory/somatomotor, VA = ventral attention.
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a. Super-cluster 1 regions and network membership

b. Super-cluster 2 regions and network membership

c. Super-cluster 3 regions and network membership

Figure 5. Ward 3-cluster summary. Spatial location of regions from super-clusters 1-3 of k = 3 solution. a. Super-
cluster 1 regions were widely distributed across the brain. b. Super-cluster 2 regions were located across lateral prefrontal,
lateral parietal, mid and anterior temporal, midline frontal, and cingulate areas. c. Super-cluster 3 regions were located
primarily in sensory and somatomotor areas. CO = cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM =

sensory/somatomotor, VA = ventral attention.

can be broken into genetic and environmental components.
We describe this decomposition as an exploratory follow-up
to question 3 in Supporting Information - Bivariate Anal-
ysis, which can serve as a model for future work investigat-
ing the etiology of the relationship between functional con-
nectivity and other phenotypes. Briefly, we found individual
differences in a subset of the connectome were phenotyp-
ically associated with variation in global efficiency, so we
focused our exploration on those connections. Genetic in-
fluences were highly heterogeneous in their influence on the
correlation between local and global measures of connectiv-
ity, non-shared environmental influences were homogeneous
in their influence on the correlation between global efficiency
and local functional connectivity, and shared environment
did not play as large a role as genetic and non-shared envi-
ronmental influence but globally predicted negative correla-
tions between connection strength and global efficiency, even
for connections showing positive phenotypic correlations be-
tween connection strength and global efficiency.

Discussion

Across all analyses, we found converging evidence of eti-
ological heterogeneity in the functional connectome. High-
resolution mapping reveals a distribution of genetic and en-
vironmental influence that may be missed by approaches
that summarize functional connectivity at the level of larger
ROIs, networks, and global summary measures of the
connectome. More specifically, we found differences in
genetic influences for connections of different type (i.e.,
higher heritability of connections between regions of the
same functional network versus between regions of differ-
ent functional networks). This pattern was present across
the whole connectome and especially for the default, sen-
sory/somatomotor, dorsal attention, and visual networks.
This result provides preliminary evidence that the organi-
zation of the brain into networks based on function may be
driven by genetic influences on connections between regions
involved in the same processes. Interestingly, prior work
has established specific patterns of gene expression within
functional networks [Richiardi and Altmann, 2015], a possi-
ble mechanism linking these observations of genetic influ-
ence to specific functions.
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Figure 6. Connection-wise estimates of residual additive
genetic (A) variance. Estimates of residual genetic variance
for each connection after accounting for genetic influence
shared with global efficiency. Estimates for HCP and LTS
samples are in lower and upper triangles, respectively. CO
= cingulo-opercular, DA = dorsal attention, FP = frontopari-
etal, SSM = sensory/somatomotor, VA = ventral attention.

Although a number of our analyses were summarized by
a priori functional networks, the broad range of genetic es-
timates across the connectome led us to question whether
alternative groupings could better describe patterns of her-
itability in the connectome. A clustering procedure revealed
a highly novel finding: Regions grouped together based on
patterns of heritable connectivity at a level that was superor-
dinate to that of classic resting-state communities. In both
samples, we found stable super-clusters of regions. Most
notably, a set of “cognitive” and “sensory/somatomotor” re-
gions had characteristic patterns of highly heritable connec-
tions to regions of higher-level (e.g., default network) and
lower-level (e.g., visual) functions, for the cognitive and sen-
sory/somatomotor clusters respectively. Although the de-
scription of the these super-clusters as higher and lower-
level is likely an oversimplification, it is a worthwhile de-
scriptive tool until future work dissects the role of these sets
of brain regions. In both samples, we found evidence of
a super-cluster of regions that was almost entirely environ-
mentally influenced. Analyses of connection-wise reliabil-
ity (very high in all connections in the HCP sample) suggest
that these non-shared environmental influence estimates do
not simply reflect random measurement error. Thus, future
work should seek a more thorough understanding of the en-
vironmental factors influencing these primarily sensory, sub-
cortical, and cerebellar connections. Stable clustering so-
lutions were also found at levels of granularity similar to
classic resting-state communities, but, interestingly, these ge-

netic clusters were quite dissimilar to the a priori networks.
Notably, regions from the default network broke into sev-
eral sub-clusters which were differentiated on heritability of
connectivity to other default network regions and to regions
of other networks such as the frontoparietal network. Future
work should dissect these finer-grained parcels in more detail
as well as explore the other stable clustering solutions. The
latter may reveal small communities with highly character-
istic patterns of heritable connectivity which may not align
with known clusters of regions based on community detec-
tion performed on phenotypic functional connectivity.

A final novel finding was that the local connections
showed genetic influences independent from genetic influ-
ences on a global summary measure of the brain. Resid-
ual genetic influence justifies analysis at the level of small
regions and is an important commentary on an ongoing
debate about the proper level of analysis of connectivity,
suggesting all levels may be complementary. A practi-
cal application of this evidence of residual genetic influ-
ence would be to the study of multivariate functional con-
nectivity signals as a predictor of individual differences in
some cognitive ability or clinical variation (i.e., “finger-
printing” or “connecto-typing”). Our results suggest in-
fluence on a whole connectome signal will be diverse and
not accurately represented in global summary measures of
the connectome. Future work could, for example, apply
the same bivariate analysis we describe above and in Sup-
porting Information - Bivariate Analyses to the relation-
ship between local connections and clinical symptomatol-
ogy and/or cognitive abilities. Such an application could
identify novel brain-based candidate endophenotypes or fo-
cus intervention studies to novel locations, similar to stud-
ies from the neuroanatomical/clinical endophenotyping lit-
erature in which bivariate genetic models have been used
to identify the genetically-influenced neurobiological un-
derpinning of disorders such as major depressive disorder
[Glahn et al., 2012] and the genetically-influenced neurobi-
ological underpinnings of schizophrenia that are shared with
other psychiatric disorders [Lee et al., 2016].

Our approach is not without caveats. Although we high-
lighted overlapping results in both samples, we also observed
some sample-specific results. Notably, shared environmen-
tal influence was lower across the entire connectome in the
LTS sample than in the HCP sample. Although it is not
unusual to find a lack of shared environmental influence
(e.g., in the anatomical MRI [Eyler et al., 2011] and cogni-
tive literatures), sample differences could be due to relia-
bility differences in the measurement of resting-state func-
tional connectivity (e.g., scan time of 30 minutes [HCP] ver-
sus 6 minutes [LTS] is known to produce more reliable re-
sults [Gordon et al., 2017]) and/or due to demographic dif-
ferences in the two samples (e.g, the Colorado sample is less
racially diverse and sampled from higher socioeconomic sta-
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tus communities than the HCP sample). Socioeconomic sta-
tus differences could certainly explain sample differences in
the current study given prior work showing elevated shared
environmental influence on variation in IQ for individuals
near or below the poverty line [Turkheimer et al., 2003]. Ef-
fects of SES in a subset of the HCP sample have been par-
tially explored previously and shown to influence brains con-
nectivity [Smith et al., 2015]. Regarding modeling of ge-
netic influences, a small literature suggests classic twin mod-
eling procedures may bias estimates (upward in the case
of A and downward in the case of E) when compared to
models that do not impose boundary constraints on param-
eters [Carey, 2005]. Future work should compare these ap-
proaches and report notable differences, if any, in the genetic
profile of affected connections.

Overall, we demonstrate the utility of fine-grained A, C,
and E estimates by showing the genetic organization of the
brain is diverse and not as one would expect based solely
off the classic functional organization of the phenotypic con-
nectome. Our analysis sits in a continuum of dimensionality
reductions that spans multiple levels of brain organization
(i.e., from global summary measures to voxels), so, obvi-
ously one must ask if genetic neuroimaging studies should
continue to assess the etiology of finer grained parcella-
tions in the future. Our demonstration of residual genetic
variance for local connections in the bivariate analyses cer-
tainly demonstrates the added value of a fine-grained ap-
proach in addition to a single summary measure of the con-
nectome. But, our results also suggest a trade-off between
reliability and interpretability/application: Large networks
maximize heritability estimates but are of imprecise func-
tion and cannot be used to dissect the etiology of highly di-
mensional signals that are most useful for predictive model-
ing. Parcellations in the range of 200-500 might be recom-
mended for region-based approaches in the future because
there are numerous well-vetted atlases [Power et al., 2011,
Craddock et al., 2012, Gordon et al., 2016] designed to dif-
ferentiate homogeneous functional brain units while maxi-
mizing reliability (which could become an issue in voxel-
based approaches). There is still room for determining the
best functional parcellation scheme among these possible al-
ternatives, with genetic etiology as one possible mechanism
for evaluating the quality/usefulness of the parcellations. In
conclusion, our approach has important implications for in-
vestigations of neuroimaging-based biomarkers by 1. quanti-
fying which pieces of the connectome are heritable and thus
can be investigated as a potential endophenotype or marker
of genetic risk; 2. serving as a model for future studies seek-
ing a greater understanding of a broad literature of traits; and
3. establishing the foundation of a taxonomy of functional
connections based on genetic influence.
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Supporting Information

Mean Phenotypic Connectivity

Figures S1 and S2 show functional connectivity averaged
across all individuals in the LTS and HCP samples, respec-
tively.

Univatiate Twin Models - Non-shared Environmental In-
fluence

Connection-wise estimates of non-shared environmental
influence for the LTS and HCP samples are shown in Figure
S3.

Within versus Between-network Connectiity

We quantified differences in heritability for within and
between network connections summazired at various levels
of analysis - averaged across the whole connectome (Table
S1a), averaged for within- and between-network connections
for 14 a propri networks of interest (Table S1b), and for each
of 264 regions that are part of the parcellation utilized in the
current study (Table S2). These averages included all esti-
mates, including those estimated as zero.

Clustering

Figure S4 shows the configuration of the k = 11 clustering
solution for the HCP sample. These 11 clusters are subcom-
ponents of the k = 3 supercluster solution as described in the
main text.

We subjected the LTS sample heritability matrix to the
same clustering procedure as the HCP sample’s. We found
stable solutions at k-values of 2, 3 and 4 ( Figure S5a), with
some evidence of stable, higher-order solutions evidenced by
local maxima at k-values of 28 and 42 (although it should
be noted these solutions were substantially less stable than
the lower-order solutions). For the most direct comparison
to the HCP k = 3 super-cluster solution, we investigated the
k = 3 solution in the LTS sample in great detail. The k =

3 clustering solution is shown in Figure S5b and heritable
connectivity profile is described by Figure S5c. The super-
clusters of the LTS sample were similar in nature to those of
the HCP sample, with one super-cluster containing regions
with no particualrly clear pattern of heritable connectivity
(1), another super-cluster containing regions with particu-
larly heritable connectivity to default and other cognitive re-
gions (2), and a third super-cluster with particularly heritable
connectivity to sensory areas (predominantly visual regions).
Super-cluster 1 is larger in the LTS sample and super-cluster
3 is smaller in the LTS sample, consistent with the lower
heritability estimates in the LTS sample. Figure S6 shows
the spatial locations of and a priori network assignments for
regions that are part of the three LTS super-clusters.
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Figure S1. Mean phenotypic connectivity across LTS participants. Group average connectome for LTS sample. CO =

cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM = sensory/somatomotor, VA = ventral attention.

Figure S2. Mean phenotypic connectivity across HCP participants. Group average connectome for HCP sample. CO =

cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM = sensory/somatomotor, VA = ventral attention.

Bivariate Analyses

We found individual differences in global connectivity are
associated with variation in local functional connectivity by
correlating each edge within the connectome with the global
efficiency measure across individuals (a procedure similar
to one described in prior work to develop predictive models
([Shen et al., 2017]; see Figure S7a for phenotypic correla-
tions > 0.15 or < -0.15). The phenotypic correlation pat-
tern largely conforms to the a priori network structure with
large portions of sensory-somatomotor, default, visual, fron-

toparietal, and dorsal attention network connectivity signif-
icantly associated with global efficiency. Additionally, the
pattern is compatible with our understanding of global ef-
ficiency in that many connections that are positively asso-
ciated with global efficiency are between-network connec-
tions, suggesting that one way to increase global efficiency
is to decrease the functional distance between communities
that typically communicate mostly via connector hubs. A
notable exception to this rule is dorsal attention/visual-to-
sensory/somatomotor/cingulo-opercular connections, which
are between-network connections negatively correlated with
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Figure S3. Connection-wise estimates of non-shared environmental influence in LTS sample. Estimates of non-shared
environmental influence (E) are displayed for the HCP and LTS samples in the lower and upper triangles, respectively. CO =

cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM = sensory/somatomotor, VA = ventral attention.

Table 1
Within- versus between network connectivity by network

LTS HCP
mwithin mbetween t p mwithin mbetween t p

a. Heritability (A)Whole Connectome
- 0.090 0.065 12.883 <0.001 0.106 0.078 15.413 <0.001
b. Heritability (A) by network
Frontoparietal 0.072 0.065 1.130 ns 0.082 0.075 1.443 ns
Ventral Attention 0.082 0.085 -0.167 ns 0.116 0.079 2.005 0.053
Subcortical 0.023 0.040 -2.954 0.004 0.033 0.050 -2.646 0.010
Cingulo-opercular 0.042 0.072 -3.798 0.000 0.075 0.078 -0.323 ns
Auditory 0.082 0.060 1.798 ns 0.100 0.077 2.361 0.021
Default 0.110 0.076 11.585 0.000 0.117 0.080 13.323 0.000
Memory 0.073 0.071 0.061 ns 0.110 0.117 -0.223 ns
SSM Hand 0.068 0.058 2.251 0.025 0.119 0.089 5.544 0.000
Dorsal Attention 0.114 0.080 2.354 0.022 0.119 0.088 2.360 0.022
Visual 0.115 0.068 8.169 0.000 0.132 0.078 10.709 0.000
Cerebellar 0.082 0.043 1.173 ns 0.011 0.057 -4.164 0.007
Salience 0.080 0.071 0.946 ns 0.097 0.089 0.950 ns
SSM Mouth 0.016 0.066 -3.149 0.011 0.164 0.092 1.483 ns
Uncertain 0.036 0.050 -3.491 0.001 0.055 0.066 -2.528 0.012

global efficiency.

Multiplying the first two paths from the bivariate genetic
models (i.e., x1 * x2, y1 * y2, z1 * z2), provides estimates of
the phenotypic correlation between connection strength and
global efficiency predicted by genetics, shared environments,
and non-shared environments, respectively. These three es-
timates sum to the total phenotypic correlation, and dividing
by the phenotypic correlation provides information about the

relative contributions of genes and environments to the as-
sociation between local and global connectivity. Possible
results of this analysis include: 1. globally homogeneous
genetic or environment influence on the phenotypic corre-
lation, 2. homogeneous genetic or environmental influence
within any given a priori network, or 3. a heterogeneous
patten of genetic and environmental influence. Briefly, our
results indicate that genetic influence on the edges most phe-
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Figure S4. Ward 11-cluster configurations. Higher dimensionality clustering solution (k = 11) of additive genetic influences
(A) reveals super-cluster 2 breaks into sub-clusters (2, 3, 4) with mixed domain organization based on a priori functional
characterization. Super-cluster 3 breaks into 2 sub-clusters (5, 6) of mixed domains and 5 sub-clusters (7-11) with more
pure membership (e.g., visual regions only in sub-cluster 7) according to a priori functional characterization. CO = cingulo-
opercular, DA = dorsal attention, FP = frontoparietal, SSM = sensory/somatomotor, VA = ventral attention.
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Table 2
Within- versus between-network connectivity by region. Region is 0-indexed.

LTS HCP
region network Mean A Mean

Awithin

Mean
Abetween

t p Mean A Mean
Awithin

Mean
Abetween

t p

17 SSM Hand 0.024 0.044 0.021 2.200 0.029 0.066 0.125 0.059 3.902 0.000
18 SSM Hand 0.041 0.071 0.037 2.325 0.021 0.121 0.176 0.114 2.895 0.004
23 SSM Hand 0.070 0.105 0.065 2.339 0.020 0.123 0.171 0.117 2.571 0.011
26 SSM Hand 0.060 0.026 0.064 -2.316 0.021 0.109 0.147 0.104 2.104 0.036
29 SSM Hand 0.075 0.118 0.069 2.662 0.008 0.112 0.165 0.106 3.291 0.001
31 SSM Hand 0.042 0.102 0.034 4.955 0.000 0.080 0.129 0.074 3.274 0.001
74 Default 0.080 0.120 0.068 3.308 0.001 0.092 0.135 0.079 4.047 0.000
90 Default 0.107 0.146 0.097 2.815 0.005 0.107 0.156 0.094 3.950 0.000
98 Default 0.106 0.132 0.098 2.156 0.032 0.116 0.162 0.102 4.142 0.000
99 Default 0.074 0.102 0.066 2.544 0.012 0.116 0.166 0.102 4.262 0.000

103 Default 0.099 0.146 0.086 3.844 0.000 0.103 0.157 0.087 4.709 0.000
104 Default 0.119 0.173 0.104 3.687 0.000 0.065 0.091 0.057 2.965 0.003
106 Default 0.086 0.114 0.078 2.190 0.029 0.110 0.144 0.100 2.916 0.004
107 Default 0.084 0.127 0.072 3.475 0.001 0.080 0.111 0.071 3.278 0.001
108 Default 0.069 0.097 0.061 2.647 0.009 0.077 0.139 0.060 6.621 0.000
114 Default 0.085 0.123 0.075 3.008 0.003 0.111 0.156 0.099 4.130 0.000
115 Default 0.105 0.139 0.095 2.711 0.007 0.057 0.096 0.047 4.561 0.000
120 Default 0.092 0.131 0.080 3.454 0.001 0.091 0.112 0.086 2.044 0.042
127 Default 0.095 0.147 0.081 4.101 0.000 0.109 0.172 0.091 5.123 0.000
131 Default 0.081 0.105 0.074 2.085 0.038 0.111 0.175 0.093 5.797 0.000
137 Default 0.094 0.140 0.081 3.510 0.001 0.084 0.152 0.064 6.765 0.000
145 Visual 0.068 0.124 0.060 3.646 0.000 0.114 0.174 0.106 3.466 0.001
146 Visual 0.075 0.132 0.067 3.422 0.001 0.103 0.147 0.098 2.710 0.007
148 Visual 0.078 0.166 0.066 5.405 0.000 0.092 0.199 0.078 7.151 0.000
149 Visual 0.094 0.172 0.084 4.019 0.000 0.067 0.129 0.059 4.277 0.000
152 Visual 0.095 0.136 0.090 2.351 0.019 0.103 0.166 0.095 3.855 0.000
165 Visual 0.060 0.094 0.055 2.315 0.021 0.080 0.157 0.070 5.073 0.000
166 Visual 0.074 0.112 0.069 2.302 0.022 0.106 0.157 0.099 2.992 0.003
168 Visual 0.088 0.227 0.069 8.455 0.000 0.075 0.127 0.068 4.000 0.000
170 Visual 0.083 0.153 0.074 3.991 0.000 0.124 0.175 0.118 2.807 0.005
173 Visual 0.066 0.134 0.057 4.329 0.000 0.066 0.136 0.056 5.429 0.000
212 Salience 0.076 0.011 0.081 -3.021 0.003 0.039 0.080 0.036 2.988 0.003
255 SSM Hand 0.080 0.043 0.084 -2.179 0.030 0.118 0.160 0.113 2.455 0.015

notypically correlated with global efficiency are heteroge-
neous while environmental influences are much more cohe-
sive across the entire connectome.

Specifically, genetic, common environmental, and unique
environmental influence collectively determines the pheno-
typic relationship between local and global connectivity.
Figure S7b shows the correlation that genetic influences pre-
dict between local connectivity and global efficiency scaled
by the phenotypic correlation; thus units are proportions of
the phenotypic correlation predicted by genes/environment
with directionality indicating prediction in the same (+) or
opposite (-) direction of the phenotypic correlation. No-
tably, correlations predicted by genetics were both positive
and negative for connections between different spatial loca-
tions, even within connections of the same a priori network.
That is, the estimates of the predicted correlations varied both
within regions and between regions, demonstrating a com-

plex architecture of genetic effects across the connectome.
For example, shared additive genetic influence predicted a re-
lationship between default-to-sensory-somatomotor connec-
tivity and global efficiency in the same direction as the phe-
notypic correlation for some default network connections,
but predicted a relationship in the opposite direction of the
phenotypic correlation for other default network connec-
tions.

Figure S7c, upper triangle shows proportion of correla-
tions between local connectivity and global efficiency pre-
dicted by shared environmental influence. There are clearly
structured differences between the spatial distribution of pos-
itive and negative correlations predicted by shared environ-
mental influences; however, the absolute direction of the
predicted correlation was almost universally negative. That
is, C influences shared by local connectivity and global ef-
ficiency predicted negative correlations between local and
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a. Ward silhouette analysis

b. Ward k=3 clustering solution

c. Heritable connectivity profile for 3 clusters 
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Figure S5. Ward 3-cluster solution (LTS sample). Row-
wise clustering of LTS additive genetic (A) estimates reveals
several stable clustering solutions of regions with similar pat-
terns of connectivity heritability. Super-clusters (k = 3) are
described in detail for comparison to resuls in the HCP sam-
ple. a. Silhouette analysis revels stable clustering solutions
at k-values of 2, 3, and 4. b. Clustered version of LTS A
estimate matrix for k = 3 solution. c. Average connectiv-
ity heritability for super-clusters 1, 2, and 3 organized by a
priori network of connection. Super-cluster 1 is character-
ized by weakly heritable connections. Super-clusters 2 and
3 have high connectivity heritability globally with particu-
larly high heritability of higher level cognitive (Super-cluster
2) and visual (Super-cluster 3) connections. CO = cingulo-
opercular, DA = dorsal attention, FP = frontoparietal, SSM
= sensory/somatomotor, VA = ventral attention.
global measures of the connectome, even for places where
positive correlations are present in the phenotypic correlation
matrix, such as most connections between default network
areas and other networks.

Figure S7c, lower triangle shows proportions of corre-
lations between local connectivity and global efficiency pre-
dicted by non-shared environmental influences. Non-shared
environmental influences predominantly predicted relation-
ships between local connectivity and global efficiency in the
same direction as the phenotypic correlations.

Reliability

To examine the effect of test-retest reliability on estima-
tion of genetic influences, we calculated edge-wise estimates
of reliability utilizing multiple resting-state scans from the
HCP dataset. Although a total of four resting-state scans
are available for each HCP participant, we utilized only the
two from the first day of scanning due to storage constraints
of our computing infrastructure. Because each HCP partic-
ipant’s scans were collected with different phase encoding
(LR or RL with the intention of combining the two scans to
minimize susceptibility artifact when compared to a single
long scan using AP phase encoding, for example), we created
two different estimates of reliability for each edge, 1. split
scan reliability - correlation (corrected using the Spearman-
Brown prophecy formula) between homologous edges from
the first half of scan 1 concatenated to the second half of
scan 2 and the first half of scan 2 concatenated to the second
half of scan 1 - to minimize any confounding relationship
between measurement error, lateralized susceptibility artifact
due to LR or RL phase encoding, and start-of-scan/end-of-
scan effects, and 2. scan 1/scan 2 reliability - correlation
(corrected using the Spearman-Brown prophecy formula) be-
tween homologous edges from scan 1 and scan 2 - in which
measurement error could be confounded with susceptibility
artifact or start-of-scan/end-of-scan effects.

Split scan reliability was high and normally distributed (M
= 0.849, SD = 0.061). Scan 1/scan 2 reliability was lower
than split scan reliability (M = 0.449, SD = 0.215). The
two reliability metrics were highly correlated (Pearson’s r =

0.849, p < 0.001). We utilized these reliability metrics to test
whether or not differences in within versus between-network
connectivity persisted above and beyond any effects of re-
liability. We found a moderate and highly significant posi-
tive correlation between A estimates and split scan reliability
(Pearson’s r = 0.298, p < 0.001). A similar moderate and
highly significant positive correlation is found between A es-
timates and scan 1/scan 2 reliability (Pearson’s r = 0.319, p
< 0.001). We then regressed A estimates on within versus
between network connectivity controlling for either reliabil-
ity measure (in separate models) and found that differences
in heritability estimates for within versus between-network
connections persisted in both models.
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a. Super-cluster 1 regions and network membership

b. Super-cluster 2 regions and network membership

c. Super-cluster 3 regions and network membership

Figure S6. Ward 3-cluster summary (LTS sample). Spatial location of regions from super-clusters 1-3 of k = 3 solution
in the LTS sample. a. Super-cluster 1 regions are widely distributed across the brain. b. Super-cluster 2 regions are located
across lateral prefrontal, lateral parietal, mid and anterior temporal, midline frontal, and cingulate areas. c. Super-cluster 3
regions are located primarily in visual areas. CO = cingulo-opercular, DA = dorsal attention, FP = frontoparietal, SSM =

sensory/somatomotor, VA = ventral attention.
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a.

b.

c.

Figure S7. Bivariate Analyses. a. Phenotypic correlation
between local connections and global efficiency. Only phe-
notypic correlations > 0.15 or < -0.15 are displayed. b. Cor-
relation between local connections and global efficiency pre-
dicted by shared additive genetic influence (Gr). Gr is di-
vided by signed phenotypic correlation, thus units are pro-
portions of the phenotypic correlation with directionality in-
dicating prediction in the same (+) or opposite (-) direction
of the phenotypic correlation. c. Correlation between lo-
cal connections and global efficiency predicted by common
environmental influence (Cr; upper triangle) and unique en-
vironmental influence (Er; lower triangle). CO = cingulo-
opercular, DA = dorsal attention, FP = frontoparietal, SSM
= sensory/somatomotor, VA = ventral attention.
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