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Abstract 23 

Viral (meta)genomics is a rapidly growing field of study that is hampered by an inability to annotate 24 

the majority of viral sequences; therefore, the development of new bioinformatic approaches is very 25 

important. Here, we present a new automatic de novo genome annotation pipeline, called VIGA, to 26 

annotate prokaryotic and eukaryotic viral sequences from (meta)genomic studies. VIGA was 27 

benchmarked on a database of known viral genomes and a viral metagenomics case study. VIGA 28 

generated the most accurate outputs according to the number of coding sequences and their 29 

coordinates, outputs also had a lower number of non-informative annotations compared to other 30 

programs. 31 

Keywords: archaeal virus, bacteriophage, bioinformatics, de novo annotation, eukaryotic virus, 32 

genome annotation, metagenomics, viral genomics 33 
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3 

Introduction 34 

Virology is a diverse scientific discipline. While many researchers are interested in discovering and 35 

characterising pathogenic eukaryotic viruses [1], recently there has been an increased interest in 36 

revealing bacteria- and archaea-infecting viral communities [2]. The number of viral metagenomic 37 

studies is increasing due to the development of new sequencing technologies and the reduction in 38 

costs. However, due to the volume of information that these platforms generate and the large 39 

proportion of viral sequences sharing little or no homology to known viral genomes (‘viral dark 40 

matter’, [3]), new bioinformatic tools are required to examine viral contigs and genomes [4]. 41 

 42 

Viral annotation methods differ depending on the host organism. Bacteriophages and archaeal 43 

viruses are annotated using prokaryotic genome annotation software or web-servers such as RAST 44 

[5], Prokka [6] and RASTtk [7]. However, these bioinformatic tools are optimised for bacterial 45 

sequences, not viruses (despite the improvements in RASTtk to annotate phage sequences [8]). In 46 

contrast, eukaryotic viruses are annotated using close-reference based methods such as FLAN [9], 47 

VIGOR [10] and ViPR [11]. In a similar way, VirSorter [12] and VirusSeeker [13] were designed to 48 

predict putative prokaryotic viral contigs in metagenomic datasets. However, both programs predict 49 

viral contigs according to the presence of viral proteins using reference databases, and close-50 

reference homology-based methods can underestimate true viral diversity due to database 51 

limitations [3,14]. Therefore, in this manuscript, we present a new modular and automatic de novo 52 

genome annotation bioinformatic pipeline, called VIGA (VIral Genome Annotator), to annotate 53 

viral sequences. 54 

 55 

VIGA automatically detects open reading frames from a FASTA or multi-FASTA formatted file. 56 

VIGA then annotates protein sequences by detecting homologues in a BLAST (“Slow”) or a 57 

DIAMOND (“Fast”) protein database, with or without Hidden Markov Model (HMM) protein 58 

detection against a protein database. The different methodologies for annotating viral contigs and 59 

genomes allows the user to specify options that sacrifice annotation detail in exchange for increased 60 

speed, which is required when dealing with larger metagenomic datasets. In addition, VIGA also 61 

automatically detects (1) the topology of viral contigs, (2) the presence of rRNA, tRNA and tmRNA 62 

sequences, (3) potential CRISPR repeats and (4) tandem or inverted repeat sequences. Finally, 63 

VIGA outputs a FASTA file that includes user specified modifiers, a GenBank file and a five-64 

column tab-delimited feature file to ease the upload of annotated contigs and genomes to various 65 

database repositories and genome visualisation platforms. 66 

 67 
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Results 68 

Benchmarking of VIGA 69 

The performance of VIGA, Prokka, RAST and RASTtk was tested using a benchmark database 70 

comprising 191 sequences belonging to 138 different viruses (52 bacteriophages, 72 eukaryotic and 71 

10 archaeal viruses, and 4 virophages; Additional file 1). Of the 72 eukaryotic viruses, 11 have 72 

multipartite genomes. Experimental evidence is available for the coding sequences of 117 out of the 73 

123 sequences of eukaryotic viruses, 28 out of 52 sequences of bacteriophages, 3 out of 10 74 

sequences of archaeal viruses, and none of the 4 virophage sequences used. When bioinformatic 75 

methods were used to annotate these viral genomes in the original data, a wide variety of methods 76 

were employed, including GeneMark [15], GLIMMER [16], NCBI ORF Finder and the University 77 

of Wisconsin Genetics Computer Group [17]. The outputs of VIGA, Prokka, RAST and RASTtk 78 

were evaluated according to three different parameters: (1) number of coding sequences, (2) 79 

coordinates of coding sequences, and (3) power of prediction. 80 

 81 

Firstly, the accuracy and the precision of the number of viral coding sequences were estimated using 82 

general linear models. Accuracy was measured by the slope, and precision was measured according 83 

to the coefficient of determination (R2). To compare all these linear models, analysis of covariance 84 

(ANCOVA) was performed. In a general overview, the programs delivered different estimates of the 85 

number of coding sequences (ANCOVA: p < 2×10-16). In fact, although all programs tended to 86 

overestimate the number of genes, VIGA provided the most accurate predictions (i.e. accuracy is 87 

closest to one, Fig. 1A). Moreover, VIGA and Prokka had very similar values of precision (Table 1). 88 

When compared according to viral host, similar results were found only in the case of eukaryotic 89 

viruses (ANCOVA (Archaeal viruses): p = 0.922; ANCOVA (Bacteriophages): p = 0.734; ANCOVA 90 

(Eukaryotic viruses): p = 1.560×10-15; Figs. 1B-D). Interestingly, when bacteriophages were 91 

considered, only RASTtk tended to overestimate the number of coding sequences (Table 1). 92 

 93 

Secondly, F1 score, a measure that combines precision and sensitivity, was used to predict the 94 

quality of the coordinates of the viral coding sequences. Moreover, to evaluate the occurrence of 95 

false positives (i.e. false coordinates considered as true; type I error) and false negatives (i.e. true 96 

coordinates considered as false; type II error), false discovery rate (FDR) and false negative rate 97 

(FNR) were examined. VIGA scored very highly for both bacteriophages and eukaryotic viruses. In 98 

eukaryotic viruses the highest false discovery rate (FDR) was associated with RASTtk, while RAST 99 

had the highest false negative rate (FNR). For bacteriophages the highest FDR and FNR were 100 
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obtained for Prokka. In the case of archaeal viruses, VIGA again had the highest precision, while 101 

the highest sensitivity was noted in RASTtk (Table 2). 102 

 103 

Finally, the power of prediction of all programs was measured by considering the number of non-104 

informative annotations (i.e. all proteins classified as “hypothetical protein”, “uncharacterized 105 

protein”, “ORF”, “predicted protein”, “unnamed product protein” or “gp[Number]”). For these 106 

analyses, two different modes of running VIGA were considered – “Slow” (when BLAST and 107 

HMMER are used to annotate the genes) and “Fast” (when DIAMOND alone is used for 108 

annotation). Kruskal-Wallis (KW) test was performed to detect potential differences in the power of 109 

prediction of all three programs (including both variants of VIGA) and significant differences 110 

between the various programs were observed (KW test: p = 1.683×10-53). In all cases, no significant 111 

differences between VIGA-Slow and VIGA-Fast were found (Nemenyi test: p = 0.853). In fact, 112 

while RAST and RASTtk had the highest number of non-informative annotations, both VIGA 113 

modes had the smallest number (Fig. 2A). Additionally, there were significant differences among 114 

programs independently of the viral type (Table 3). In all cases, VIGA achieved optimal annotation, 115 

having always the smallest number of non-informative annotations. In contrast, Prokka had the 116 

highest amount of non-informative annotations in prokaryotic viruses (Figs. 2B-C) and RAST and 117 

RASTtk had the highest amount of non-informative descriptions in eukaryotic viruses (Fig. 2D). 118 

 119 

Case study: healthy human gut phageome 120 

To evaluate the performance of VIGA on a metagenomic dataset, VIGA, Prokka, RAST and 121 

RASTtk were run using a subset of 202 non-redundant contigs from the metavirome of healthy 122 

individuals [18]. VIGA was executed using 10 cores in two different ways: (1) using only 123 

DIAMOND (VIGA-Fast), and (2) using BLAST and HMMER (VIGA-Slow). These 202 contigs 124 

were composed of 65 short contigs (<15 kb), 99 medium-size contigs (15 – 70 kb), and 38 long 125 

contigs (>70 kb). Two different parameters were evaluated: (1) Speed of the program, and (2) power 126 

of prediction. Only RASTtk was unable to annotate these contigs. 127 

 128 

To test the speed of VIGA-Slow and VIGA-Fast, both VIGA modes and Prokka were run in a local 129 

server (Lenovo x3650 M5, with 48 Intel Xeon 2.6GHz Processors, Ubuntu 14.04, 512 GB of RAM) 130 

using 10 processors. VIGA-Slow took 19,283 minutes (13 days 9 hours 23 minutes) to process all 131 

202 contigs of this data set, while VIGA-Fast took 809 minutes (13 hours 29 minutes). In contrast, 132 

Prokka took 3 minutes to annotate all contigs. Unfortunately, we cannot estimate the time that 133 

RAST took to annotate these genomes due to be an external web server. 134 
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 135 

Finally, the power of prediction of all programs was evaluated by comparing the number of non-136 

informative annotations as indicated above. Significant differences between the various programs 137 

were observed (KW test: p = 2.121×10-93). While Prokka had the highest percentage of non-138 

informative descriptions, VIGA-Slow had the smallest number (Fig. 3A). In contrast to the 139 

benchmark, there were significant differences between VIGA-Slow and VIGA-Fast on a 140 

metagenomic dataset. VIGA-FAST had a higher percentage of non-informative descriptions than 141 

VIGA-Slow (Nemenyi test: p = 3.900×10-14). Surprisingly, no significant differences between 142 

VIGA-Fast and RAST were found (Nemenyi test: p = 0.440; Fig. 3A). When the different size of 143 

contigs were considered, significant differences between the non-informative annotations of the 144 

programs were found (KW test (“Short”): p = 4.650×10-24; KW test (“Medium”): p = 3.731×10-63; 145 

KW test (“Long”): p = 8.708×10-16). This is a similar pattern detected independently of the contig 146 

size (Figs. 3B-D). 147 

 148 

Discussion 149 

In this study, VIGA, a new bioinformatic pipeline for viral genome annotation, was tested against 150 

RAST, RASTtk and Prokka using a benchmark comprising of 138 viruses. In fact, this is the first 151 

genome annotation pipeline to be benchmarked using viral data, as previous validation of these 152 

programs tended towards the use of bacterial genomes [5,6]. When all these bioinformatic 153 

annotation pipelines were benchmarked, VIGA successfully outperformed the others in all test 154 

parameters. After validating VIGA, it was used to annotate the phages in a subset of the Manrique 155 

et al. healthy human gut phageome dataset [18]. This subset was based on the phages predicted by 156 

VirSorter [12], which could miss some viral contigs such as variants of crAssphage [19]. In that 157 

instance, this viral gene annotation is dependant on the proficiency of VirSorter. 158 

 159 

When the benchmark of 138 viruses was performed to measure the accuracy and precision of the 160 

number of coding sequences, VIGA had the highest values of accuracy and precision in the general 161 

overview. The only differences in the number of coding sequences were shown in eukaryotic 162 

viruses. Additionally, when the quality of the coordinates of these coding sequences was analysed, 163 

RASTtk had the highest false discovery rate and RAST the highest false negative rate for 164 

eukaryotic viruses. All these observations strengthen the idea that all tested programs were 165 

developed for prokaryotic viruses. Although the most abundant viruses in the biosphere are 166 

bacteriophages [20], it was not possible to annotate around 80% of putative viral contigs in previous 167 

studies on viral diversity [14], indicating the extensive presence of ‘viral dark matter’. The nature of 168 
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this ‘viral dark matter’ is related with the lack of knowledge in viral diversity, and due to the use of 169 

homology-search methods to classify and to annotate them [3]. In that sense, classification of 170 

viruses (independently of their hosts) currently should not only be performed using close-reference 171 

based homology searches because they could underestimate the real viral diversity based on the 172 

limitations of databases. 173 

 174 

The quality of the coordinates of the coding sequences in the viral benchmark was higher using 175 

VIGA than with the other programs. Although this result suggests that VIGA is reliable, it is also 176 

important to note that there was only experimental evidence of the coding sequences in 68 of 74 177 

sequences of eukaryotic viruses, 28 of 52 sequences of bacteriophages, and 3 of 10 sequences of 178 

archaeal viruses. In fact, although the development of automatic genomic pipelines such as RASTtk 179 

or VIGA can facilitate the prediction of genes in viral sequences, some features such as introns, 180 

morons or regulatory elements need manual refinement [8]. For this reason, all bioinformatic 181 

genome annotations are putative until validated using experimental procedures such as cDNA-182 

gDNA hybridization [21–23], proteomics [24–26] or transcriptomics [27–29]. 183 

 184 

Analysis of the power of prediction of annotation pipelines showed that RAST and RASTtk tend to 185 

generate a higher number of non-informative annotations, while VIGA had the smallest number in 186 

all cases. Therefore, VIGA-Slow mode has the potential to provide more information on encoded 187 

viral genes than other genome annotation bioinformatic pipelines, which rely exclusively on 188 

homology-based methods such as BLAST, BLAT [30] or DIAMOND. Primarily because these 189 

methods increase the number of non-informative annotations, especially in novel viruses, as 190 

demonstrated in the described metagenomic case study. Viral dark matter [3], or the unknown 191 

fraction of the virome, is a prevalent hurdle in virome research and lack of homology to sequences 192 

in databases hampers most annotation methods. It is also important to note, that where annotations 193 

are available, many have been generated through bioinformatics and do not have supporting 194 

experimental evidence. It is therefore very important to consider the source of functional 195 

information for proteins when annotating new viruses unless empirical evidence is available [8,31]. 196 

 197 

Proteins related to viral function can have highly conserved sequences, such as the hepatitis B virus 198 

core protein [32], Dengue virus polyprotein [33] and the influenza A virus nucleoprotein [34], 199 

because non-synonymous mutations in these proteins could hamper viral function. For this reason, 200 

the use of HMMs was implemented to predict the putative function of these genes. Use of HHPred 201 

or InterProScan is suggested to increase the power of protein annotation predictions [31,35,36]. 202 
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Although the implementation of these programs could be beneficial for VIGA and it will be 203 

implemented in future versions, HMM-based methods are slower than homology searches as noted 204 

in the case study. Another alternative to these HMM-based methods could be the implementation of 205 

homology-independent annotation methods such as iVIREONS [37] or VIRALpro [38]. All these 206 

methods use machine learning to predict structural phage proteins such as capsid, collar and tail 207 

proteins [8] and are also scheduled for implementation in future versions of VIGA. Finally, when 208 

the power of prediction of all genome annotation pipelines was analysed, a lack of criteria for gene 209 

annotations was found, making it difficult to compare between the outputs of the different 210 

programs. For this reason, the implementation of a standardised genome annotation system would 211 

ease the comparison between genomes [39,40] using some (alpha)numerical classifications such as 212 

the Enzyme Codes [41], Clusters of Orthologous Groups [42], KEGG Orthology [43] or the 213 

Prokaryotic Viral Orthologous Groups [44] which could be added in the genome annotation output. 214 

 215 

Conclusions 216 

The number of viral metagenomic studies is increasing as a consequence of the development of 217 

high throughput sequencing platforms and cost reductions. However, there are few software 218 

programs to annotate the viral sequences and never before have these programs been benchmarked 219 

against each other. In this study, we present VIGA, a new automatic de novo genome annotation 220 

bioinformatic pipeline to annotate prokaryotic and eukaryotic viral sequences from genomic and 221 

metagenomic studies. VIGA allows the most accurate, precise and sensitive annotation of viral 222 

genomes when benchmarked using 138 known viral genomes. VIGA can be executed using BLAST 223 

or DIAMOND to annotate proteins according to homology, with the option to also use HMMER to 224 

improve these annotations based on HMMs. The use of HMMs will enrich the annotation detail of 225 

the viral contigs, but will decrease the speed of the program. Where increased speed is required for 226 

example when dealing with larger metagenomics datasets. 227 

 228 

Materials and methods 229 

Workflow of the software 230 

Overview. VIGA is an automatic de novo viral genome annotator implemented in Python 2.7 231 

(requiring Biopython [45]) and designed to annotate complete and draft viral and phage genomes 232 

comprising single or multiple contigs (Fig. 4). As an input, VIGA accepts a DNA FASTA file with 233 

the (putative) viral contigs. These sequences are processed to predict the topology of the contigs 234 

(i.e. circular or linear). If the contig is circular, the prediction of the origin of replication is 235 
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performed according to cumulative GC skew and realignment of the contig from the putative origin 236 

of replication. Coding sequences (CDS) are predicted and, then, the function of these proteins is 237 

inferred based on homology using BLAST [46] or DIAMOND [47] and, optionally, using Hidden 238 

Markov Models (HMMER [48]). After that, a decision tree algorithm chooses the most reliable 239 

description of the protein (Fig. 5). Potential rRNA sequences are predicted using INFERNAL [49] 240 

with the use of the Rfam database [50], and tRNA and tmRNA sequences are predicted using 241 

ARAGORN [51]. Additionally, CRISPR, tandem and inverted repeats are predicted using PILER-242 

CR [52], Tandem Repeats Finder [53] and Inverted Repeats Finder [54] respectively. Repeat 243 

sequences are related with the gene expression regulation, integration of the viral genome and, 244 

even, viral replication. Finally, the output of the program are a GenBank file, a FASTA file and a 245 

table (TBL) file suitable for GenBank submission (Fig. 4). Optionally, a General Feature Format 246 

(GFF) version 3 file can be generated. 247 

 248 

Contig shape prediction. VIGA requires a FASTA file containing a single or multiple sequences of 249 

viral contigs. Before running the gene prediction, VIGA launches LASTZ [55] to predict the 250 

circularity of every contig. In this case, a contig is defined as circular when the similarity between 251 

the initial and terminal fragment of the contig (by default the first and last 101 bp) is more than 95% 252 

and the length of such alignment covers more than 40%. When the contig is predicted as a circular, 253 

the software will predict the origin of replication based on iREP [56], which predicts the origin and 254 

terminus according to the cumulative GC skew. 255 

 256 

Gene prediction. To predict genes in the contig, its length is checked and the most suitable program 257 

is run. If a contig is larger than 100,000 bp, Prodigal [57] is executed to predict the genes. If not, 258 

MetaProdigal [58] is launched to predict the genes. In both cases, when there are linear contigs, the 259 

programs are optimised to avoid predicting genes in regions near the closed ends of the contig. 260 

After the gene prediction, the coordinates and the protein sequence are saved. 261 

 262 

Function prediction. Protein sequences are analysed using BLASTP [59]� to predict its function 263 

according to homology. By default, BLASTP is run with default parameters (except for the e-value, 264 

which has been changed to 10-5 by default). However, an exhaustive BLASTP search could be 265 

performed using very strict values (a word size of 2, a gap open of 8, a gap extend of 2, the PAM70 266 

matrix instead of BLOSUM62 and no compositional based statistics) to accurately identify proteins 267 

[60]. Alternatively, DIAMOND [47] can be used to predict protein function according to homology. 268 

For a more accurate protein function prediction, HMMER [48] can be executed to predict functions 269 
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according to Hidden Markov Models with default parameters, except for the inclusion of an e-value 270 

cut-off of 0.001. To increase the protein function prediction speed, BLASTP can be launched using 271 

multiple threads and HMMER can run multiple jobs using GNU Parallel [61]. Both outputs are 272 

parsed independently according to identity, coverage, e-value and description to retrieve the protein 273 

function minimising the number of non-informative annotations as defined later. 274 

 275 

Decision tree algorithm. If BLAST or DIAMOND were executed with HMMER to predict protein 276 

function, the BLAST/DIAMOND and HMMER outputs are processed using a decision tree to 277 

retrieve the description of every protein in the contig. For each protein, the existence of hits in both 278 

programs is checked. When the protein is detected in both BLAST and HMMER, non-informative 279 

annotations are detected searching for the expressions “hypothetical protein”, “uncharacterized 280 

protein”, “ORF”, “predicted protein”, “unnamed product protein” or “gp[Number]” in their BLAST 281 

and HMMER descriptions. If such a description is present in both proteins, the protein will be 282 

described as “hypothetical protein”. However if the “hypothetical protein” description is only 283 

present in BLAST, the consequent annotation retrieved by HMMER is considered as a valid one, 284 

and vice versa. In the scenario where the protein is not labelled as “hypothetical protein” in either 285 

BLAST or HMMER, it is checked if the percentage identity and coverage is higher in BLAST or in 286 

HMMER. Depending of these results, BLAST output or HMMER output is chosen accordingly 287 

(Fig. 5). 288 

 289 

rRNA prediction. INFERNAL [49] is used altogether with the Rfam database [50] to predict the 290 

different ribosomal genes in every contig. In this case, INFERNAL hits are reported according to 291 

the gathering (GA) scores for every model. 292 

 293 

tRNA prediction. ARAGORN [51] is launched to predict all tRNA and tmRNA sequences in every 294 

contig. After this step, the coordinates and the description of the tRNA are saved. 295 

 296 

CRISPR, tandem and inverted repeats prediction. PILER-CR [52], Tandem Repeats Finder [53] and 297 

Inverted Repeats Finder [54] are used to detect CRISPR, direct tandem and inverted repeats in the 298 

contig, respectively. 299 

 300 

Output files. After running all described steps, all saved information (contig shape, contig sequence, 301 

protein coordinates, protein sequences, protein descriptions, rRNA and tRNA coordinates, tRNA 302 

descriptions, and tandem and inverted repeats coordinates) is written to a GenBank file. 303 
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Additionally, the GenBank file is also converted to FASTA and TBL files after retrieving the 304 

metadata from a plain text file. The FASTA and the TBL files are suitable for GenBank submission. 305 

Optionally, a GFF file can also be created with this information. 306 

 307 

Benchmarking of VIGA 308 

Bioinformatic analysis. 138 different viruses (52 bacteriophages, 72 eukaryotic and 10 archaeal 309 

viruses, and 4 virophages) which comprises 191 sequences (Additional file 1) were used to validate 310 

VIGA. Additionally, these sequences were also submitted to Prokka [6], RAST [5] and RASTtk [7] 311 

to compare their performance with VIGA. In this case, VIGA was launched in two different ways. 312 

First, VIGA was executed using BLAST [46] and HMMER [48] to predict protein function in the 313 

VIGA-Slow mode and then, launched using only DIAMOND [47] as the VIGA-Fast mode to 314 

predict protein function. In both cases, nr and UniProt databases were considered for 315 

DIAMOND/BLAST and HMMER, respectively. 316 

 317 

Statistical tests. To evaluate the performance of VIGA, three different analyses were done. Firstly, 318 

to infer the accuracy and the precision of the number of viral coding sequences, general linear 319 

models were used. All linear models were forced to have intercept zero. The slope was used to 320 

measure the accuracy, while the R2 was used to measure the precision. Additionally, ANCOVA was 321 

used to compare the linear models. Secondly, the prediction quality of the coordinates of the viral 322 

coding sequences was evaluated by the F1 score, the precision and sensitivity, defined as 323 

F1 score= 2× TP
(2× TP+FP+FN )

,

Precision= TP
(TP+FP)

,

Sensitivity= TP
(TP+FN )

,
 324 

where TP indicates the number of true positives, FP the number of false positives and FN the 325 

number of false negatives. FDR and FNR were considered to measure the type I (i.e. false 326 

coordinates were considered as true coordinates) and the type II (i.e. true coordinates were 327 

considered as false coordinates) errors, respectively. To evaluate differences in the power of 328 

prediction of all programs, Kruskal-Wallis test was performed. In case that there were differences 329 

between programs, post-hoc tests using Nemenyi tests were performed. All statistical tests were 330 

carried out at an alpha level of 0.05 and were performed in R v. 3.4.1 [62] using the HH [63] and 331 

the PMCMR [64] packages. 332 

 333 
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Case study: healthy human gut phageome 334 

Bioinformatic analysis. VIGA was also tested on a metagenomic dataset using published data from 335 

the health human gut phageome [18]. This data set was downloaded from the SRA webpage (SRR 336 

codes: SRR4295172 – SRR4295175) and processed to retrieve contigs per sample. First, adapters 337 

were removed using Cutadapt 1.9.1 [65] and low-quality bases (lower than a PHRED score of 20 338 

for a 4 bp sliding window) were trimmed using Trimmomatic [66]. All reads shorter than 30 bp 339 

were not considered for further analyses. All potential human reads were removed after being 340 

identified with Kraken v. 0.10.5 [67]. Contigs were assembled using metaSPAdes v. 3.10.0 [68] as 341 

recently the use of metaSPAdes was highly recommended to assemble metaviromes [69]. 342 

Assemblies of each sample were made non-redundant by an all-vs-all BLASTN [46] considering an 343 

e-value of 10-6. A contig was deemed redundant when it is shared 90% of its identity over 90% of 344 

the contig length. In these cases, the longer of the two contigs was retained. Non-redundant contigs 345 

over 1,000bp were processed using VirSorter [12] to generate a final data set of viral metagenome 346 

sequences. These contigs were annotated using VIGA in the two different ways described in the 347 

‘Benchmarking of VIGA’ subsection and Prokka using 10 cores. Time benchmarking was 348 

performed using the time command in Linux only for VIGA and Prokka, as RAST and RASTtk are 349 

online genome annotation services. 350 

 351 

Statistical tests. To evaluate differences in the power of prediction of all programs, Kruskal-Wallis 352 

test and post-hoc tests using Nemenyi tests were performed as described before. Moreover, to 353 

discard the effect of the length size of contigs as a potential factor of the power of prediction, 354 

Kruskal-Wallis tests were performed after classifying the contigs in three groups: “short” (<15 kb), 355 

“medium” (15 – 70 kb), and “long” (>70 kb). All statistical tests were carried out at an alpha level 356 

of 0.05 and were performed in R v. 3.4.1 [62] using the HH [63] and the PMCMR [64] packages. 357 

 358 
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Tables 540 

Table 1. Accuracy and precision in the number of coding sequences 541 

Case Program Accuracy 
(Slope) 

Precision 
(R2) 

General VIGA 1.027 0.997 

 Prokka 1.043 0.996 

 RAST 1.118 0.979 

 RASTtk 1.135 0.982 

Archaeal viruses VIGA 0.962 0.990 

 Prokka 0.991 0.991 

 RAST 0.821 0.936 

 RASTtk 1.036 0.993 

Bacteriophages VIGA 0.997 0.997 

 Prokka 0.983 0.995 

 RAST 0.982 0.996 

 RASTtk 1.015 0.997 

Eukaryotic viruses VIGA 1.031 0.997 

 Prokka 1.050 0.997 

 RAST 1.136 0.979 

 RASTtk 1.151 0.982 

 542 

 543 
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Table 2. Accuracy, precision and sensitivity of the different programs. False Discovery Rate 544 

(FDR) and False Negative Ratio (FNR) are used to describe errors in the precision and sensitivity.  545 

Case Program F1 
Score 

Precision Sensitivity FDR 
(Type I error) 

FNR 
(Type II error) 

General VIGA 0.945 0.940 0.950 0.060 0.050 

 Prokka 0.924 0.917 0.931 0.083 0.069 

 RAST 0.853 0.844 0.862 0.156 0.138 

 RASTtk 0.863 0.821 0.909 0.179 0.091 

Archaeal viruses VIGA 0.914 0.930 0.899 0.070 0.101 

 Prokka 0.921 0.922 0.920 0.078 0.080 

 RAST 0.819 0.918 0.739 0.082 0.261 

 RASTtk 0.910 0.894 0.927 0.106 0.073 

Bacteriophages VIGA 0.952 0.958 0.947 0.042 0.053 

 Prokka 0.909 0.921 0.897 0.079 0.103 

 RAST 0.936 0.950 0.923 0.050 0.077 

 RASTtk 0.934 0.929 0.939 0.071 0.061 

Eukaryotic viruses VIGA 0.942 0.930 0.954 0.070 0.046 

 Prokka 0.933 0.914 0.952 0.086 0.048 

 RAST 0.806 0.782 0.831 0.218 0.169 

 RASTtk 0.820 0.760 0.889 0.240 0.111 

 546 

Table 3. Kruskal-Wallis p-values for the comparison between all different pipelines 547 

considering the different viral types. 548 

Case p 

Archaeal viruses 8.219×10-5 

Bacteriophages 5.596×10-28 

Eukaryotic viruses 1.348×10-46 

 549 
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Figure legends 550 

 551 

Figure 1. Correlation between the expected and observed number of coding sequences when 552 

considering (A) all known viral sequences, (B) archaeal viruses, (C) bacteriophages, and (D) 553 

eukaryotic viruses. Dotted line is a 1:1 line. 554 

 555 

Figure 2. Percentage of non-informative annotations when processed in all programs for (A) 556 

all known viral sequences, (B) archaeal viruses, (C) bacteriophages, and (D) eukaryotic 557 

viruses. Dot indicates the average value of non-informative annotations and bars indicates the 95% 558 

confidence interval. 559 

 560 

Figure 3. Percentage of non-informative annotations for the case study dataset when 561 

processed in all programs for (A) the case study dataset, (B) short contigs (<15 kb), (C) 562 

medium contigs (15 – 70 kb), and (D) long contigs (>70 kb). Dot indicates the average value of 563 

non-informative annotations and bars indicates the 95% confidence interval. 564 

 565 

Figure 4. Flowchart of the VIGA pipeline. Orange rectangles represent the different steps of the 566 

program (among those, discontinuous-lined rectangles indicate optional steps; see main text). Red 567 

parallelograms indicate the relevant data that it is summarised in the output. Yellow rectangles with 568 

a wavy base stand for input and output files. 569 

 570 

Figure 5. Flowchart of the decision tree algorithm. Blue rectangles represent steps in the decision 571 

tree. Orange and purple rectangles state optimal BLAST and HMMER solutions, respectively. 572 

Mustard coloured rectangles represent “hypothetical protein” decisions. 573 
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Additional files 574 

 575 

Additional file 1. List of the viruses used for the validation test (Excel file) 576 
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