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Abstract 

Background: Recent advances in single-molecule sequencing techniques, such as Nanopore sequencing, 

improved read length, increased sequencing throughput, and enabled direct detection of DNA 

modifications through the analysis of raw signals. These DNA modifications include naturally occurring 

modifications such as DNA methylations, as well as modifications that are introduced by DNA damage or 

through synthetic modifications to one of the four standard nucleotides.  

Methods: To improve the performance of detecting DNA modifications, especially synthetically 

introduced modifications, we developed a novel computational tool called NanoMod. NanoMod takes 

raw signal data on a pair of DNA samples with and without modified bases, extracts signal intensities, 

performs base error correction based on a reference sequence, and then identifies bases with 

modifications by comparing the distribution of raw signals between two samples, while taking into 

account of the effects of neighboring bases on modified bases (“neighborhood effects”).  

Results: We evaluated NanoMod on simulation data sets, based on different types of modifications and 

different magnitudes of neighborhood effects, and found that NanoMod outperformed other methods 

in identifying known modified bases. Additionally, we demonstrated superior performance of NanoMod 

on an E. coli data set with 5mC (5-methylcytosine) modifications.  

Conclusions: In summary, NanoMod is a flexible tool to detect DNA modifications with single-base 

resolution from raw signals in Nanopore sequencing, and will greatly facilitate large-scale functional 

genomics experiments in the future that use modified nucleotides. 
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Background:  
An important type of covalent modification in epigenetics is DNA modification, where a chemical residue 

can be added to one of the four standard nucleotides (A, C, G, T) in a DNA molecule [1].  Those added 

residues can be methyl, carboxyl, ethyl, formyl, hydroxymethyl, dimethyl groups and other larger 

chemicals such as biotin and Idoxuridine, resulting in various types of DNA modifications. The DNA 

modifications can exist naturally in genomes or can be introduced synthetically into DNA molecules for 

research purposes. For example, DNA methylation, a common and well-studied type of modification, is 

formed when a methyl group is added into the adenines or cytosines in a DNA molecule, and different 

types of methylations exist depending on which atomic position in an adenine or cytosine is modified, 

such as 5-methylcytosine (5mC) and N6-methyladenosine (6mA). Various naturally occurring DNA 

modifications have been widely discovered in all kingdoms of life [2].  They play a critical role in 

regulating cellular states and functions, controlling which genes are turned on/off, dramatically affecting 

gene expression and eventual production of proteins and their functions [3]. In comparison, 

synthetically introduced DNA modifications can mark specific positions in genome sequence, facilitating 

functional genomics studies. For example, labeling specific DNA sequence motifs by fluorescence signals 

in a genome can facilitate optical mapping of genomes and the detection of structural variants [4]. 

Furthermore, incorporation of modified DNA bases during DNA synthesis can be used to track patterns 

of DNA replication in a genome-wide scale through optical mapping [5]. However, there are currently no 

genome-wide methods that allow the detection of replicated and non-replicated DNA with base-pair 

resolution.  

Several different genomic techniques have been developed to detect DNA modifications, especially for 

DNA methylations. For example, bisulfite sequencing is a widely used method for detecting DNA 

methylations, where unmethylated cytosines are converted to uracil and Illumina short-read sequencing 

techniques are used to call methylated and unmethylated cytosines from sequence data [6]. However, 

the harsh process in bisulfite treatment results in a large fraction of DNA fragmentation, which thus 

requires large quantity of DNA and complicated the analysis of highly variable, heterogeneous 

epigenome [3]. Immunoprecipitation together with Illumina short-read sequencing were also used to 

detect DNA or RNA modifications [7, 8], but these methods can detect only broad genomic regions with 

methylation without single base resolution. Other studies took advantage of PacBio single-molecule 

real-time (SMRT) sequencing techniques to directly detect DNA modifications using the principle that 

the existence of DNA modifications would affect DNA polymerase kinetics during SMRT sequencing [9-

12]. Modifications in RNA can also be detected using PacBio SMRT sequencing [13]. However, there was 

reduced signal-to-noise ratio for 5mC modifications[14] and the improved enzymatic treatment of 5mC 

detection using Tet1[15] also had incomplete and context-dependent treatment[3]. A comprehensive 

review can be found in [16]. 

Recent studies have explored the use of Oxford Nanopore sequencing techniques for the detection of 

DNA modifications. In Nanopore sequencing, electric current change occurs when a k-mer passes 

through a nanopore, and different molecules (such as standard nucleotides and their modified versions) 

generate different current change, depending on sequence contexts. Several prior studies [17, 18] have 

carefully analyzed ionic current signals and demonstrated the feasibility of using Nanopore signals to 
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identify DNA modifications by comparing current levels of methylated (that is, 5mC and 5-

hydroxymethylcytosine (5hmC)) DNA copies with current levels of unmethylated DNA copies. They 

found that more C5-cytosine variants (1 unmethylated cytosine and 4 cytosine modifications) could also 

be identified using Nanopore sequencing data with higher accuracy in a background of known 

sequences [19]. Recently, three groups have quantified the strength of using Nanopore platform for 

detecting DNA modifications at a large scale [3, 20, 21]: Simpson et. al. developed a HMM (hidden 

Markov model) to distinguish 5mC from cytosine[3] in E. coli and Homo sapiens and integrated it in 

nanopolish, but this method cannot detect non-CpG methylations; Mclntyre et.al. designed mCaller to 

improve the detection of 6mA and tested the 6mA detection in mouse, E. coli and Lambda phage DNA 

[20]; Rand et. al. analyzed three types of cytosine (i.e., cytosine, 5mC and 5hmC) and also 6mA in E. coli 

with different phases using HMM with a hierarchical Dirichlet process, with an implementation in the 

signalAlign package [21]. The results demonstrated feasibility to achieve improved performance in 

detecting DNA modifications [3, 20, 21], but they needed large prior training datasets for HMM [2], and 

therefore cannot be extended for detecting different types of modifications (especially synthetically 

introduced modifications). Stoiber et. al. proposed MoD-seq in the nanoraw package to identify 

modifications in the absence of large prior training dataset [2]. Here we developed NanoMod to achieve 

improved performance in the detection of modified bases even in the absence of any training data, 

though NanoMod can optionally leverage existing training data to further improve performance. 

NanoMod was designed for the detection of de novo DNA modifications (for example, synthetically 

introduced modifications). The inputs of NanoMod were a group of reads from a DNA sample with 

modification at specific bases and a group of reads from the matched non-modified sample. The 

nucleotide sequence for the sample is assumed to be known, that is, the reference genome must be 

already known a priori. Currently, within NanoMod, we used albacore for basecalling, and then perform 

an indel error correction by aligning the events of electric signals to a reference genome, similar to the 

procedure implemented in nanoraw. After that, two groups of electric signals for each genomic position 

were compared using the Kolmogorov-Smirnov test [22] in a per-base level to identify bases with 

significantly different distributions of signals between the two groups. Finally, weighted Stouffer’s 

method was used to combine the effects of neighboring bases since some modifications (especially 

bulky ones) may have strong neighbor effects that affect electric signals in neighboring non-modified 

bases. We evaluated NanoMod on simulation data of modifications with different properties and on a 

published E. coli methylation data set. 

Methods 

NanoMod  

The input of NanoMod is a dataset with two groups of reads: one from a sample with DNA modifications 

at specific positions and the other is the matched non-modified sample. The output is the ranked list of 

positions with potential modifications, as shown in Figure 1. NanoMod does not require prior training 

data, but it cannot detect the specific type of modification either. However, given a large-scale data set 

with known modifications at known positions, it is possible to use them as prior information to train a 
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model and analyze a new dataset with the same type of modifications by NanoMod. The several steps 

involved in NanoMod are illustrated below. 

Basecalling by albacore 

Nanopore raw data on a long read consists of a time series of raw signals measured by the Oxford 

Nanopore sequencer such as MinION or GridION. Each raw signal is a digital integer value, a measure of 

the changes of electric current when a k-mer (for example, 5-mer) passes through nanopores. Since the 

acquisition frequency is usually much higher than the speed of translocation of bases passing through 

nanopores, the same k-mer may be measured multiple times when it passes through the pore. Since the 

speed of translocation is not constant, different k-mers may have different numbers of measurements. 

More importantly, errors and noises may exist during signals acquisition on the k-mers, making the 

precise interpretation of bases from raw signals more challenging. In other words, given a set of electric 

signals when a DNA molecule passes through the pore, it is not straightforward to convert them directly 

into a series of nucleotides. 

To generate bases from Nanopore signals, raw signals are typically segmented into separate “events” in 

albacore (Note that the latest version albacore uses raw signals for basecalling, thus the segmentation 

step is no longer needed.) Each event consists of a consecutive series of raw signals that significantly 

deviate from the two direct neighboring events. The joint analysis of neighboring events with multiple 

overlapping bases would finally generate a sequence of bases with the highest probability, which is a 

procedure that uses deep recurrent neural network as implemented in albacore. The output of albacore 

contains a read from a FAST5 file and the signal information of all its bases.  

Error correction and signal annotation 

Long reads generated on the Nanopore platform usually have high error rates which may negatively 

affect downstream analysis. Since we assume that a reference genome is already available (i.e. the true 

nucleotide identity is assumed to be known in advance), to correct the base calling errors, BWA-MEM 

[23] was used to align Nanopore long reads to the known sequence, and then the indels (possible 

basecalling errors) were corrected by a re-segmentation process which is similar to the indel correction 

procedure in nanoraw[2]. An insertion error suggests that two adjacent segmented events might be 

from the same k-mer, and thus, one of the two neighbor events of the insertion is merged with the 

insertion event for generating a new neighbor event. A deletion error suggests that the neighboring 

events of the deletion are be generated by one additional k-mer, and thus, the several closest neighbor 

events of the deletion are re-segmented so that one additional event can be generated. When the 

neighboring events to be re-segmented contain other indels, the collection of events are first merged 

together and then re-segmented so that proper events can be generated. The number of neighboring 

events is automatically determined so that there are enough number of signal measurements for each 

event after the re-segmentation. Meanwhile, to address the issue of homopolymer error, if there 

are 𝐿𝑟 > 5 single nucleotide repeats in the sequence, the middle 𝐿𝑟 − 4 new positions would share a 

certain new event after re-segmentation.  

To illustrate this further, examples of the deletion correction procedure and insertion correction 

procedure are shown in Figure 2 and Figure 3, respectively. In Figure 2, there are two deletions. To 
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generate the correct events in Figure 2, we grouped the two deletions together (shadowed region in 

green) with one upstream adjacent neighbor and one downstream adjacent neighbor. We then re-

segmented those signals associated with the bases in the shadowed region, and obtain two additional 

events from the correction procedure. In Figure 3, we grouped the insertion event, one upstream 

adjacent neighbor and one downstream adjacent neighbor (shadowed region in yellow), and then re-

segmented the signals to generate two events from the correction procedure.  

After that, raw signals in a long read are normalized using the median subtraction and the 

standardization by averaged difference, and the normalized signal was limited between -5 to 5. 

Normalized signal information of each position in a long read subsequently anchors a position in the 

known reference sequence. This process is similar to what is described in nanoraw[2].  

Signal summarization for positions in the known sequence 

Based on the corrected alignment of a long read with the known sequence, the normalized signal of a 

position in a long read can be assigned to the corresponding aligned position in the known sequence. 

Given two groups of aligned long reads, each position in the know sequence will have two groups of 

normalized signals, one from reads of the sample with modifications and the other from the matched 

non-modified sample.  

Sometimes, a position may have a much smaller number of associated reads in one sample versus the 

other sample, possibly due to random fluctuation of coverage or due to other issues (for example, PCR 

amplification biases). Thus, those positions with limited data on signals in either group are filtered and 

excluded from the downstream analysis, based on user-specified criteria. 

Detection of modifications 

Assuming that signals of a base for a position in a known sequence are generated from a specific but 

unknown distribution with some noises. The signals for a position of the known sequence in the two 

groups would be highly similar to each other if the position and its closest neighbors are not modified. 

However, if a position contains a modified base, the signals of the two groups for the position and/or its 

neighbors would be different, in term of mean, standard deviation or shape. In other words, a position 

has high probability to have a modified base if the signals between the two groups for the position or its 

neighbors are statistically different.  

In NanoMod, Kolmogorov-Smirnov test is used for this purpose, since our purpose is to detect de novo 

modifications and since the actual distribution of signal intensity is not known a priori. Additionally, our 

experience and manual examination showed that the distribution of signal intensities at a modified 

position (or neighbors of a modified position) can be of various different shapes, such as 

increased/decreased mean, increased variance, a change from unimodal to bimodal distribution, etc. 

Kolmogorov-Smirnov test [22] is one of the most useful nonparametric test methods to quantify the 

distance between empirical distribution functions of two groups of samples. It is sensitive to the 

differences in both the locations and shapes of the two distribution functions.  The Kolmogorov-Smirnov 

statistic 𝐷𝑚,𝑛 is defined below.  
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𝐹1,𝑚(𝑥) =
1

𝑛
∑ 𝐼[−∞,𝑥](𝑋𝑖)

𝑚

𝑖=1

𝐹2,𝑛(𝑥) =
1

𝑛
∑ 𝐼[−∞,𝑥](𝑋𝑖)

𝑛

𝑖=1

𝐷𝑚,𝑛 = 𝑠𝑢𝑝𝑥|𝐹1,𝑚(𝑥) − 𝐹2,𝑛(𝑥)|

 

Where 𝑋𝑖  is a signal, and  𝐼[−∞,𝑥](𝑋𝑖) is 1 if 𝑋𝑖 ≤ 𝑥 and 0 otherwise. 𝐹1,𝑚(𝑥) is for a group of 𝑚 modified 

reads, and 𝐹2,𝑛(𝑥) is for a group of 𝑛 non-modified reads. 𝑠𝑢𝑝 is a supremum function giving the least 

upper bound, that is, the least difference which is not less than all differences between the two 𝐹(𝑥)s. 

P-values of the Kolmogorov-Smirnov test indicate the probability of the base at a position to be modified: 

the smaller p-value is, the more likely the base is modified. 

The combination of neighbor p-values:  

Measured signals in Nanopore data are usually for k-mers, that is, a modification of a base at a specific 

position may affect the signals of its neighbors. Therefore, p-values of neighboring positions may also 

suggest the presence of modifications. To take into account the neighborhood effect, p-values within 𝑘 

closest positions of a given position can be used to generate a combined p-values. 𝑘 could be specified 

by users and by default 𝑘 = 2. Weighted Stouffer’s method is used for this purpose, so that the center 

position has higher weights, and the further neighbors, the lesser the weights. The weighted Stouffer 

statistic for 𝑘 + 1 consecutive positions (𝑘 closest positions plus the center position) is 

𝑍~
∑ 𝑤𝑖∅−1(1−𝑝𝑖)𝑘+1

𝑖=1

√∑ 𝑤𝑖
2𝑘+1

𝑖=1

 where 𝑝𝑖  is the probability of a position with a weight of 𝑤𝑖 and ∅−1(1 − 𝑝𝑖) returns 

a Z score of 𝑝𝑖  with a standard normal cumulative distribution function.  

When a position has extremely small p-value, its neighboring positions tend to also have very small p-

values, and these positions will rank very high among all positions. Therefore, the rank for a position 

gives redundant information on whether a neighborhood region has a modification. We thus used 

neighborhood-based ranking. In neighborhood-based ranking, if a position has a higher rank, its 

neighbor positions (within 1 or 2 base window size for both left and right sides) with lower rank are not 

considered.  

Simulation of nanopore long-read data 

To evaluate how NanoMod works on modifications with different properties, we generated several 

simulation datasets where samples have multiple types of modifications. In the simulation, we assumed 

that we had a sequence and each 5-mer produces signals according to a normal distribution of the mean 

E𝑘 and the standard deviation ∆𝑘 plus some random noises, then a basic simulation process for a given 

sequence can be described as below: 

1. Generate n signals for each 5-mer in the given sequence, and sequentially merge all signals together 

for the given sequence. n is a random number which varies from 5 to 15.   

2.  Repeat Step 1 for 100 times, and treat them as raw reads of a non-modified sample. 
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3. Sample h positions in the given sequence, and assume that those bases are modified. 

4. For each position h𝑖 with simulated modifications and its neighborhood position h𝑗, ‖𝑗 − 𝑖‖ ≤ 2, the 

mean was increased by w𝑎
𝑖 = 𝛼/2‖𝑗−𝑖‖, and the standard deviation was increased by w𝑏

𝑖 = 𝛽/(‖𝑗 −

𝑖‖+1). If a position is adjacent to two modifications, ℎ𝑢 and h𝑣, its w𝑎 = w𝑎
𝑢 + w𝑎

𝑣 and w𝑏 = w𝑏
𝑢 + w𝑏

𝑣, 

otherwise if a position is only close to a modifications h𝑖, w𝑎 = w𝑎
𝑖  and w𝑏 = w𝑏

𝑖  In this study, 𝛼 was set 

to 0.2, while 𝛽 was set to 1.  

5. For those positions with modifications or are adjacent to the modified bases, generate m signals 

according to a normal distribution of the mean E𝑘 ∗ (1 + w𝑎) and the standard deviation ∆𝑘 ∗ (1 + w𝑏) 

plus some random noises. Here E𝑘 and ∆𝑘 are the mean and standard deviation of the corresponding 

non-modified 5-mer, and m was a random number, which varies from 5 to 15. 

6. For other positions without modified bases and are not in the vicinity of modified bases, generate m 

signals as what has been done in Step 1.  

7. Repeat Steps 4, 5 and 6 for 100 times, and treat them as reads of a modified sample. 

8. Run NanoMod on two groups of reads. 

9. Repeat Steps 1 to 8 for 100 times so that 100 pairs of datasets were used to evaluate NanoMod.  

To simulate modifications with different properties, we generated several types of simulation data sets 

below: 

i) ‘MeanDif’ simulation: The modification of a base only affects signal mean of the 5-mer centered at 

that base, i.e., w𝑎 > 0. Signal standard deviation of the 5-mer has no change (w𝑏 = 0) and no 

neighborhood effect (w𝑎 = 0 𝑎𝑛𝑑 w𝑏 = 0 for non-modified bases). 

ii) “STDDif” simulation: The modification of a base only affects signal standard deviation of the 5-mer 

centered at that base, i.e., w𝑏 > 0. Signal mean of the 5-mer has no change (w𝑎 = 0) and no 

neighborhood effect (w𝑎 = 0 𝑎𝑛𝑑 w𝑏 = 0 for non-modified bases). 

iii) “Mean_STDDif” simulation: The modification of a base affects both signal mean and standard 

deviation of the 5-mer centered at that base, i.e., w𝑎 > 0 𝑎𝑛𝑑 w𝑏 > 0, but no neighborhood effect 

(w𝑎 = 0 𝑎𝑛𝑑 w𝑏 = 0 for non-modified bases). 

iv) “Mean_STDDif_NE” simulation: The modification of a base affects both signal mean and the standard 

deviation of the 5-mer centered at that base, i.e., w𝑎 > 0 𝑎𝑛𝑑 w𝑏 > 0, and also adjacent neighbors, i.e., 

> 0 𝑎𝑛𝑑 w𝑏 > 0 for adjacent non-modified 5-mer of the modified bases.  

A Nanopore long-read sequencing data set on E. coli 

A publicly available Nanopore long-read sequencing data of E. coli [3] was also used to evaluate 

NanoMod. This dataset contains two groups of samples, one was generated from PCR product where 

DNA modifications are not expected to be present, and the other was from PCR product then subject to 

enzymatic methylation with the M.SssI methyltransferase where nearly all of cytosines in a CpG context 
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were converted to 5-mC. These dataset was downloaded from the European Nucleotide Archive under 

accession number PRJEB13021 [3]. On this data set, the known E. coli sample has ~4.64Mb nucleotides 

and ~693,586 CpG sites. 

Measurement for performance evaluation 

To measure the performance of ranking modified bases at the top among all bases, we used the 

percentiles of 0.1%, 0.25%, 0.5%, 1%, 2%, 3%, 4% and 5% to split the ranking into 9 categories for 

simulation data. Then, at each percentile, we calculated precision (i.e., the number of correctly 

identified modifications divided by the number of modification predictions at a percentile) and recall 

(i.e., the number of correctly identified modifications divided by the number of modifications) for 

correctly detecting the known modifications, and generated precision-recall plot. On the E. coli data set 

[3], we used the percentiles of 0.1%, 0.25%, 0.5%, 1%, 2%, 3%, 4%,  5%, 10%, 15%, 20%, 25% and 30% to 

split the ranking, because there are many methylated CpG sites.   

Results 
NanoMod was designed to detect candidate positions with DNA modifications using raw electric signals 

generated from Nanopore long-read sequencing techniques. Briefly, two groups of reads, one 

containing modified bases and the other without modified bases, were used as input of NanoMod, and 

were then subject to basecalling, error correction and signal annotation of positions in a known 

sequence. After that, we rank all positions for the presence of potential DNA modifications. NanoMod 

was evaluated on simulation data where raw signals were simulated according to the mean and 

standard deviation of 5-mer and on a publicly available methylation data. The results are described in 

detail below. 

Evaluation on simulation data with multiple DNA modifications in a sequence 

We simulated 200 reads of a 6184-bp sequence (100 with and 100 without modification on specific 

positions) on a sample based on the means and standard deviations of observed 5-mers (1,024 

distributions) from large-scale Nanopore sequencing experiments. Each of the simulated modification 

reads has 60 modifications randomly dispersed across the whole sequence. DNA modifications with 

different properties were simulations as described in the Method section. Each type of modification was 

also generated 100 times. The performance of NanoMod was evaluated using precision and recall, as 

the percentile of the rank which ranges from 0.1%, 0.25%, to 0.5%, 1%, 2%, 3%, 4% and then to 5%. 

Typically, when the percentile value increases, the recall would increase. We compared the performance 

of Mann–Whitney U test, Student’s T test and Kolmogorov-Smirnov test on signals of single bases, and 

also two combined statistics methods including Stouffer’s method and Fisher’s method. The results were 

shown in Figure 4, where precision and recall were the averaged values on 100 simulation data sets. 

We found that on the MeanDif simulation (see the Method section), Mann–Whitney U test and 

Student’s T test worked better than Kolmogorov-Smirnov test, because the first two statistics methods 

were more powerful to detect the change of the mean of 5-mers, yet signal mean of modified bases 

were simulated on the MeanDif simulation. However, for the other three simulations (the STDDif, 

Mean_STDDif, and Mean_STDDif_NE simulations) where differences of standard deviation of 5-mers 
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were considered, Kolmogorov-Smirnov test significantly outperformed Mann–Whitney U test and 

Student’s T test. In particular, when only differences of standard deviation of modified 5-mers were 

simulated, Mann–Whitney U test and Student’s T test had no predictive power, as expected (refer to 

STDDif in Figure 4). Since it is unusual for DNA modifications to change only mean or variance of signal 

intensity values, Kolmogorov-Smirnov test is used by default in NanoMod for capturing all types of 

alterations in signals. 

When the two combined statistics methods were used, the performance was worse than Kolmogorov-

Smirnov test for the MeanDif, STDDif and Mean_STDDif simulations. This is because no neighborhood 

effects were considered in these types of simulations. When neighborhood effects were simulated in 

Mean_STDDif_NE, both Stouffer’s Method and Fisher’s method improved the detection of DNA 

modification. In particular, Stouffer’s method performed much better than Fisher’s method, and 75% 

modifications detected by Stouffer’s method were ranked at top. This suggested that Stouffer’s method 

is preferred over single-base Kolmogorov-Smirnov test when neighborhood effects are present. 

Evaluation on E. coli methylation data 

To test the usefulness of NanoMod on synthetically introduced modifications rather than simulated data, 

we also evaluated NanoMod on a publicly available Nanopore long-read sequencing data on E. coli [3] 

where CpG sites were almost all methylated by the M.SssI methyltransferase. Given a rank list of 

detected modifications, we calculated precision and recall at each splitting percentile value for 

evaluating five statistical methods and nanoraw. The results were shown in Figure 5. 

We found that the combined statistical testing methods achieved better performance than the various 

methods on single bases, indicating strong neighborhood effects caused by the methylation. In 

particular, Fisher’s method and Stouffer’s method in NanoMod outperformed nanoraw especially to 

detect methylations at the top rank (the smaller recall in Figure 5), where the precision of nanoraw was 

about 0.70 while the precision of Nanomod was more than 0.9. (We note that nanoraw itself 

incorporated Fisher’s method to combine p-values.) Therefore, NanoMod significantly improved the 

performance to detect modified DNA bases. 

In Figure 5, the better performance of Fisher’s method is due to the fact that the E. coli sequence has 

many modified regions containing multiple CpG sites together. Note that the original data set was 

generated on DNA molecules treated with the M.SssI methyltransferase, where nearly all of cytosines in 

a CpG context were converted to 5-mC, yet in practice de novo modifications in living organisms should 

occur only in a very minor fraction of bases. Indeed, upon further examination, among about half of CpG 

sites, we can found another CpG sites within 5 bps. In such scenarios, Stouffer’s method cannot work as 

well as Fisher’s method, because Stouffer’s method give less weights to neighbors of a methylation site.  

Example plots of top ranked CpG sites 
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We used the top three ranked CpG sites detected by NanoMod in the methylation data of E. coli to 

demonstrate details of how NanoMod identified signal difference at methylated CpG sites. The results 

were shown in Figure 6.  

As can be seen from Figure 6 (a) and (b), NanoMod generated the smallest p-values of the position and 

its closest neighbors at the center of the plot. In contrast, those positions, which were far from the CpG 

sites (the both left and right sides of Figure 6 (a) and the right side of Figure 6 (b)), had much larger p-

values using either Kolmogorov-Smirnov test or the Stouffer’s method. This observation demonstrated 

that methylated bases changed the Nanopore signals. In the left side of Figure 6 (b) and Figure 6 (c), the 

methylated CpG site in the center had smaller p-values. Meanwhile, the left side of Figure 6 (b) and the 

left and right sides of Figure 6 (c) also had p-values which were smaller than the both left and right sides 

of Figure 6 (a) and the right side of Figure 6 (b). This is because there are two additional CpG sites on the 

right side of Figure 6 (b) and two additional CpG sites on either side of Figure 6 (c). These observations 

clearly demonstrated that NanoMod captured statistically significant signals of modified bases between 

modified reads and non-modified bases.  

Discussion 
The advent of Nanopore long-read sequencing technique provides valuable opportunities to detect DNA 

modifications directly from signal intensity data at a large scale and at low costs. Although several 

existing tools were developed for the detection of DNA modifications using Nanopore long-read data, 

they either need large training data [3, 20, 21] or require further tweaking of algorithms to improve the 

detection of modifications [2]. In this study, we proposed NanoMod to identify DNA modifications using 

raw signals of reads generated by the Nanopore long-read sequencing technique. NanoMod does not 

require any training data so it can detect DNA modifications de novo. NanoMod achieved improved 

performance when it was evaluated on simulation data with modifications of different properties and 

on an E. coli data set with 5mC (5-methylcytosine) modifications.  

Compared with existing methods [3, 20, 21], one limitation of NanoMod is that it is designed to detect 

DNA modifications de novo and hence cannot predict the specific type of modification (such as whether 

a modification is 4mA or 5mC). However, given large-scale training data sets, it is possible to generate 

prior models in NanoMod to detect specific type of modifications. For example, assume that a specific 

modification on a base will impact the signals on a 7-bp window around the base, then from a large 

training data set, we can generate the signal distributions for all 7-mers surrounding the specific 

modification as the prior model. Long reads on a new sample can be compared to the prior model as 

well as a control model (from samples without modifications) to detect whether the specific type of 

modification exist in each position in the new sample. 

Both nanoraw [2] and NanoMod require two groups of reads, one from a sample with modifications and 

the other from a matched control sample known to contain no modifications. They share one critical 

component, which is the error correction procedure from the alignment. After aligning long reads to a 

known sequence, signals of bases in long reads can be used to annotate the corresponding mapped 

positions. However, Nanopore long reads have high insertion/deletion errors especially when the bases 
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are called from segmentation events (the latest version of albacore no longer use this procedure, partly 

due to the inherent error in the segmentation process). Thus, the indel correction step is crucial to 

rescue signal annotations for many positions. In some specific cases, the reference sequence used in 

NanoMod may contain true indels themselves (for example, when using E. coli reference genome 

sequence in the analysis for an E. coli strain with real indels at specific positions); in these scenarios, it 

may be necessary to generate confidence sets of indel calls on the sample first, then use a modified 

version of reference sequence (by incorporating highly confident indels) in the error correction 

procedure in NanoMod. 

Integrated statistical testing is another critical component of NanoMod, because different types of 

modifications can result in different types of alterations on the signal distributions. Modifications might 

(i) only change signal mean of a modified base, or (ii) only change variance of the signals for a modified 

base, or (iii) result in the change of both signal mean and standard deviation, or (iv) change the overall 

shape of distribution such as from unimodal to bimodal, or (v) affect several adjacent neighborhood 

positions, and so on. Different statistical tests may have different power to detect modifications based 

on the property of the modifications. For example, Student’s T test and Mann–Whitney U test 

outperformed Kolmogorov-Smirnov test for the first category of modifications, but had no prediction 

power for the second category of modifications and had limited power for the other categories of 

modifications (see Figure 4). Kolmogorov-Smirnov test outperformed other methods for the second and 

third categories of modifications, and achieved worse performance than the combined statistical testing 

for the fifth category of modifications. In short, Kolmogorov-Smirnov test on single bases and the 

combined Stouffer’s method on multiple bases are better choice for modification detections than 

Mann–Whitney U test used in nanoraw [2] when data set is large enough. This comparison was 

supported by additional preliminary studies (data not shown) where NanoMod could achieve much 

better prediction performance than nanoraw for multiple different types of modifications that we 

introduced synthetically into DNA molecules.  

More accurate detection of DNA modifications, especially synthetically introduced modifications, has 

many downstream applications. For example, accurate detection of DNA modifications can facilitate 

studies on the role of epigenetic modifications [24] in different human diseases such as cancer, and help 

identity candidate genes where epigenetic switch is important for disease progression. Similarly, 

incorporation of modified DNA bases during DNA synthesis can be used to track patterns of DNA 

replication [25, 26], so accurate detection of de novo DNA modifications on newly synthesized DNA 

strands enables genome-wide studies on DNA replication timing and patterns. 

Conclusion 
We have developed a new computational tool, NanoMod, for the detection of DNA modifications using 

Nanopore long-read sequencing data. We evaluated NanoMod on simulation data with different types 

of modifications and also on a methylation data of E. coli. Our results suggested that NanoMod achieved 

better performance than other existing tools in detecting modifications without training data. Therefore, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/277178doi: bioRxiv preprint 

https://doi.org/10.1101/277178
http://creativecommons.org/licenses/by-nc-nd/4.0/


NanoMod will greatly facilitate functional genomics experiments for single base resolution mapping of 

modified nucleotides in the genome.  
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Figure 1 The flowchart of NanoMod. The squares with dotted line refer to components that require external tools, while the 
dotted arrow line suggests an alternative solution. 
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Figure 2 An example of the deletion correction procedure in NanoMod. X axis represents time of signal acquisition, and y axis 
denotes detected signal values by Nanopore sequencers before standardization. ‘Albacore’ represents a sequence of bases 

called based on original events before error correction, and ‘Known’ represents the known sequence. Each red horizontal bar 
represents an event split by vertical lines. ‘-’ in ‘Albacore’ suggests a deletion. The region shadowed in green shows the deleted 

bases together with one upstream and one downstream neighbors. 
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Figure 3 An example of the insertion correction procedure in NanoMod. The region shadowed in yellow shows the insertion 

base together with one upstream and one downstream neighbors. For other notations, see Figure 2.  
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Figure 4 The average precision and recall rates of NanoMod on 100 simulation data sets. “U test”:Mann–Whitney U test, “T 
test”:Student’s T test, “KS test”:Kolmogorov-Smirnov test, “Stouffer’s M”: Stouffer’s method and “Fisher’s M”:Fisher’s method. 
“MeanDif”: modified bases only have the mean difference for signals from non-modified bases, “STDDif”: modified bases only 
have the difference of standard deviation for signals from non-modified bases, “Mean_STDDif”: modified bases have the 
difference of the mean and standard deviation for signals from non-modified bases, and “Mean_STDDif_NE”: the simulation of 
“Mean_STDDif” plus neighborhood effect. Precision was calculated using the number of correctly identified modifications 
divided by the number of modification predictions at a percentile (i.e., 0.1%, 0.25%, 0.5%, 1%, 2%, 3%, 4% and 5%), and recall 
was calculated using the number of correctly identified modifications divided by the number of modifications.  
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Figure 5 The performance of modification detection using nanoraw and 5 statistics methods implemented in NanoMod. “U 
test”: Mann–Whitney U test, “T test”: Student’s T test, “KS test”: Kolmogorov-Smirnov test, “Stouffer’s M”: Stouffer’s method 
and “Fisher’s M”: Fisher’s method. The percentile definition was in the method section. Precision was calculated using the 
number of correctly identified modifications divided by the number of modification predictions at a percentile (i.e., 0.1%, 0.25%, 
0.5%, 1%, 2%, 3%, 4%, 5% and then to 30%), and recall was calculated using the number of correctly identified modifications 
divided by the number of modifications. 
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Figure 6 Analysis of DNA methylation in E. coli using NanoMod. Data of the top three ranked modifications are shown. ‘p-
value/Comb Pv’ is the combined p-values calculated using the Stouffer’s method, ‘KS test/KS Pv’ is the p-value calculated using 
Kolmogorov-Smirnov test. ‘DS 1’ represents the non-methylated sample, and ‘DS 2’ represents the methylated sample. In each 
panel, the first line is the position of the base in the reference genome followed by the base in reads. The position is based on the 
reference genome. For reverse strand, the 3’ to 5’ of reads is from right to left while for forward strand of reads is from left to 
right. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/277178doi: bioRxiv preprint 

https://doi.org/10.1101/277178
http://creativecommons.org/licenses/by-nc-nd/4.0/

