
Reconstructing and decoding imagined letters 
from early visual cortex using ultra-high field 
fMRI

Authors

Mario Senden1,2*, Thomas Emmerling1,2*, Rick van Hoof1,2*, Martin Frost1,2, 

and Rainer Goebel1,2,3

* These authors contributed equally to the paper

1) Department of Cognitive Neuroscience, Faculty of Psychology and 

Neuroscience, Maastricht University, 6201BC Maastricht, The Netherlands

2) Maastricht Brain Imaging Centre, Faculty of Psychology and 

Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, 

The Netherlands

3) Department of Neuroimaging and Neuromodeling, Netherlands Institute 

for Neuroscience, an Institute of the Royal Netherlands Academy of Arts 

and Sciences (KNAW), 1105BA Amsterdam, The Netherlands

Address for Correspondence

Mario Senden, Department of Cognitive Neuroscience, Faculty of 

Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6200 

MD Maastricht, P.O. Box 616, The Netherlands, Phone number: +31 43 38 

82071; 

Email: mario.senden@maastrichtuniversity.nl

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2018. ; https://doi.org/10.1101/277020doi: bioRxiv preprint 

mailto:mario.senden@maastrichtuniversity.nl
https://doi.org/10.1101/277020
http://creativecommons.org/licenses/by-nd/4.0/


Abstract

Brain-computer  interfaces  offer  a  way to  communicate  for  people  with

severe motor and speech disabilities. However, successful current letter

speller  implementations  require  perception-driven  paradigms  (EEG)  or

cognitively demanding tasks (fMRI, fNIRS) which are not directly linked to

letters visualized in the mind’s eye. A more natural, content-based, BCI

speller  system immediately  decoding  imagined  letters  from associated

brain activity  is  desirable.  In the current study, we take the first  steps

towards such a BCI and offer new insights into the neural underpinnings of

visual  mental  imagery,  a  process  which  is  considered one of  the main

sources of human cognitive complexity. We demonstrate for the first time

the feasibility to reconstruct visual field images which carry recognizable

content  of  imagined  letter  shapes.  Using  submillimeter  resolution  fMRI

data of six participants, detailed population receptive field maps, and a

denoising autoencoder, we were able to reconstruct the visual field during

perception and imagery of four different letter shapes. We, furthermore,

achieve greater-than-chance classification accuracy on the four letters in

five out of six participants. Finally, we show that reconstructions can be

recognizable  on  a  trial-by-trial  basis,  paving  the  way  for  real-time  BCI

applications.
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Introduction

Brain-computer interfaces (BCIs) hold the promise of restoring the ability

to  communicate  for  patients  suffering  from complete  or  partial  loss  of

voluntary motor control (Wolpaw, Birbaumer, McFarland, Pfurtscheller, &

Vaughan, 2002). Non-invasive BCIs using electro-encephalography (EEG)

have  been  successfully  employed  for  severely  motor-impaired  patients

(e.g.  motor  neuron  degenerative  diseases  and  paralysis)  exploiting

stimulus  evoked  responses  (Birbaumer  et  al.,  1999;  De  Massari  et  al.,

2013;  Nijboer  et  al.,  2008;  Wolpaw  et  al.,  2002).  For  some  patients,

however,  EEG-based  BCIs  are  not  effective  (Chaudhary,  Xia,  Silvoni,

Cohen, & Birbaumer, 2017), particularly for patients with reduced or lost

control of the eye muscle (completely locked-in state, CLIS). For patients

that do not benefit from EEG BCIs, functional magnetic resonance imaging

(fMRI) and functional near-infrared spectroscopy (fNIRS) provide potential

hemodynamic BCIs. While fNIRS, like EEG, can be used at the bedside of a

patient, only fMRI has been demonstrated until now to provide a robust

hemodynamic  letter  speller  BCI  (Sorger,  Reithler,  Dahmen,  &  Goebel,

2012) where subjects engage in various mental tasks (e.g. mental spatial

navigation, mental calculation, mental drawing or inner speech). So far,

fMRI-based BCI communication systems have mostly focused on coding

schemes arbitrarily mapping brain activity in response to diverse mental

imagery tasks, and hence originating from distinct neural substrates, onto

letters of the alphabet (Birbaumer et al.,  1999; Sorger et al., 2012). As

such, current BCI speller systems do not offer a meaningful  connection

between the intended letter and the specific content of mental imagery.

This is demanding for users as it requires them to memorize the mapping

in  addition  to  performing  imagery  tasks.  Therefore,  a  more  natural,

content-based,  BCI  speller  system immediately  decoding  imagined  (i.e.

internally  visualized)  letters  from  their  associated  brain  activity  is

desirable; especially for novice BCI speller users. In order for this to be

feasible, activity in response to different items within the same domain,

and thus originating from a single neural substrate, must be sufficiently

discriminable to uniquely identify each item. For visual shapes, such as
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letters, this is principally given by their unique spatial activation profile

(voxel  pattern;  VP)  resulting  from the  retinotopic  organization  of  early

visual cortex (Holmes, 1918; Sperry, 1963).

It  is  likely  that  these  retinotopy-based,  discriminable,  spatial  activation

profiles are also present for visual mental imagery since it shares neural

circuitry with perception in early visual cortex (Kosslyn & Thompson, 2003;

Kosslyn, Thompson, & Ganis, 2006; Pearson, Naselaris, & Holmes, 2015).

Indeed, several studies have shown that visual mental imagery activates

cortical networks that are also activated during corresponding perceptual

tasks  (Ganis,  Thompson,  &  Kosslyn,  2004;  R  Goebel,  Khorram‐Sefat,  &

Muckli,  1998;  Ishai,  Ungerleider,  & Haxby, 2000;  Kosslyn,  Thompson,  &

Alpert, 1997; Mechelli, Price, Friston, & Ishai, 2004; O’Craven & Kanwisher,

2000).  Additionally,  applying  different  forms  of  machine  learning

approaches to functional magnetic resonance imaging (fMRI) data enabled

the  decoding  of  imagery  content  regarding  visual  mental  imagery  of

orientations (Albers, Kok, Toni, Dijkerman, & de Lange, 2013; Harrison &

Tong, 2009), motion (Emmerling, Zimmermann, Sorger, Frost, & Goebel,

2016),  objects  (Cichy,  Heinzle,  &  Haynes,  2012;  Lee,  Kravitz,  &  Baker,

2012;  Reddy,  Tsuchiya,  &  Serre,  2010),  shapes  (Stokes,  Saraiva,

Rohenkohl,  &  Nobre,  2011;  Stokes,  Thompson,  &  Cusack,  2009),  and

scenes (Johnson & Johnson, 2014; Naselaris, Olman, Stansbury, Ugurbil, &

Gallant, 2015). Finally, two previous studies (Klein, Dubois, Mangin, Kherif,

&  Flandin,  2004;  Slotnick,  Thompson,  &  Kosslyn,  2005)  demonstrated

functionally specific retinotopic activations during visual imagery.

This  raises  confidence  that  decoding  of  internally  visualized  letters  is

possible.  Additionally,  recent  advancements  in  the  reconstruction  of

perceived  visual  stimuli  from  fMRI  data  (Miyawaki,  Uchida,  Yamashita,

Sato,  &  Morito,  2008;  Schoenmakers,  Barth,  Heskes,  &  Gerven,  2013;

Thirion et al., 2006) – i.e. a visualization of what participants saw based on

their brain activations – pose the question of whether reconstruction rather

than mere decoding is possible for mental imagery as well. Studies that

reconstruct visual perception based on neuroimaging data leveraged the

retinotopic organization of  early visual areas and fit invertible encoding
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models  (cf.  Sprague,  Saproo,  & Serences,  2015)  to  individual  voxels  in

these  areas.  A  particularly  popular,  and  straightforwardly  invertible,

encoding  model  is  the  two-dimensional  isotropic  Gaussian  model  of

population receptive fields (pRFs; Dumoulin & Wandell, 2008). Inversion of

population receptive fields of a large number of voxels measured at high

spatial  resolution may thus not  only be used to reconstruct from brain

activation in response to perceived but also imagined shapes. Using an

integrative  approach combining ultra-high field  fMRI,  inverted  encoding

models (IEMs) based on pRFs, and machine learning, it is the aim of the

present  study  to  decode  and  reconstruct  the  content  of  visual  mental

imagery. 

Materials and Methods

Participants

Six participants (2 female, age range = (21 - 49), mean age = 30.7) with

normal  or  corrected-to-normal  visual  acuity  took  part  in  this  study.  All

participants were experienced in undergoing high field fMRI experiments,

gave  written  informed  consent  and  were  paid  for  participation.  All

procedures  were  conducted  with  approval  from  the  local  Ethical

Committee of the Faculty of Psychology and Neuroscience at Maastricht

University.

Stimuli and Tasks

Each participant completed three training sessions in order to practice the

controlled imagery of visual letters prior to a single scanning session which

comprised  four  experimental  (imagery)  runs  of  ~11  minutes  and  one

control (perception) run of ~ 9 minutes as well as one pRF mapping run of

~16 minutes.

Training Session and Task

Training sessions lasted ca. 45 minutes and were scheduled one week prior

to  scanning.  Before  the  first  training  session,  participants  filled  in  the

Vividness  of  Visual  Imagery Questionnaire  (VVIQ;  Marks,  1973)  and the

Object- Spatial Imagery and Verbal Questionnaire (OSIVQ; Blazhenkova &
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Kozhevnikov,  2009).  These  questionnaires  measure  the  subjective

clearness and vividness of imagined objects and cognitive styles during

mental imagery, respectively. In each training trial, participants saw one of

four white letters (‘H’, ‘T’, ‘S’, or ‘C’) enclosed in a white square guide box

(8° by 8° visual angle) on grey background and a red fixation dot in the

center of the screen (see figure 1). With the onset of visual stimulation,

participants heard a pattern of three low tones (note C5) and one high

tone (note G5) that lasted 1000 ms. This tone pattern was associated with

the visually presented letter with specific patterns randomly assigned for

each  participant.  After  3000  ms  the  letter  started  to  fade  out  until  it

completely disappeared at 5000 ms after trial onset. The fixation dot then

turned orange and participants were instructed to maintain a vivid image

of the presented letter. After an 18 second imagery period, the fixation dot

turned white and probing started. With an inter-probe-interval of 1500 ms

(jittered by ±200 ms) three white probe dots appeared within the guide

box. These dots were located within the letter shape or outside of  the

letter  shape  (however,  always  within  the  guide  box).  Participants  were

instructed to indicate by button press whether a probe was located inside

or  outside  the  imagined  letter  shape.  Depending  on  the  response,  the

fixation dot turned red (incorrect) or green (correct) before turning white

again as soon as the next probe was shown. The positions of the probe

dots were randomly chosen such that they had a minimum distance of

0.16° and a maximum distance of 0.32° of visual angle from the edges of

the letter (and the guide box), both for inside and outside probes. This

ensured similar task difficulty across trials. A resting phase of 3000 ms or

6000 ms followed the three probes. At the beginning of a training run all

four letters were presented for 3000 ms each, alongside the associated

tone pattern (reference phase). During one training run, each participant

completed 16 pseudo-randomly presented trials. In each training session,

participants  completed two training runs during which reference letters

were  presented  in  each  trial  (described  above)  and  two  training  runs

without visual presentation (i.e. the tone pattern was the only cue for a

letter). Participants were instructed to maintain central fixation throughout
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the entire run. After the training session, participants verbally reported the

imagery strategies they used.

Figure 1: Training task. In the reference phase (top), four letters H, T, ‘S’ & ‘C’ were paired with a

tone pattern. In the trial phase (bottom), the tone pattern was played and the letter shown for 5s 

(fading out after 3s) followed by an imagery period of 18s, a probing period of 4.5s, and a resting 

period of 3s or 6s

Imagery Runs

Imagery runs were similar to the training task with changes to the probing

phase and the timing of the trial phase. After the reference phase in the

beginning  of  each run,  there  was  no visual  stimulation  other  than the

fixation dot and the guide box. Imagery phases started when participants

heard the tone pattern and the fixation dot turned orange. Imagery phases

lasted 6s.  Participants  were instructed to imagine the letter  associated

with the tone pattern as vividly and accurately as possible. The guide box

aided the participant by acting as a reference for the physical dimensions
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of the letter. The resting phases that followed each imagery phase lasted

9s  or  12s.  There  was  no  probing  phase  in  normal  trials.  In  each

experimental  run,  there  were  32 normal trials  and  two  additional  catch

trials which entailed a probing phase of four probes. There was no visual

feedback for the responses in the probing phase (the fixation dot remained

white). Data from the catch trials were not included in the analyses.

Perception Run

To measure brain activation patterns in visual areas during the perception

of the letters used in the imagery runs we recorded one perception run

during the scanning session. The four letters were visually presented using

the same trial timing parameters as in the experimental runs. There was

no reference nor probing phases. Letters were presented for the duration

of  the  imagery  phase  (6s)  and their  shape was  filled  with  a  flickering

checkerboard pattern (10 Hz). No tone patterns were played during the

perception  run.  The  recorded  responses  were  also  used  to  train  a

denoising auto-encoder (see below).

pRF mapping

A bar aperture (1.33° wide) revealing a flickering checkerboard pattern (10

Hz)  was  presented  in  four  orientations.  For  each  orientation  the  bar

covered  the  entire  screen  in  12  discrete  steps  (each  step  lasting  3

seconds). Within each orientation the sequence of steps (and hence of the

locations) was randomized (cf. Senden, Reithler, Gijsen, & Goebel, 2014).

Each orientation was presented six times. 

Stimulus Presentation

The bar stimulus used for pRF mapping was created using the open source

stimulus  presentation  tool  BrainStim

(http://svengijsen.github.io/BrainStim/).Visual  and  auditory  stimulation  in

the imagery and perception runs were controlled with PsychoPy (version

1.83.03; Peirce, 2007). Visual stimuli were projected on a frosted screen at

the top end of the scanner table by means of an LCD projector (Panasonic,

No PT-  EZ57OEL;  Newark,  NJ,  USA).  Auditory stimulation was presented

using MR-compatible insert earphones (Sensimetrics, Model S14; Malden,
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MA,  USA).  Responses  to  the  probes  were  recorded  with  MR-compatible

button  boxes  (Current  Designs,  8-button  response  device,  HHSC-2x4-C;

Philadelphia, USA).

Magnetic resonance imaging

We recorded anatomical and functional images with a Siemens Magnetom

7 Tesla scanner (Siemens; Erlangen, Germany) and a 32-channel head-coil

(Nova Medical  Inc.;  Wilmington, MA, USA). Prior to functional scans, we

used  a  T1-weighted  magnetization  prepared  rapid  acquisition  gradient

echo (3D-MP2RAGE; Marques et al., 2010) sequence [240 sagittal slices,

matrix = 320 320, voxel size = 0.7 0.7 0.7 mm3, first inversion time TI1 =

900 ms, second inversion time TI2 = 2750 ms, echo time (TE) = 2.46 ms,

repetition  time (TR)  = 5000 ms,  first  nominal  flip  angle  =  5°,  second

nominal flip angle = 3°] to acquire anatomical data. For all functional runs

we acquired  high-  resolution  gradient  echo  (T2*  weighted)  echo-planar

imaging (Moeller, Yacoub, & Olman, 2010) data (TE = 26 ms, TR = 3000

ms,  generalized  auto-calibrating  partially  parallel  acquisitions  (GRAPPA)

factor = 3, multi-band factor = 2, nominal flip angle = 55°, number of

slices = 82, matrix = 186 by 186, voxel size = 0.8 by 0.8 by 0.8 mm). The

field-of-view covered occipital, parietal, and temporal areas. Additionally,

before the first functional scan we recorded five functional volumes with

opposed phase encoding directions to correct for EPI distortions that occur

at higher field strengths (Andersson, Skare, & Ashburner, 2003).

Processing of (f)MRI data

We  analyzed  anatomical  and  functional  images  using  BrainVoyager  20

(version 20.0; Brain Innovation; Maastricht, The Netherlands) and custom

code in MATLAB (version 2015a; The Mathworks Inc.; Natick, MA, USA). We

interpolated  anatomical  images  to  a  nominal  resolution  of  0.8  mm

isotropic to match the resolution of functional images. In the anatomical

images,  the  grey/white  matter  boundary  was  detected  and  segmented

using  the  advanced  automatic  segmentation  tools  of  BrainVoyager  20

which are optimized for high-field MRI data. A region-growing approach

analyzed  local  intensity  histograms,  corrected  topological  errors  of  the

segmented grey/white matter border and finally reconstructed meshes of
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the  cortical  surfaces  (Rainer  Goebel,  Esposito,  &  Formisano,  2006;

Kriegeskorte & Goebel, 2001). The functional images were corrected for

motion  artefacts  using  the  3D  rigid  body  motion  correction  algorithm

implemented in BrainVoyager 20 and all functional runs were aligned to

the first volume of the first functional run. We corrected EPI distortions

using  a  method  similar  to  that  described  in  Andersson,  Skare,  and

Ashburner (Andersson et al., 2003) and the ‘topup’ tool implemented in

FSL  (S.  Smith,  Jenkinson,  Woolrich,  &  Beckmann,  2004).  The  pairs  of

reversed  phase  encoding  images  recorded  in  the  beginning  of  the

scanning  session  were  used  to  estimate  the  susceptibility-induced  off-

resonance  field  and  correct  the  distortions  in  the  remaining  functional

runs. After this correction, functional data were high-pass filtered using a

general linear model (GLM) Fourier basis set of three cycles sine/cosine,

respectively.  This  filtering  included  a  linear  trend  removal.  Finally,

functional  runs  were  co-registered  and  aligned  to  the  anatomical  scan

using  an  affine  transformation  (9  parameters)  and  z-normalized  to

eliminate signal offsets and inter-run variance.

pRF Mapping and region-of-interest definition

For  each  subject,  we  fit  location  and  size  parameters  of  an  isotropic

Gaussian population receptive field model (Dumoulin & Wandell, 2008) by

performing a grid search. In terms of pRF location, the visual field was split

into  a  circular  grid  of  100  by  100  points  whose  density  decays

exponentially  with  eccentricity.  Receptive  field  size  exhibits  a  linear

relationship with eccentricity with the exact slope depending on the visual

area (Freeman & Simoncelli, 2011). For this reason, we explored slopes in

the  range  from  0.1  to  1  (step  =  0.1)  as  this  effectively  allows  for

exploration of a greater range of receptive field sizes (10 for each unique

eccentricity  value).  Polar  angle  maps  resulting  from  pRF  fitting  were

projected onto inflated cortical surface reconstructions and used to define

region-of-interests  (ROIs)  for  bilateral  visual  areas V1,  V2,  and V3.  The

resulting  surface  patches  from  the  left  and  right  hemisphere  were

projected  back  into  volume  space  (from  -1  mm  to  +3  mm  from  the
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segmented grey/white matter boundary). Volume ROIs were then defined

for V1, V2, V3, and a combined ROI (V1V2V3). 

Voxel patterns

All  our analyses and reconstructions are based on letter-specific spatial

activation  profiles  of  voxel  co-activations,  which  we  refer  to  as  voxel

patterns  (VPs).  Voxel  patterns  within  each  ROI  were  obtained  for  both

perceptual and imagery runs. First, for each run, single trial letter-specific

VPs were obtained by averaging BOLD activations in the range from +2

until +3 volumes following trial onset and z-normalizing the result.  This

lead to a total of 32 (eight per letter) perceptual VPs and 128 (four runs

each with eight trials per letter) imagery VPs. We furthermore computed

perceptual and imagery grand-average VPs per letter by averaging over all

single trial VPs (and runs in case of imagery) of a letter and z-normalizing

the result. Imagery grand-average VPs were used in an encoding analysis

(see below) while perceptual grand-average VPs were used for training a

denoising autoencoder.

Encoding analysis

To validate the assumption that spatial activation profiles of visual mental

imagery  is  similarly  retinotopically  organized  as  perception,  we  test

whether  voxel  activations  predicted  from  the  encoding  model  (one

isotropic  Gaussian  per  voxel)  and  a  physical  (binary)  stimulus

corresponding to the imagined letter provides a significantly better fit with

measured  voxel  activations  than predictions  from the remaining  binary

letter stimuli. Specifically, for each participant and ROI, we predicted voxel

activations  for  each  of  the  four  letters  based  on  pRF  estimates  and

physical  letter  stimuli.  Subsequently,  we  performed  a  mixed-model

regression for the grand-average voxel activations of each imagined letter

within each ROI with physical letter as fixed and participant as random

factors, respectively. Finally, we performed a contrast analysis. For each

imagined  letter  the  contrast  was  always  between  the  corresponding

physical stimulus and all remaining physical stimuli.  For example, when

considering voxel activations for the imagined letter ‘H’, a weight of 3 was

placed on activations predicted from the physical letter ‘H’ and a weight of
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-1 was placed on activations predicted from each of the remaining three

letters. Since we repeated the analysis for each imagined letter (4) and

single region ROI (3),  we performed a total  of  12 tests  and considered

results significant at a corrected cutoff of 0.05 12 0.0042c   .

Autoencoder

We  trained  a  denoising  autoencoder  (Vincent,  Larochelle,  Bengio,  &

Manzagol, 2008) with a single hidden layer (see figure 2a) to reproduce

grand-average perceptual VPs from noise corrupted versions per subject

and ROI.  Since the values of  VPs  follow a Gaussian distribution with a

mean of zero and unit standard deviation, we opted for zero-mean additive

Gaussian noise with a standard deviation  12   for input corruption. The

hidden layer consisted of rectified linear units (ReLUs) while output units

activated  linearly.  We  used  mean  squared  distances  to  measure

reconstruction loss and implemented the autoencoder in the TensorFlow

library  (Abadi  et  al.,  2016)  for  Python  (version  2.7,  Python  Software

Foundation,  https://www.python.org/). The autoencoder was trained using

the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 
51 10  and

a batch size of  100 for  2,000 iterations.  In  addition to the four grand-

average  perceptual  VPs,  we  also  included  an  equal  amount  of  noise

corrupted mean luminance images to additionally force reconstructions to

zero, if the input contained no actual signal.
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Figure 2: Network architectures. Panel A) shows a three-layer denoising autoencoder. The input

and output layer consist of one unit per voxel while the number of units in the hidden layer is 10%

of that in the input. Input is corrupted by additive Gaussian noise. Units in the hidden layer have a

nonlinear activation function (ReLU) while output units activate linearly.  Encoding weights (from

input to hidden layer) and decoding weights (from hidden to output layer) are shared such that

Td eW W . Panel B) shows a three-layer classification architecture. The output layer has one unit

per  letter  and  uses  the  softmax  activation  function.  Input  and  hidden  layers  are  as  in  the

autoencoder.  Red  weights  indicate  that  these  weights  have  been  trained  previously  in  the

autoencoder and remain fixed while training the classifier.

Classification

Once the autoencoder was trained, we replaced its output layer with a

four-unit (one for each letter) softmax classifier (see figure 2b). Weights

from the hidden to the classification layer as well as the biases of output

units were then trained to classify single trial VPs in imagery runs using

cross-entropy as  a  measure  of  loss.  Note  that  pretrained weights  from

input to hidden layer as well as hidden unit biases remained fixed. This is

conceptually  similar  to  performing  multinomial  logistic  regression  on

hidden layer representations.  Imagery runs were split  into  training and

testing datasets in a leave-one-run-out procedure such that the classifier

was repeatedly trained on a total of 96 VPs (32 trials for each of three

runs) and tested on the remaining 32 VPs. We again trained the network

using the Adam optimizer.  However,  in this  case the learning rate was
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41 10
,  the  batch  size  equal  to  96,  and  training  lasted  merely  250

iterations.

For each subject and ROI, we evaluated average classification accuracy

across  the  four  runs  against  a  Null-distribution  obtained  from  1,000

permutations of the leave-one-run out procedure with randomly scrambled

labels.  We consider  accuracy results  significant  if  they exceed the 95 th

percentile of the Null distribution. 

Reconstruction 

For each subject and ROI, we reconstructed the visual field for the grand-

average perceptual VP for each letter as well as from intra-trial averages

of imagery VPs (i.e. averages over letter trials within a run). We obtained

weights mapping the cortex to a visual field image (VFI) by inverting the

mapping  from visual  field  to  cortex  given  by  the  population  receptive

fields: 

  TVFI pRFW W D

 

where pRFW is a v-by-p matrix (with v being the number of voxels and p the

number of pixels) mapping a 150-by-150 pixel visual field to the cortex

(i.e. 22500p  pixels; after vectorizing the visual field) and D  is a diagonal

matrix  of  the  inverse  outdegree  of  each  pixel  in  the  visual  field.  The

diagonal  matrix  D  ensures that the sum total  of  weights impinging on

each pixel is equal to one and corrects for overrepresentations of central

regions  in  the  visual  field  due  to  cortical  magnification.  Using  these

weights, VFIs could be obtained from VPs via a simple matrix multiplication

VFIVFI W VP
.

For each letter, we assessed the quality of its reconstruction by calculating

the  correlation  between  its  VFI  and  the  corresponding  binary  letter
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stimulus. This constitutes a first-level correlation metric of reconstruction

quality.  However,  since the four letters  bear different  visual  similarities

with each other (e.g. ‘S’ and ‘C’ might resemble each other more closely

than either resemble ‘H’), we also define a second-level correlation metric.

Specifically,  we  obtain  one  vector  of  all  pairwise  correlations  between

physical  letter  stimuli  and  a  second  vector  of  pairwise  correlations

between  corresponding  VFIs  and  compute  correlations  between  these

pairwise correlation vectors. 

Results

Behavioral results

VVIQ and OSIVQ scores for each participant are shown in figure 3. The

average score over participants for VVIQ was 4.07 (95% CI [3.71, 4.43]).

For the object,  spatial,  and verbal  sub-scales of  OSIVQ, average scores

were 2.88 (95% CI [2.48, 3.27]), 3.08 (95% CI [2.75, 3.41]), and 3.81 (95%

CI  [3.33,  4.29]),  respectively.  Participants  reported  that  they  tried  to

maintain the afterimage of the fading stimulus as a strategy to enforce

vivid and accurate letter  imagery.  Furthermore,  participants determined

through button presses whether a probe was located inside or outside the

letter shape while the letter was either visible or imagined. A repeated-

measures ANOVA with task (visible or invisible runs) and time as within-

subject factors revealed a statistically significant effect of time on probing

accuracy (F(2,10) = 19.84, p ≪ 0.001), and no significant difference for task

(F(1,5) = 1.10, p = .341).

Table 1. Probing accuracy (averages over participants and time).

T1 T2 T3

Visible 60.42 (95% CI [48.2, 72.64])
75.39 (95% CI [66.70, 

84.08])

77.73 (95% CI [69.36, 

86.10])

Invisibl

e

62.02 (95% CI [44.57.36, 

79.45])

73.18 (95% CI [65.98, 

80.38])

81.57(95% CI [75.47, 

87.67])

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2018. ; https://doi.org/10.1101/277020doi: bioRxiv preprint 

https://doi.org/10.1101/277020
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Vividness of visual imagery. Vividness of Visual Imagery Questionnaire (VVIQ) and Object-

Spatial Imagery and Verbal Questionnaire (OSIVQ) scores (with the subscales for “object”, “spatial”, 

and “verbal” imagery styles) are shown for all participants.

Encoding

For each imagined letter (H, T, S, C) in each single-area ROI (V1, V2, V3),

we investigated whether voxel activations can be predicted from a pRF

encoding model and the corresponding physical stimulus. That is, for each

imagined letter-ROI combination, we ran a mixed-model regression with

observed imagery voxel activations (averaged within the time window +2

to  +3  volumes  following  trial  onset)  as  outcome  and  predicted  voxel

activations for each physical letter stimulus as predictors and participants

as grouping variable. Since we were specifically interested in evaluating

our assumption that imagery voxel activations are (just as their perceptual

counterparts)  retinotopically  organized  and  that  this  is  sufficient  to
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distinguish  among  different  imagined  letters,  we  performed  contrast

analyses between the physical letter corresponding to the imagery and all

remaining letters (see Methods for details). Contrasts were significant after

applying Bonferroni correction ( 0.0042c  ) for each of the twelve letter-ROI

combinations. Specifically, for V1, predictions based on the physical letter

‘H’ gave a better account of voxel activations observed for the imagery of

letter ‘H’ than those based on every other physical letter (t(2) = 32.11, p =

0.0004). Similarly for ‘T’ (t(2) = 48.00,  p = 0.0002), ‘S’ (t(2) = 14.10,  p =

0.0025), and ‘C’ (t(2) = 29.84, p = 0.0006). In the same vain for V2, ‘H’ (t(2)

= 25.21, p = 0.0008),  ‘T’ (t(2) = 67.63, p = 0.0001), ‘S’ (t(2) = 19.64, p =

0.0013), and ‘C’ (t(2) = 47.48,  p = 0.0002) and V3, ‘H’ (t(2) = 47.90,  p =

0.0006),  ‘T’ (t(2) = 27.60, p = 0.0007), ‘S’ (t(2) = 11.48, p = 0.0038), and

‘C’ (t(2) = 32.83, p = 0.0005). Figure 4 visualizes these results in the form

of boxplots of first-level beta values (i.e. distribution over participants per

physical letter) in each letter-ROI combination. 
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Figure 4: First-level beta distributions. Distribution of first-level beta values (across participants) for VPs 
predicted from each physical letter (x-axis) for all combinations of ROI (rows) and imagined letters (columns).

Classification

Having  validated  the  assumption  that  voxel  activations  in  response  to

visual  mental  imagery  are  at  least  in  part  given by  voxels’  population

receptive fields and the shape of the imagined letters, we proceeded to

construct a neural network classifier. The classifier consists of three layers

with the output layer being a softmax classifier stacked onto the hidden

layer  of  an  autoencoder  pretrained  to  denoise  perceptual  VPs  (see

Methods for details). We trained the classifier on imagery data using leave-

one-run-out procedure; that is,  we trained the classifier on three of the

four imagery runs and tested classification accuracy on the left-out run.

Figure  5  shows  average  classification  accuracies  per  subject  and  ROI

(including the combined ROI ‘V1V2V3’).  For  five of  the six participants,

average classification accuracies exceeded theoretical chance levels (25%

correct) as well as the 95th percentile of 1,000 permutation runs (randomly
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scrambled labels) in all ROIs. For participant six, theoretical chance levels

as well as the 95th percentile were (barely) exceeded for V2 only.

Figure 5: Classification accuracies. Average classification accuracies across four leave-one-out 

runs of imagery data are given for four ROIs in each participant. Classification was performed for 

letter-specific voxel patterns averaged in the range from +2 until +3 volumes after trial onset. The 

black dashed line indicates accuracies expected by chance; grey lines demarcate the 95th percentile

of permutation classification accuracies.

As  can  be  appreciated  from  these  results  as  well  as  the  figure,

classification  accuracies  vary  across  ROIs  as  well  as  across  subjects.

Differences between subjects might be due to differences in their ability to

imagine  shapes  accurately  and  vividly  as  measured  by  the  VVIQ  and

OSIVQ  questionnaires.  Differences  between  ROIs  might  be  due  to

differences with respect to their retinotopy (mostly receptive field sizes) or

due to different numbers of voxels we included for analysis of each ROI.

Only the former would be a true ROI effect. We investigate which factors

account for the observed average accuracy by performing a mixed-model

regression  with  questionnaire  scores,  ROI  (using  dummy coding,  V1  =
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reference), and number of selected voxels as predictors with number of

voxels  being  grouped  by  ROI.  We  further  performed  stepwise  model

reduction to arrive at the most parsimonious account of our results. In the

full model the VVIQ and the OSIVQ spatial and OSIVQ object scores were

included  but  the  OSIVQ verbal  scores  were  not  since  those  correlated

highly with VVIQ scores (leading to collinearity) and are arguably the least

relevant  for  mental  imagery  of  visual  shapes.  To  further  prevent

collinearity, we also only included single-area ROIs in this analysis and not

the combined ROI. The most parsimonious model retains three significant

predictors  of  average  classification  accuracy:  number  of  voxels  (t(14) =

5.37,  p  ≪ 0.001),   the  object  sub-score  of  OSIVQ (t(14) = 4.5712,  p <

0.001), and the spatial sub-score of OSIVQ (t(14) = 2.95, p = 0.011).

Reconstruction

After  feeding  the  BOLD  timeseries  of  each  run  through  the  denoising

autoencoder, we computed clean grand-average imagery VPs from which

we  reconstructed  VFIs  (see  figure  6).  Average  correlations  between

reconstructed imagery and physical letters are presented in table 2 (for

comparison, table 3 shows correlations between reconstructed perception

and physical  letters).  We performed a mixed-model regression with the

VVIQ and the OSIVQ spatial and OSIVQ object scores, ROI (using dummy

coding,  V1  =  reference),  letter  (dummy  coding,  ‘H’  =  reference),  and

number of selected voxels (again grouped by ROI) as predictors to assess

which factors account for the observed correlations (transformed to Fisher

z-scores  for  statistical  analysis).  We  again  performed  stepwise  model

reduction to arrive at the most parsimonious account of our results. The

final model retained number of voxels (t(62) = 3.95,  p  < 0.001) and the

OSIVQ object  score  t(68) = 6.03,  p  ≪ 0.001)  as  significant  quantitative

predictors.  Furthermore,  both  categorical  predictors  were  significant.

Specifically, letter ‘T’ (t(68) = 8.37, p ≪ 0.001) presented with significantly

improved  correlation  values  over  the  reference  letter  ‘H’  whereas  the

letter ‘S’ (t(68) = -2.95,  p = 0.004) presented with significantly decreased

correlation values with respect to the reference. Finally, correlations were
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significantly reduced for both V2 (t(68) = -3.38,  p = 0.001) and V3 (t(68) =

-2.80, p = 0.007) with respect to V1.

Figure 6: Reconstructed visual field images (participants 1-3). Reconstructed average VFIs 

are visualized for each ROI of participants one, two, and three. Reconstructions of the remaining 

three subjects are shown in figure 7. Perceptual voxel patterns were obtained from the raw BOLD 

time-series while imagery voxel patterns were obtained from cleaned BOLD time-series after 

feeding raw data through the autoencoder. For comparison, reconstructions of imagined letters 

without using the autoencoder can be found in supplementary figure 1.
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Figure 7:  Reconstructed visual field images (participants 4-6). Reconstructed average VFIs 
are visualized for each ROI of participants four, five, and six. Reconstructions of the remaining three
subjects are shown in figure 6. Perceptual voxel patterns were obtained from the raw BOLD time-
series while imagery voxel patterns were obtained from cleaned BOLD time-series after feeding raw
data through the autoencoder. For comparison, reconstructions of imagined letters without using 
the autoencoder can be found in supplementary figure 2.

Next, we examined the second-level correlation metric of reconstruction

quality.  Correlations  between physical  and  reconstruction  pairwise  first-

level correlation vectors were 0.65 (95% CI [0.39, 0.82], p = 0.080) for V1,

0.60 (95% CI [0.23, 0.82], p = 0.106) for V2, 0.44 (95% CI [0.10, 0.69], p =

0.189)  for  V3,  and 0.77 (95% CI  [0.58,  0.89],  p = 0.037)  for  V1V2V3,

respectively. None of these correlations were significant after Bonferroni
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correction  ( 0.05 4 0.0125   ).  However,  the  correlation  observed  for

V1V2V3 was significant at an uncorrected alpha level.  Finally,  we again

performed a  mixed  regression  to  assess  which  factors  account  for  the

observed correlations (again transformed to Fisher z-scores). We included

VVIQ and the OSIVQ spatial and OSIVQ object scores, ROI (using dummy

coding, V1 = reference), and number of selected voxels (grouped by ROI)

as  predictors  and  performed  stepwise  model  reduction.  The  only

significant predictor  remaining after  this  procedure was the VVIQ score

(t(16) = -3.41,  p = 0.004). Note that a lower VVIQ score corresponds to

higher imagery vividness.

Table 2. First order correlations between reconstructed imagined letters and physical 

stimuli (averages over participants). 

H T S C

V1
0.25 (95% CI [0.01,

0.46])

0.56 (95% CI [0.53,

0.59])

0.14 (95% CI [-0.01

0.29])

0.27 (95% CI [0.18,

0.35])

V2
0.16 (95% CI [-0.06,

0.36])

0.50 (95% CI [0.43,

0.56])

0.07 (95% CI [-0.05,

0.19])

0.27 (95% CI [0.23,

0.32])

V3
0.20 (95% CI [0.08,

0.31])

0.36 (95% CI [0.25,

0.45])

0.01 (95% CI [-0.11,

0.14])

0.19 (95% CI [0.04,

0.32])

V1V2V

3

0.28 (95% CI [0.14,

0.41])

0.55 (95% CI [0.52,

0.58])

0.11 (95% CI [-0.04,

0.24])

0.25 (95% CI [0.17,

0.33])

Table 3. First order correlations between reconstructed perceived  letters and physical 

stimuli (averages over participants). 

H T S C

V1
0.37 (95% CI [0.34,

0.41])

0.57 (95% CI [0.54,

0.60])

0.26 (95% CI [0.16,

0.35])

0.30 (95% CI [0.22,

0.38])

V2
0.35 (95% CI [0.30,

0.40])

0.51 (95% CI [0.46,

0.57])

0.19 (95% CI [0.09,

0.28])

0.30 (95% CI [0.23,

0.36])

V3
0.24 (95% CI [0.19,

0.30])

0.38 (95% CI [0.29,

0.47])

0.06 (95% CI [-0.06,

0.18])

0.27 (95% CI [0.24,

0.29])

V1V2V

3

0.39 (95% CI [0.35,

0.43])

0.55 (95% CI [0.51,

0.60])

0.22 (95% CI [0.12,

0.31])

0.30 (95% CI [0.24,

0.36])
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In addition to reconstructing VFIs from grand average imagery VPs, it can

be illuminating to examine reconstructions from single trial VPs. We focus

here on participants three and five whose classification accuracy indicates

that  they  were  highly  successful  at  imagery  on  a  trial  by  trial  basis.

Obviously, these participants are not representative of the population at

large but provide an indication of what is possible for people with a strong

ability  to  imagine  visual  shapes.  Figures  8  shows  imagery  VFIs  for

individual  trials  of  each letter  in  a  single  run of  participant  three  with

denoising. For denoised data, mean correlation values across trials (and

runs) were 0.39 (95% CI [0.32, 0.45]) for ‘H’, 0.55 (95% CI [0.46, 0.62]) for

‘T’, 0.10 (95% CI [0.04, 0.16]) for ‘S’, and 0.09 (95% CI [0.06, 0.12]) for ‘C’,

respectively. As a comparison,  mean correlations for data which has not

been denoised were 0.19 (95% CI [0.15, 0.21]) for ‘H’, 0.33 (95% CI [0.28,

0.38]) for ‘T’, -0.02 (95% CI [-0.06, 0.02]) for ‘S’, and 0.02 (95% CI [-0.02,

0.06]) for ‘C’, respectively. Figure 9 shows imagery VFIs for individual trials

of each letter in a single run of participant five. For denoised data, mean

correlations were 0.28 (95% CI [0.20, 0.35]) for ‘H’, 0.53 (95% CI [0.43,

0.61]) for ‘T’, 0.08 (95% CI [0.00, 0.17]) for ‘S’, and 0.21 (95% CI [0.12,

0.31]) for ‘C’, respectively. For data which has not been denoised, mean

correlations were 0.12 (95% CI [0.08, 0.15]) for ‘H’, 0.32 (95% CI [0.25,

0.37]) for ‘T’, 0.02 (95% CI [-0.01, 0.06]) for ‘S’, and 0.07 (95% CI [0.03,

0.10]) for ‘C’, respectively. 
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Figure 8: Reconstructed visual field images from denoised single trials in a single run of 
participant 3. Each run comprised of 8 trials (columns) per letter (rows). Recognizable 
reconstructions can be obtained for a number (though not all) individual trials. For comparison, 
reconstructions of imagined letters without using the autoencoder can be found in supplementary 
figure 3.

Figure 9: Reconstructed visual field images from denoised single trials in a single run of 
participant 5. Each run comprised of 8 trials (columns) per letter (rows). Recognizable 
reconstructions can be obtained for a number (though not all) individual trials.For comparison, 
reconstructions of imagined letters without using the autoencoder can be found in supplementary 
figure 4.
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Discussion

We provide evidence that specific content of visual mental imagery in the

shape of letters can not only be decoded but also reconstructed from 7

Tesla  sub-millimeter  voxel  activity  patterns.  Our  novel  fMRI  decoding

approach employs  inverted  encoding  models  to  project  individual  pRFs

back  into  the  visual  field  and  machine  learning  tools  to  discriminate

among four visually imagined letters using submillimeter fMRI images of

early visual cortex. Importantly, our approach offers a more direct link to

visual imagery content which is especially relevant for BCI letter speller

applications.

Over training sessions all participants reached a high probing accuracy for

both  imagery  and  perception  trials,  showing  that  they  could  reliably

indicate  the  location  of  the  invisible  letter  shape  in  visual  space.  The

ability to imagine the borders of the letter in absence of visual stimulation

suggests participants were able to internally visualize the instructed letter.

Next,  we  showed that  voxel  activations  predicted  by  an  pRF  encoding

model and a physical (binary) letter stimulus can account for observed

voxel  activations  in  response  to  mental  imagery  of  the  letter

corresponding  to  the  physical  stimulus.  Given  that  pRF  mapping  has

shown to accurately predict fMRI responses to visual stimuli (Wandell &

Winawer, 2015), our results suggest that intrinsic geometric organization

of visual experiences are also maintained in visual mental imagery. 

In five out of six participants, we were able to classify imagined letters

with  a  high  degree  of  accuracy  from  at  least  one  region  of  interest

(between  50%  and  75%  correct).  Interestingly,  classification  accuracy

varied not  only  across  subjects  but  also  across  ROIs.  Yet,  ROIs  do  not

constitute  a  significant  predictor  of  classification  accuracy.  Rather,  the

number  of  voxels  included  for  any  given  ROI  determined  classification

accuracy.  However,  this  does  not  imply  that  uncritically  adding  more

voxels will lead to higher classification accuracies. We included only those

voxels  for  which  pRF  mapping  yielded  a  high  fit.  It  is  likely  that

classification accuracy benefits from a large number of voxels whose pRF
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can be estimated to a high degree of precision (i.e. which show a strong

spatially selective visual response) rather than a large number of voxels

per se. Our analysis revealed two additional significant predictors, namely

the  OSIVQ  object  and  OSIVQ  spatial  scores.  This  indicates  that  these

scores can be useful for screening participants to ensure that only those

who show a strong ability for vivid imagery need to undergo costly and

physically exhausting fMRI measurements.

With respect to visual field reconstructions, we found significant overlap

between reconstructed VFIs of imagery data with the physical stimulus.

This  was  expected  given  our  and  previous  findings  that  visual  mental

imagery  exhibits  retinotopic  organization  in  early  visual  cortex  (Albers,

Kok, Toni, Dijkerman, & de Lange, 2013; Pearson et al., 2015; Slotnick et

al.,  2005).  Our  first-level  correlation  metric  of  reconstruction  quality

revealed  that  reconstructions  based  on  V1  data  showed  the  highest

resemblance to reference images compared to V2 and V3. This finding is

reasonable given that receptive fields in V1 are smaller than in the other

regions  (A.  T.  Smith,  Singh,  Williams,  &  Greenlee,  2001)  allowing  for

resolving finer spatial detail. If quality of reconstruction indeed depends on

the ability to resolve fine spatial detail, then one would also expect that

stimuli exhibiting finer (coarser) spatial layouts would be harder (easier) to

reconstruct. This fits with the observation that reconstruction quality of the

letter ‘S’ was significantly reduced while that of letter ‘T’ was significantly

improved with respect to that of letter ‘H’. As with classification accuracy

the OSIVQ object score was a significant predictor of reconstruction quality

given  by  the  first-level  correlation  metric.  In  contrast  to  classification

accuracy, the OSIVQ spatial score displayed no predictive value for first-

level reconstruction quality. Furthermore, neither OSIVQ sub-score was a

significant predictor of second-level reconstruction quality. Only the VVIQ

was a significant predictor of this metric. This is interesting given that the

VVIQ could not predict classification accuracy nor first-level reconstruction

quality. 

There are substantial  differences between participants both in terms of

reconstruction quality and classification accuracy rendering pre-screening

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2018. ; https://doi.org/10.1101/277020doi: bioRxiv preprint 

https://doi.org/10.1101/277020
http://creativecommons.org/licenses/by-nd/4.0/


highly important. While it is not possible to achieve good reconstruction for

everyone, we showed that for those who exhibit a strong ability for visual

mental imagery, it is possible to obtain recognizable reconstructions even

at the single trial level when using the denoising autoencoder. This offers

the opportunity to provide real-time visual feedback to participants in the

form of  online  reconstructions  of  their  imagined  letters.  This  feedback

could  serve  as  a  visual  aid  for  participants’  imagery  which  might  free

sufficient  mental  resources  to  focus  imagery  on  adjusting  poorly

reconstructed regions of the letter. 

Overall,  our  letter  classification  and  reconstruction  approach  could  be

particularly suitable for communication in cases where voluntary muscle

movement is impaired (e.g. locked-in syndrome), and imagery of letters

can be identified in matter of seconds in a more natural and direct way

than  current  BCI  letter  speller  implementations  (Sorger  et  al.,  2012).

Nevertheless,  questionnaires might  not  be sufficient  tools  for  screening

and both extensive training and feedback are desirable, especially when

including all letters of the alphabet in future studies. Our work constitutes

an important first step in the development of content-based BCI speller

systems.
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Supplementary Figures 

Supplementary Figure 1: Reconstructed visual field images (participants 1-3). 

Reconstructed average VFIs are visualized for each ROI of participants one, two, and three. 

Reconstructions of the remaining three subjects are shown in supplementary figure 2. Perceptual 

and imagery voxel patterns were obtained from the raw BOLD time-series.
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Supplementary Figure 2: Reconstructed visual field images (participants 4-6). 

Reconstructed average VFIs are visualized for each ROI of participants four, five, and six. 

Reconstructions of the remaining three subjects are shown in supplementary figure 1. Perceptual 

and imagery voxel patterns were obtained from the raw BOLD time-series.
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Supplementary Figure 3: Reconstructed visual field images from single trials in a single 
run of participant 3. Each run comprised of 8 trials (columns) per letter (rows).

Supplementary Figure 4: Reconstructed visual field images from single trials in a single 
run of participant 5. Each run comprised of 8 trials (columns) per letter (rows).
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