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We present and analyze a growth model of an avascular tumor that considers the basic biological
principles of proliferation, motility, death and genetic mutations of the cell. From a regulatory
network analysis and an analysis of genomic data we identify two sets of genes-a set of six genes and
a set of sixteen genes- that are believed to play an important role in the evolution of breast cancer.
Considering that cancer cells shape the tissue microenvironment and niches to their competitive
advantage, the model assumes that cancer and normal cells compete for essential nutrients and
that the rate of the “driver” mutations depends on nutrient availability. To this end, we propose a
coupling between the transport of nutrients and gene mutations dynamics. Gene mutation dynamics
are modeled as a Yule-Furry Markovian process, while transport of nutrients is described with a
system of reaction-diffusion equations. For each representative tumor we calculate its diversity,
represented by the Shannon index, and its spatial heterogeneity, measured by its fractal dimension.
These quantities are important in the clinical diagnosis of tumor malignancy. A tumor malignancy
diagram, obtained by plotting diversity versus fractal dimension, is calculated for different values
of a parameter β, which is related to the occurrence of driver mutations. It is found that when
β < 1, tumors show greater diversity and more spatial heterogeneity as compared with β > 1. More
importantly, it is found that the results and conclusions are similar when we use the six-gene set
versus sixteen-gene set.
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I. INTRODUCTION

Nowadays there is no consensus over how cancer is ini-
tiated; however, it is known that tumor growth occurs in
several stages. The accepted general view is that a cell
must undergo several gene mutations before it becomes
cancerous. There are two kinds of mutations: “passen-
ger” and “driver”. The former are gene changes that do
not affect cell fitness or contribute to cancer development,
and they may appear and eventually vanish during any
stage of tissue development. The latter are gene changes
that are causally involved in cancer development, typi-
cally conferring a functional change as well as a somatic
evolutionary advantage, and are believed to play a crucial
role in cancer progression [1, 2]. Because of this, cancer
development is the result of the gradual accumulation of
driver mutations that enhance cell proliferation rate and
inhibit cell death rate leading to tumor progression [3–
5]. The detailed factors that drive these mutations are
unknown. Nonetheless, there is a general agreement that
environment and heredity play important roles in can-
cer initiation. Tumor progression mainly involves two
types of genes: (i) oncogenes and (ii) tumor suppres-
sor genes [6–9]. Oncogenes encode proteins that control
cell proliferation and apoptosis [10]. Oncogenes can be
activated by structural alterations resulting from muta-
tion or gene fusion [11], by juxtaposition to enhancer
elements [12], or by amplification. Translocations and
mutations can occur as initiating events [13] or during

tumor progression, whereas amplification usually occurs
during progression. Activation of oncogenes by chromo-
somal rearrangements, mutations, and gene amplification
confers a growth advantage or increased survival of cells
carrying such alterations. All three mechanisms cause
an alteration in the oncogene structure, an increase or a
deregulation of its expression [14]. On the other hand,
tumor suppressor genes normally prevent unrestrained
cellular growth and promote DNA repair as well as cell
cycle checkpoint activation and maintain the activity of
every cell. In most cancers the “bad mutations” of tumor
suppressor genes reduce functions and make cells grow
without control, and eventually accumulate to form a tu-
mor [6, 8]. In normal cells, however, hundreds of genes
intricately control the processes of division and death, so
that, growth is the result of a balance between the ac-
tivity of those genes that promote cell proliferation and
those that suppress it. Cancer cells originate within tis-
sue and no longer respond to many of the signals that
control cellular growth and death. As they proliferate
they diverge ever further from normality. Over time,
these cells become increasingly resistant to the molec-
ular controls that maintain normal cells, and as a result,
they divide more rapidly than their progenitors and be-
come less dependent on signals from other cells. Cancer
cells even evade programmed cell death, despite the fact
that their multiple abnormalities would normally make
them prime targets for apoptosis.

Phenotypic and functional heterogeneity usually arise
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among cancer cells within a tumor as a consequence of
genetic variations, environmental differences, and irre-
versible changes in cellular properties. Cancer cell het-
erogeneity displays striking morphological, genetic, and
proteomic variability and represents a great challenge
to diagnosis, treatment, and drug resistance. Spatial
variations in cell genetic profiles lead to altered micro-
environments. These positional variations are visible
through analysis of tissue pathology images [15]. There
are unlimited numbers of genetic and epigenetic alterna-
tives along with all types of environmental stress that
contribute to tumor evolution. Because of this, it is ex-
tremely difficult the identification of a universal molecu-
lar mechanism at the center of cancer initiation and de-
velopment. However, recent studies have demonstrated
that heterogeneity is observed to varying extent across
a wide variety of cancers, with the identification of both
clonal and sub-clonal driver mutations [16–18]. A com-
plex interplay of gene expression, DNA alterations, gene
mutations and environmental conditions are believed to
be the main factors that drive tumor heterogeneity [19].
The term “spatial heterogeneity” will be interpreted here
as the accumulation of gene mutations in different cells
clusters that are spatially distributed nearby the tumor
periphery.

In this paper we analyze a quantitative model of
growth of an avascular tumor that considers the basic bio-
logical principles of cell proliferation, motility, death and
genetic mutations. From genomic data, we identify two
sets of genes-a set of six genes and a set of sixteen genes-
that are believed to play an important role in breast can-
cer tumor growth. On the other hand, it has been found
that cancer cells shape the tissue microenvironment and
niches to their competitive advantage [17, 20]. In fact,
nutrients play the role of catalysts during the expres-
sion of genes leading to fluctuations and asymmetries in
the gene propensities, [21–23]. Thus, our model incorpo-
rates nutrients as an environmental factor that catalyzes
gene mutation dynamics. The transport of nutrients is
described by a set of reaction-diffusion equations cou-
pled to the stochastic gene mutation dynamics of each
cell, modeled as a Yule-Furry Markovian process. Tak-
ing into consideration that quantitative measurements of
diversity and spatial heterogeneity are important clues
for clinical diagnosis of tumor malignancy, we calculate
and analyze these properties by means of the Shannon
diversity index and the fractal dimension. With these
quantities we establish a tumor malignant-benign dia-
gram for different values of parameter β that tunes the
accumulation rate of driver mutations. It is found that
for β < 1 the tumors display high genetic diversity with
a Shannon index of H > 3.5 and are spatially hetero-
geneous, whereas for β > 1 tumors develop less genetic
diversity characterized by a Shannon index H ≤ 3.5, and
are spatially less heterogeneous. The paper’s layout is as
follows: in section II we present the model with the set
of reaction diffusion equations for the transport of nu-
trients as well as the equations for stochastic mutation

dynamics. In section III we briefly explain the algorithms
used to simulate the genes stochastic dynamics and the
integration of the system of reaction-diffusion equations.
In section IV the results of the numerical simulations of
tumors and the analysis of the diversity and spatial het-
erogeneity is presented. Finally, in section V we discuss
the results of the structure, diversity and heterogeneity of
tumors as well as the possible applications of the present
quantitative modeling as a means of cancer diagnosis.

II. MODEL

Let us start with a reaction-diffusion model for the
growth of an avascular tumor proposed by Ferreira et
al. [24]. Tissue is made of three types of cells, namely:
normal, cancer, and tumor necrotic cells, that live on
a square lattice. Processes of proliferation, death and
competition for nutrients among the normal and can-
cer cells are considered. Normal and necrotic cells may
occupy one lattice site, however, more than one can-
cer cell can pile up at a given lattice site. Because of
this, three field variables σn(~r, t) = 0, 1, σd(~r, t) = 0, 1
and σc(~r, t) = 0, 1, 2, 3, ... are defined at each lattice site
~r = (i, j) with 0 ≤ i, j ≤ L, integer numbers. An initial
cancer cell is placed at about the middle of the lattice.
A nutrient supply (capillary vessel) is located horizon-
tally at the upper side of the lattice. Periodic boundary
conditions along the horizontal axis are defined. It is
assumed that essential and nonessential nutrients diffuse
from the capillary vessel towards each cell throughout the
tissue (essential nutrients are glucose, amino acids, vita-
mins and minerals, and non-essential nutrients are oxy-
gen, cholesterol and vitamins that are made naturally in
the body). These nutrients are critical for DNA synthesis
and for cell proliferation; therefore, they are considered
important for the development of gene diversity [21–23].
Accordingly, we assume that high nutrient consumption
leads to high driver mutation rates, while low nutrient
consumption leads to a cell latent state with low driver
mutation rates. This hypothesis, introduced as a stochas-
tic term coupled to the reaction-diffusion Eqns (1-2), led
us to show that the accumulation of driver mutations dur-
ing tumor growth eventually yields high genetic diversity
and spatial heterogeneity of tumor cells, the hallmarks of
most cancers.

The reaction-diffusion equations that describe the
transport of essential and nonessential nutrients for cell
proliferation are the following [24]:

∂N

∂t
= ∇2N − α2N{σN + (1 + βPdm)λNσc}, (1)

∂M

∂t
= ∇2M − α2M{σN + (1 + βPdm)λMσc}, (2)

where N(~r, t) and M(~r, t) are the concentrations of es-
sential and nonessential nutrients, respectively. The pa-
rameter α represents the nutrient consumption rate for
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normal cells. The ability of cancer cells- enumerated by
σc - to outcompete normal cells (σn) for essential and
nonessential nutrients is denoted by λN and λM , respec-
tively. The transport of nutrients on the right side of
Eqns (1-2) include a term that is the product of two quan-
tities, the parameter β and the probability Pdm. The for-
mer describes the accumulation rate of driver mutations
and the latter represents the probability of occurrence
of driver mutations. Hence, the product βPdm quanti-
fies the accumulation of driver mutations in each cancer
cell. This stochastic term modifies the reaction term that
accounts for the ability of cancer cells to compete for nu-
trients. Note that when β = 0, Eqns (1-2) reduce to the
nutrient transport equations introduced in [24].

These transport equations are complemented with the
probability of cancer cell division driven either by ran-
dom mutations or by nutrient consumption, as well as the
probability of death. This probability can be expressed
as [24]:

Pdeath(N) = exp
[
−
( M

θdeathσc

)2]
, (3)

where θdeath controls the shape of this sigmoidal curve.
Cancer cell proliferation is modeled as a cell division

process, A, which can occur in two independent ways,
namely, (i) due to random driver mutations AM , or (ii)
due to nutrients consumption, AN . Thus, the probability
of cancer cell division can be written as the sum of two
probabilities:

P (A) = P (A|AM )P (AM ) + P (A|AN )P (AN ), (4)

where P (A|AM ) is the probability of division due to ran-
dom driver mutations, and P (A|AN ) is the probability
of division catalyzed by nutrient consumption. By us-
ing Bayes’ property one can write, P (A|AM )P (AM ) =
P (AM |A)P (A) so that Eqn (4) can be recast as:

P (A) = P (AM |A)P (A) + P (A|AN )P (AN ). (5)

Solving for P (A) we obtain the probability of cancer cell
division:

P (A) =
P (A|AN )P (AN )

1− P (AM |A)
. (6)

We now assume that the numerator of this equation cat-
alyzes mutations by nutrient consumption as [24]:

P (A|AN )P (AN ) =

(
1− exp

[
−
( N

θdivσc

)2])
, (7)

where θdiv controls the shape of this probability. By as-
suming that the probability of random driver mutations
is P (AM |A) ≡ βPdm, the probability of cancer cell divi-
sion, P (A) = Pdiv, in Eqn (6) is given as

Pdiv =
1− exp

[
−
(

N
θdivσc

)2]
1− βPdm

. (8)

Since Pdiv ≤ 1, then β ≤ exp
[
−
(

N
θdivσc

)2]
/Pdm; this

means that driver mutations happen at a higher rate in
those regions where nutrients concentration satisfies this
inequality. Note that when the nutrient concentration
is large the right side of this inequality is small whereas
when nutrient concentration is small the right side of
this inequality is large. Therefore, regions with high nu-
trient concentration favor cell survival and increase the
driver mutation rate, nonetheless, regions with low nu-
trient concentration disfavor driver mutations. In this
sense, nutrients play the role of a “catalyst” for driver
mutations.

A. Gene types

To determine which genes should be incorporated into
the mutation dynamics, we analyzed data from the
Data Release 23 from the European Union breast cancer
project (BRCA-EU). We found a set of sixteen genes that
are believed to play a major role in breast cancer develop-
ment. These genes with their corresponding frequency of
mutations are shown in Fig. 1. In this set we can identify
the tumor suppressor genes TP53, ATR, ATM, E2F1;
oncogenes: BRCA1, ERBB2, MDM2, NRAS, HRAF
and kinase regulators CHEK2, KRAS, CHECK1, AKT1
and CDK2. On the other hand, a recent regulatory net-
work analysis in breast cancer [25] inferred from gene ex-
pression data suggests that there are six genes, namely:
TP53, ATM, ERBB2, BRCA1, MDM2 and CDK2, that
play a major role in breast tumor development. This
finding appears to be consistent with the general belief
that successive driver mutations are produced mainly by
six genetic variations [5, 6, 8, 9, 22, 25, 26]. Based on this
data we focus our attention on two histograms: one with
the sixteen genes –see Fig. 1– and the second with only
the six genes from the regulatory network analysis [25],
see inset Fig. 1.

Since mutation occur as a sequence of independent
events (Markov chain), and because in each event a driver
mutation may occur with probability p (success), accu-
mulation of driver mutations can be described with a
negative binomial distribution [27–29]. At this point it
is important to note that a negative binomial distribu-
tion is commonly used to model gene expression in RNA
sequence experiments [30–32]. Taking this into consider-
ation, a negative binomial distribution with parameters,
p (probability of success) and r (number of fails) is fit-
ted to both histograms. The results of these fittings are
shown with solid lines in Fig. 1. The sixteen-gene fitting
shown in Fig. 1 with a red line and circles yielded the
results p = 0.2578± 0.0136 and r = 1.3591± 0.0877 with
a goodness of fit Q = 0.9301 and correlation coefficient
R = 0.9779. Similarly, the result for the six-gene fitting is
plotted in the inset of Fig. 1 with a blue line and squares.
This fitting yielded the results p = 0.6560 ± 0.0481 and
r = 3.1189 ± 0.6529 with a goodness of fit Q = 0.8713
and correlation coefficient R = 0.8699. This analysis in-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2018. ; https://doi.org/10.1101/276725doi: bioRxiv preprint 

https://doi.org/10.1101/276725
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

FIG. 1: Histogram of the distribution of mutations of sixteen-
gene set that are believed to play a major role in breast can-
cer development. Data is taken from Breast Cancer ICGC
Project (https://dcc.icgc.org/) for the European Union. The
inset shows the histogram of the distribution of mutations
of six-gene set that play a crucial role in breast cancer as
suggested from a regulatory network analysis [25]. The red
line with circles and the blue line with squares represent the
results of fitting a negative binomial distribution to each his-
togram. See text for more details.

dicates that the histogram made with either the set of
gene mutations represents reasonably well the genomic
data. The quantitative results of this fitting analysis will
be used in the implementation of the stochastic simula-
tions of the tumor growth dynamics (Section III A). To
figure out if there are significant changes in the results
when using either set of genes we carried out simulations
using both sets. It is found that the results obtained with
both sets are consistent and robust. Thus, in principle, it
is sufficient to consider the six-gene set. For this reason
most of our analysis is carried out with the six-gene set.
In section IV we elaborate more about these findings.

B. Mutation dynamics

By assuming that a driver mutation depends only on
the previous cell genetic state, one can model the mu-
tations dynamics by means of a Yule-Furry Markovian
process. [33]. The corresponding master equation is

dPx(t)

dt
= −γ(t)xPx(t) + γ(t)(x− 1)Px−1(t) with x ≥ 1,

(9)
where Px(t) represents the probability that a given cell
in the tissue undergoes x (x = 0, 1, 2, ...) mutations
at time t, and γ(t) > 0 is the hopping probability
that one new mutation, x → x + 1, will happen in
the time interval [t, t + dt). The solution of Eqn. (9)
is a geometric probability distribution with argument,

p(t) = exp(
∫ t
0
γ(τ)dτ) [33]. At this point we would like

to relate the hopping probability to the microenviron-
ment in tumor progression. To this end we consider re-
cent findings in cancer development that suggest that
interactions between cancer cells and their tissue habi-
tat are reciprocal, and often times, cancer cells shape
the tissue microenvironment and niches to their com-
petitive advantage. From this point of view the tis-
sue microenvironment is regarded as a complex system
that leads to dynamic states with multiple components
that influence cancer clone evolution [17, 20]. One of
the simplest ways of incorporating this view is by as-
suming that nutrient spatial gradients modify in some
way the acquisition rate of new driver mutations [34].
Thus, one can assume that there is a relationship between
the concentration of essential nutrients and the hopping
probability of acquiring new mutations, represented by
γ(t). Taking this into consideration we make the an-

zatz, p(~r, t) = exp(
∫ t
0
γ(τ)dτ) = exp

[
−
(N(~r,t)
θdiv

)2]
, where

N(~r, t) represents the concentration of essential nutrients
at position ~r at time t, and θdiv is an adjusting parameter
that controls the shape of the sigmoidal curve. There-
fore, there is an intrinsic nonlinear coupling between the
master equation that describes the mutation dynamics of
each cell located at position ~r and the reaction-diffusion
system that describes the nutrients concentration at any
position in the tissue. Thus, to fully describe the dynam-
ics of this complex system of equations we need to per-
form stochastic simulations (as described in section III).

It is known that driver mutations can be randomly ac-
tivated by structural alterations resulting from mutation
or gene fusion, by juxtaposition to enhancer elements, or
by amplification of random mutations acquisition. These
random activations can be modeled by a Poisson process
distribution [6, 21, 35–37]. Then, one can write the total
probability distribution of having a driver mutation, at a
given cell in the tissue, at time t, as the product of two
independent probability distributions, namely,

Pdm = G(p, zj)Nλ(λ, kj). (10)

Here, G(p, zj) is a geometric probability distribution with
mean (1− p)/p, where p is given by the anzatz indicated
above, and zj is the number of viable driver mutations
of gene j. The function Nλ is a Poisson probability dis-
tribution with mean λ and represents the probability of
occurrence of kj driver mutations of gene j at a given
cell. This factorization plays an important role in the
implementation of the stochastic simulations to describe
the tumor gene dynamics.

Now that we have defined the mutation dynamics prob-
ability distributions, let us estimate the upper bound for
the parameter β that appears in Eqns (1-2). Recall that
β < p/Pdm, and that the mean value of Eqn (10) is
(1 − p)λ/p. Then, one can obtain the following upper
bound for β:

β <
p2

λ(1− p)
, (11)
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Since, O(10−5) ≤ p ≤ O(10−1) and λ ∼ O(10), β should
be in the interval 0 < β < 10. These bounds for β will
guide us to explore the following two limiting regimes:
(i) one in which the mutation rate of driver genes is low,
when the cell is in a “latent state” because of low nutri-
ents availability, and (ii) the other when there is a high
rate of driver mutations. Because of this, one can think
of β as a “mutation driving parameter”.

III. NUMERICAL SIMULATIONS

Let us begin with a brief explanation of the algorithm
that was used to simulate the genes stochastic dynamics.

A. Stochastic Simulations

To simulate the stochastic mutation dynamics we
used the Tau-Leaping Gillespie algorithm [38] which has
demonstrated its usefulness in the simulations of differ-
ent processes in molecular biology. In this approach, each
gene can be thought of as a reaction channel in which the
occurrence of a driver mutation is related to the reaction
product –addition of a molecule– as a result of a chemi-
cal reaction. We consider each gene as a monomolecular
reactant, so that the number of reaction channels equals
the number of genes involved in the tumor evolution. Let
us assume that at a given time t, the state of the system
is defined by the vector x(t) = (x1(t), ..., xn(t)), in which
each coordinate represents the number of mutations (re-
actions) in each of the n genes. Then, the change of this
state vector in the time interval [t, t+ τ) is given as

x(t+ τ)→ x(t) +
∑
j

kjνj, (12)

where kj is a vector of random numbers generated from
a Poisson distribution with mean aj(x)τ and νj is the
vector that increases the population at each channel, j,
by 0, or 1. The channel selection, j, is made according to
the negative binomial probability distribution obtained
from the fits to the genomic data for either the set of
sixteen or six genes whose results are presented in Fig. 1.
In the simulations a few configurations are obtained in
which the channel number is larger than the number of
genes. In these cases the first gene type is chosen to be
consistent with the fact that the first gene in the set is
the one with a larger number of driver mutations. See
Fig. 1.

Let aj(x) be the propensity functions that represent
the probability of having one mutation at time t at any
of the available channels. Since mutations occur with
equal probability regardless of the gene (channel) then
the values of aj(x) are equal to one for every channel.
Therefore, the time τ required for the population of mu-
tations to change in one unit is written as:

τ =
1

a0(x)
ln(

1

rj
), (13)

where a0(x) =
∑n

j=1 aj(x) and rj is a random number

uniformly distributed in the interval [0, 1] corresponding
to gene j. Since the dynamics of the tumor evolution
are the result of the coupling of the genes mutations and
the nutrient dynamics, the extended version of the tau-
leaping method is applied to obtain an effective sampling
of the relevant quantities [39–42]. Thus, the change of the
system’s state x(t) during a time τ occurs in accordance
with the following equation

x(t+ τ)→ x(t) +
∑
j

kjzjνj, (14)

where zj is a vector formed with random numbers which
are distributed according to a geometric distribution,
and kj is the random vector generated from a Poisson
distribution. We chose these random numbers distribu-
tions because driver mutations dynamics is described by
the product of these two probability distributions; see
Eqn (10).

B. Numerical integration

The solutions of the reaction-diffusion system, Eqns (1-
2), together with the probabilities for division and death,
Eqn (8) and Eqn (3), respectively, are calculated nu-
merically. We assume that normal, cancer and necrotic
cells live on the sites of a square lattice of size L × L =
500 × 500 [24]. Essential and nonessential nutrients for
cell proliferation are continuously supplied through a cap-
illary located at the top of the lattice simulating the
bloodstream. Eqns (1-2) are integrated using zero flow
boundary conditions at the left, right, and lower sides of
the square domain. In order to obtain a homogeneous
diffusion of nutrients, the equations are solved locally for
each node populated with cancer cells, using a grid of
size 10 × 10 units with zero flow boundary conditions,
until the steady state was reached. After locally solving
the equations, the reaction-diffusion equations are solved
globally until a simulation cycle is completed. A simula-
tion cycle consists of a complete sweep of the lattice, that
is, once each site of the lattice has been visited. From
now on one simulation cycle will be considered as a gen-
eration time, T . At the beginning of the simulations all
cells are normal except for one that has developed can-
cer and is located near the lattice center. It is assumed
that the initial cancer cell has suffered mutations in the
gene TP53, which is the gene that plays a crucial role
in tumor growth. In the simulations, cancer cells are
chosen with the same probability. Once this initial cell
begins to proliferate its descendants undergo mutations
in all the other genes according to the probability dis-
tribution given in Eq (7). After a cell division occurs
the daughter cell position is chosen randomly as one of
the four nearest neighbors of the mother cell position.
To this end the normal cell that was located at that site
is removed. Then, we choose a random number r dis-
tributed uniformly in the interval [0, 1] and compare it
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with the probability P (A|AN )P (AN ), that a mutation
occurred (this probability is written in Eq (7)). A mu-
tation occurs if r > P (A|AN )P (AN ), otherwise it is re-
jected. A new cycle is initiated by randomly choosing a
new cell and repeating the procedure for the mutation
dynamics. To estimate the average time of a typical sim-
ulation, measured as the total number of cycles in a run,
we carried out simulations of various lengths such that
the mutation frequency of each gene was about its mu-
tation frequency in the genomic data. See Fig. 1. This
estimation led us to conclude that on average, a simula-
tion of 800 cycles is sufficient for each gene to reach its
mutation frequency of the genomic data. A typical simu-
lation of this length yielded tumors with size smaller than
450× 450 lattice sites for most combinations of values of
the model parameters considered here. To understand
the statistical meaning of the results we performed av-
erages over 5, 10 and 20 simulations. It was found that
the results were consistent within one standard deviation
with those corresponding to just one simulation. There-
fore, the results we report here correspond to one simu-
lation of the system. The simulation parameters values
were chosen in accordance with reference [24], that is,
θdiv = 0.3, θdeath = 0.01, λM = 10, λN = {50, 100} and
α = {4×10−3, 6×10−3}. Since the values of the parame-
ter β correspond to the mutation rates of driver genes we
carried out simulations for β = 0.0, 0.25, 0.5, 0.75, 1.0, 2.0
and 4.0.

IV. RESULTS

This section presents and discusses the results obtained
from the numerical simulations of the model explained in
section II. The dynamics of gene mutations are described
in terms of the competition for nutrients between normal
and cancer cells as well as the random dynamics of gene
mutations that drive tumor progression. A thorough ge-
nomic data analysis yielded sixteen genes that are be-
lieved to play an important role in breast cancer develop-
ment –see Fig. 1. In addition, we considered the results
of a recent gene regulatory network analysis that took
into account genetic and environmental aspects of breast
cancer [25]. It was found that genes HER2(ERBB2),
MDM2, TP53, as well as the regulatory genes HER2
→ TP53, CDK2 → BRCA1, ATM → MDM2, TP53 →
ATM are critical for breast cancer development. Based
on this genomic data analysis, detailed simulations of tu-
mor growth were carried out incorporating gene muta-
tions dynamics with both sets of genes. Let us begin by
considering the set of six genes obtained from the regula-
tory network analysis. Fig. 2 presents the tumor spatial
distribution of mutations after one simulation cycle for
each one of the six genes. The results have been arranged
in a clockwise direction according to a decreasing number
of mutations starting from the TP53 gene, which accumu-
lates the most mutations. The central figure represents
the superposition of the spatial distribution of mutations

FIG. 2: Starting from the top cluster and going in the clock-
wise direction are shown the spatial distribution of mutations.
They are ordered in a decreasing way according to the number
of mutation for each of the six genes (TP53, ATM, BRCA1,
ERRB2, MDM2 and CDK2) indicated in the inset of Fig. 1.
At the center lies the tumor showing the spatial distribution
of mutations of the six genes altogether. The results corre-
spond to the parameter values: α = 4× 10−3, λN = 100, and
β = 1, after T = 800 cycles. The scale of colors is related to
the number of driver mutations for each gene.

in the six genes under consideration in the tumor. An
interesting feature to note in this result is the accumu-
lation mutations at the upper tumor periphery. This is
expected since the nutrient capillary supply is located at
the top of the tissue domain, and the nutrient concen-
tration gradient drives both cell division and mutation.
The results indicate that genes TP53 and ATM undergo a
major spreading, suggesting that cancer progression may
be mainly due to the accumulation of mutations of these
genes. The central part of the tumor (white region) repre-
sents the spreading of genes BRCA1 and ERBB2, which
accumulate fewer mutations, suggesting that their contri-
bution to the tumor progression is not important. Genes
CDK2 and MDM2 accumulate mutations in a smaller re-
gion of the tumor close to its periphery; however, most of
the tumor inner space (white region) shows no indication
at all that these genes contribute to tumor growth. The
observed spatial distribution of mutations in these figures
suggests that tumor structure develops a certain degree
of mutation diversity and spatial heterogeneity and it
is similar to what is observed in the clinical analysis of
biopsies [43–46]. The diversity and spatial heterogeneity
will be quantified below. The tumors’ heterogeneity and
diversity are quantified by using the k-means clustering
algorithm [47] and Shannon entropy index [48], respec-
tively. The k-means clustering algorithm yields a graph-
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ical distribution of cell clusters according to the number
of mutations and is referred to the initial position of the
tumor center of mass. To this end the following quantity
is calculated [49],

ξ(s, c) =
n∑
l=1

|sl − co|. (15)

where n is the number of mutations in the l-th-cluster
weighted with respect to the central cluster around the
tumor center of mass, co, and sl is the distance of the l-th-
cluster to center of mass. The Shannon entropy index is
defined as H = −

∑
i PilnPi, where Pi is the probability

that i mutations occurred in the whole cancer tissue. To
compute Pi we counted the number of cells that under-
went one mutation, two mutations, three mutations, etc.,
and then, we divided this quantity by the total number of
cancer cells. Therefore, the Shannon index is a measure
of the diversity of cell mutations related to the number of
mutations each tumor cell underwent. In ecology, Shan-
non index values lying in the range 1.5 < H < 3.5 are
considered as a normal diversity of species [48]. However,
H > 4 indicates a very rich community. In the present
case an increase in the index of diversity, H, is directly
related to the abundance of gene mutations. It occurs
either when there is a large number of cells with a rel-
atively small amount of mutations or a few cells with a
large amount of mutations. Clinically, the Shannon index
can be measured through immunohistochemistry stain-
ing to evaluate cell-level heterogeneity as well as patients
therapeutic response [50]. To quantitatively analyze the
structure of cells clusters, the lattice sites (cells) were la-
beled according to their position in the vector formed by
concatenating the columns of the square lattice. That
is, the square lattice of size L × L is transformed into a
one-dimensional lattice of length L2. Fig. 3 shows the
cell clusters formation of a tumor obtained with model
parameters values: α = 4× 10−3, λN = 100, and β = 1,
after completing 800 cycles of simulation. The number
of mutations of each cell is plotted against the position
of each cell in the one-dimensional extended lattice. In
Fig. 3(a) are shown the cells clusters and the correspond-
ing tumor obtained with the six-gene set. The tumor has
an index of diversity, H = 5.15. Fig. 3(b) shows the cell
clusters and tumor obtained with the sixteen-gene set; it
is clear that it has a lower diversity index, H = 4.93 as
compared to tumor in Fig. 3(a). This is expected since as
the number of genes increases the probability that each
gene undergoes a number of mutations decreases because
there are more genes available in which mutations may
happen. Observe that the cell clusters that underwent
the larger number of mutations are located at the tumor
periphery, far from the tumor center of mass denoted by
the symbol ×. The spatially heterogeneous structure and
high genetic diversity of the tumor is due to the occur-
rence of mutations in different genes at different tumor
positions. Since the values of the diversity indices of the
tumors obtained with both, the sixteen and the six-gene

FIG. 3: Clusters obtained with the k-means clustering algo-
rithm for the same model parameters and time as in Fig. 2. (a)
For the six genes set we obtained a diversity index, H = 5.15.
(b) For the sixteen genes set we obtained a diversity index,
H = 4.93. These values correspond to a high diversity tumor.
Note that cells with a high number of mutations are located
in the tumor periphery, far from the tumor center of mass
indicated with the symbol ×. The scale of colors is related to
the number of driver mutations for each gene.

sets are similar, then the results are robust. Thus, using
either set of genes yields results that are representative
of the tumor genetic evolution. In Fig. 4 are shown the
clusters obtained with the k-means clustering algorithm
for each one of the six-gene set after T = 800 simulation
cycles. The corresponding value of the index of diver-
sity is also indicated. Observe that because the number
of mutations of each gene is different then, the cluster
structure varies across the tumor. Note also that the
cluster corresponding to the gene that suffered the largest
number of mutations has the highest diversity index. In
fact, as the number of mutations decreases so does the di-
versity index. These results suggest that both the tumor
suppressor gene TP53 and the oncogene BRCA1 play an
important role in the structure of the tumor growth since
they have high diversity index values, H = 3.97 and 3.64,
respectively. As a matter of fact, genes with diversity in-
dex values greater than 3.50 are considered important
attractors in the gene regulatory network analysis [25].
Thus, the tumor genetic structure and diversity index
obtained from the present model is consistent with the
gene regulatory network analysis. In addition, the ATM
gene, which is considered to play a central role in the
signal transduction of the early stages of tumor progres-
sion, has a diversity index H = 3.50, a value that is at
the boundary between normal and high diversity. The
other two genes, ERBB2 and MDM2, known as onco-
genes have a diversity value that can be considered nor-
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FIG. 4: In red are the clusters obtained with the k-means
clustering algorithm for each gene in the six-gene set. Note
that the clusters structure that signals a large number of mu-
tations are located far from the tumor center of mass (×). The
inset in each figure represents the tumor with the correspond-
ing spatial distribution of genes. Observe that the diversity
index H decreases as the cluster size decreases. These results
were obtained for the same parameter values as in Fig. 2. The
color bar at the middle of the centered column measures the
number of mutations.

mal. The tumor suppressor gene CDK2 has the lowest
diversity index, H = 1.50. Figure 5 presents the clus-
ter evolution of the distribution of mutations as well as
the tumor progression at three stages of growth, focusing
only on the mutations of the gene TP53. Note that the
cells that underwent the largest number of mutations are
always related to clusters that are on the tumor periph-
ery, while cells that suffered few mutations are related to
clusters located around the tumor center of mass. Note
also that as the tumor size increases the diversity index

FIG. 5: Cluster evolution showing the distribution of muta-
tions of gene TP53 at three stages of the tumor growth: (a)
T = 200 cycles, (b) T = 400 cycles, and (c) T = 600 cycles.
On the upper left side of each frame are the spatial distri-
butions of mutations of gene TP53 in the full tumor. The
color bar indicates the number of mutations. Note that the
diversity index increases from 2.92 to 3.91. These results were
obtained for model parameters as in Fig. 2.

increases too, suggesting that either a larger number of
cells underwent a relatively small amount of mutations,
or a few cells suffered a high amount of mutations. The
diversity index of the first and second cluster configu-
rations indicate a tumor with normal genetic diversity,
while the third configuration has a diversity index value
greater than 3.5 indicating a high genetic diversity. The
same analysis was performed for the other five genes and
the conclusions were similar. Figure 6 illustrates the clus-
ter structure, left and right columns, obtained with the
k-means clustering algorithm for the sixteen genes set
after a simulation time of T = 800 cycles. The model pa-
rameters values used for these results are: α = 4× 10−3,
and λN = 100 for the four values of β: (a) β = 0.25,
(b) β = 0.75, (c) β = 2.0, and (d) β = 4.0. The corre-
sponding tumors together with the color bar as a refer-
ence are plotted at the middle of the figure. Note that as
β increases the tumor diversity index decreases. These
results suggest a close relationship between the cluster
structures and the branched structure of the correspond-
ing tumor. The tumor regions that suffered more muta-
tions are positioned at the tumor periphery whereas the
regions that underwent few mutations are located close
to the tumor center of mass. Frame (a) shows the clus-
ter structure for β = 0.25 which has a diversity index
H = 4.99, an indication of high genetic diversity. Ob-
serve that the largest number of mutations occurs right
above the cluster’s center of mass, indicated by ×. How-
ever, a large number of mutations also occur at both

FIG. 6: Tumor (at the middle column) and cluster structure
(left and right columns) obtained with the k-means clustering
algorithm after a simulation time T = 800 cycles for four
values of β: (a) β = 0.25, (b) β = 0.75, (c) β = 2.0, and
(d) β = 4.0. Notice that as the parameter β increases the
diversity indexH decreases. These results are obtained for the
model parameter values α = 4 × 10−3, and λN = 100. Note
that tumor shows a branched structure with the top region
(yellow part) indicating the cells located there underwent a
large number of mutations.
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sides of the tumor center of mass. As a consequence,
the tumor becomes branched with the top region (yellow
part) indicating the piece of the tumor where cells un-
derwent the highest number of mutations. The cluster
shown in frame (b) corresponds to β = 0.75 and has a
diversity index H = 5.0. In this case the region with
the largest number of mutations is positioned at the up-
per right side, again in the tumor periphery. The cluster
shown in frame (c) corresponds to β = 2.0 and has a
diversity index H = 4.39. There one sees that the num-
ber of mutations decreases by about half compared to
the number of mutations accumulated in the clusters in
frames (a) and (b). Notice that right above the cluster’s
center of mass there is a bifurcation of two clusters that
represent two regions of the tumor that suffered a large
number of mutations. In this case the tumor developed
fewer branches and became more compact at the middle.
Frame (d) shows the cluster obtained for β = 4.0, which
has a diversity index value H = 3.42. For this value of
β the cluster became less branched and more compact
and homogenous, indicating that most of the tumor cells
suffered about the same low number of mutations. Be-
cause of this, the tumor diversity index is the smallest of
the four, which suggests that most of the cells conserved
their genetic linage during proliferation. Considering al-
together the clusters shown in Figs. 3 and 6, one sees that
the cluster that shows the highest diversity corresponds
to β = 1. More importantly, from the analysis of Fig. 6,
one finds that the larger the value of β, the smaller the
number of mutations while the tumor structure becomes
less branched and more compact. This means that most
of the tumor cells preserved their genetic lineage. At this
point it is important to recall that in the present model
the role of the microenvironment in tumor development
is accounted for by considering the competition for es-
sential nutrients for cell proliferation between cancer and
normal cells. In fact, the nutrients transport equations,
Eqns (1-2), were written in terms of the parameters α and
λN that measure, respectively, the nutrient consumption
rate of normal cells and an additional factor by which
nutrient consumption by cancer cells differs from their
normal counterparts. Usually λN is chosen to be greater
than 1 so that cancer cells consume essential nutrients at
a higher rate than normal cells [24]. Fig. 7(a)-(d) shows
the cell clusters as well as the full tumor spatial distri-
bution of mutations for four combinations of values of
the parameters α and λN . The clusters and tumors have
been referred to a coordinate system whose vertical axis
represents the values of α while the horizontal axis repre-
sents the values of λN . The mutation driving parameter
β has been assigned the value β = 1, since for this value
the tumor develops high diversity. It was found that for
α = 4 × 10−3 and λN = 50, the simulated tumors are
compact and the cells located at the tumor periphery
undergo up to 500 mutations, as indicated by the cluster
analysis, Fig. 7(a). However, the tumors become finger-
like for α = 4 × 10−3 and λN = 100 –Fig. 7(b). Here,
the number of mutations decreased and the tumor main

FIG. 7: Cluster structure and spatial distribution of muta-
tions in the tumor for four representative combinations of
values of the parameters α and λN , for β = 1, and simulation
times T = 800 cycles. (a) α = 4 × 10−3 and λN = 50, (b)
α = 4× 10−3 and λN = 100, (c) α = 6× 10−3 and λN = 50,
and (d) α = 6 × 10−3 and λN = 100. The values of the in-
dex of diversity are also written for each case. Notice that
these values decrease as the tumor becomes more compact
and smaller in size. The color bar represents the number of
mutations.

core became smaller than in the previous case. The clus-
ter structure indicates that at the periphery (top right)
there is a small cluster which is related to the tumor top
branch, indicating that between 200 and 400 mutations
occurred. The diversity index values are larger than four
which indicates high genetic diversity, and corresponds
to the high number of mutations that tumor cells suf-
fered. For α = 6 × 10−3 and λN = 50, 100 –Fig. 7(c)
and (d), respectively, the tumor and cluster structures
become compact and decrease in size. In these cases the
number of mutations that occur is a fraction (between
0.2 and 0.3) of the accumulation of mutations of the clus-
ters in Fig. 7(a)-(b) and the diversity index value become
smaller than four, which indicates normal genetic diver-
sity. Note that as the number of mutations decrease, the
cluster and tumor became smaller and more compact so
that the index H decrease.

Another quantity that characterizes the tumor struc-
ture is the fractal dimension (FD). This quantity can be
measured in histopathology slides of tissue samples and
is an important step in the diagnosis of the malignancy of
the tumor [51–53]. In addition, the change in texture or
appearance of distortions in breast cancer tumors can be
detected from mammograms by estimating the FD [54].
With the aim of relating these clinical measurements with
the tumor structure and the spatial distribution of muta-
tions of the in-silico tumors –for instance those presented
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FIG. 8: FD time evolution of the spatial distribution of each
gene. Here we have considered the dynamics of the six-gene
set. The symbols represent the time evolution of the FD cor-
responding to the spatial distribution of mutations of each
gene. Note that the spatial distribution of mutations of gene
TP53 has a FD time evolution that is quantitatively similar to
that of the whole tumor, represented by the solid black line.
These results correspond to a tumor with model parameters:
α = 4 × 10−3, λN = 100 and β = 1. The inset shows the
time evolution of the whole tumor FD for different values of
β and same values of α and λN . These results indicate that
as the number of mutations increase, the time evolution of
the tumor FD approaches one universal curve.

in Fig. 2– the time evolution of the FD was calculated by
means of the standard box-counting algorithm (Fig. 8).
It was found that for each of the six genes, the FD in-
creases monotonically as a function of time. The FD
also becomes systematically greater for those genes that
underwent more mutations, as expected. That is, tu-
mors become more diverse and heterogeneous when one
or more genes suffer many mutations in cells located at
different positions. To express the FD time evolution in
terms of a biological time scale one can relate one simula-
tion cycle T with a biological cell division cycle that lasts
about 35 hours [55]. Since a full simulation of the in-silico
tumors lasts about 800 cycles, the typical simulations re-
ported here correspond to approximately 28,000 hours,
about 38.9 months of real time. The results shown in
Fig. 8 indicate that the FD of the spatial distribution of
the genes TP53, ATM and BRCA1 become asymptoti-
cally closer to each other for times longer than 12 months
(T > 300 generations). In fact, the trend shown in the
figure suggests that the FD behavior of the genes TP53,
ATM, BRCA1, ERBB2 and MDM2 will asymptotically
collapse onto one single curve for times T > 800 cycles,
or longer 38.9 months of real time. More importantly,
the FD evolution of the whole tumor, represented in the
figure by a solid line, is quantitatively similar to the FD
behavior of the spatial distribution of mutations of gene

TP53, which is the gene that accumulates the most mu-
tations. This result indicates that the fractal structure of
the whole tumor is fully determined by the fractal struc-
ture of the spatial distribution of mutations of the gene
TP53, which is thought to be the gene that plays a crucial
role in cancer progression. The inset of Fig. 8 shows the
time evolution of the whole tumor FD for five representa-
tive values of the mutation driving parameter β. Notice
that for β ≤ 1, the FD follows approximately one single
curve; however, for β > 1, the FD becomes systematically
larger. This is not surprising since for smaller values of β
more mutations occur in the tumor, and for larger values
of β, the number of mutations in the tumor decreases.
The results presented in the inset of Fig. 8 suggest that
as the number of mutations increases, the time evolution
of the tumor FD approaches a single universal curve.

In silico tumors have been generated for the model pa-
rameters α = 4 × 10−3, λN = 100, different values of
the mutation driving parameter β, and the six-gene mu-
tation dynamics. For each of them, the diversity index,
H, and the FD have been calculated. With the results
of these simulations, a “2D malignancy diagram”, H ver-
sus FD, has been calculated. The results are shown in
Fig. 9. There one sees that H increases monotonically
as a function of FD for all values of β. Note that with
the exception of the curve corresponding to β = 0.5, all
the other curves intersect at the crossing point of the
dashed lines with coordinates FD = 1.3, H = 3.5. This
behavior suggests that there is a“critical point” in the

FIG. 9: Diversity index H versus FD for several values of β.
The dynamics of the six genes set has been considered here.
The results were obtained for a tumor with the model param-
eters: α = 4×10−3, λN = 100. Note that the curves intersect
at (1.3, 3.5). Points in the upper-right quadrant correspond
to a malignant tumor while those in the lower-left quadrant
correspond to a benign tumor. The results shown in the inset
correspond to the gene dynamics with sixteen-gene set and
the results are consistent with those obtained with the set of
six genes.
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tumor structure as a result of the spatial distribution
of mutations. Recent studies have found that when FD
< 1.3, breast cancer tumors are benign, while for FD
> 1.3, tumors become malignant [54]. In addition, it
is known that when the diversity index is in the range
1.5 < H < 3.5 the tumor genetic diversity is considered
normal, while for H > 3.5, the tumors genetic diversity
becomes high. Taking these clinical results into account,
one can divide the planeH versus FD into four quadrants
with the axis crossing point located at FD = 1.3,H = 3.5
as indicated in Fig. 9. The (FD,H) points located in the
upper right quadrant FD > 1.3 and H > 3.5 correspond
to a malignant tumor. However, points located in the
lower left quadrant (FD < 1.3 and H < 3.5) correspond
to a benign tumor. The inset of Fig. 9 shows the ma-
lignancy diagram obtained with a sixteen-gene mutation
dynamics for three values of β. The diagram looks simi-
lar to that obtained with a six-gene dynamics, as shown
in Fig. 9. All these results indicate that the predictions
of our model are robust regardless of the use of six or
sixteen-gene mutation dynamics. In addition, they are
quantitatively consistent with clinical and experimental
findings as indicated above.

V. CONCLUSIONS

We have presented and analyzed a quantitative growth
model of an avascular tumor that considers the basic bi-
ological principles of cell proliferation, motility, death,
transport of nutrients and gene mutation dynamics. We
postulate that the gene mutation rate depends on both
randomness and microenvironmental factors, such as es-
sential and nonessential nutrient concentrations for cell
proliferation. It was found that higher concentrations of
nutrients is an advantage that favors cancer cell prolif-
eration as well as a high accumulation of driver muta-
tions, which in turn leads to genetic diversity and tumor
heterogeneity. Gene mutation dynamics considered two
sets of genes, one with six genes from a regulatory net-
work analysis and the other with sixteen genes, from an
analysis of genomic data, which are believed to play a
crucial role in cancer progression. The coupling of mu-
tation dynamics to microenvironmental factors was done
by introducing a parameter, β, together with a probabil-
ity distribution that regulates driver mutation dynamics.
The mutations in turn defines the diversity and hetero-
geneity of the tumor. For β < 1, the rate of accumulation

mutations is high and leads to high tumor gene diversity,
whereas for β > 1, the rate of accumulations mutations
is low and the tumor diversity becomes normal. For a
given tumor one can calculate the diversity index, H, and
the FD for different values of the parameter β. Thus, a
“malignancy diagram” based on H versus FD was cal-
culated Fig. 9. With the exception of the curve corre-
sponding to β = 0.5, all the other curves intersect at the
crossing point FD = 1.3, H = 3.5 suggesting that this
point indicates a critical change in the tumor behavior.
More importantly, the results presented here suggest that
the predictions of our model are robust whether we use
six or sixteen-gene sets for the mutation dynamics. In ad-
dition, our findings suggest that tumor fractal structure
and diversity are fully determined by the heterogeneous
spatial distribution of mutations of gene TP53, which is
though to play a crucial role in cancer progression. Fi-
nally, it is important to indicate that the predictions of
our model can be quantitatively related to clinical and
experimental observations.
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