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ABSTRACT

Motivation: Next-generation deep sequencing of viral genomes, particularly on the Illumina platform, is increasingly applied in
HIV research. Yet, there is no standard protocol or method used by the research community to account for measurement
errors that arise during sample preparation and sequencing. Correctly calling high and low frequency variants while controlling
for erroneous variant calls is an important precursor to downstream interpretation, such as studying the emergence of HIV
drug-resistance mutations, which in turn has clinical applications and can improve patient care.
Results: We developed a new variant-calling pipeline, hivmmer, for Illumina sequences from HIV viral genomes. First,
we validated hivmmer by comparing it to other variant-calling pipelines on real HIV plasmid data sets, which have known
sequences. We found that hivmmer achieves a lower rate of erroneous variant calls, and that all methods agree on the
frequency of correctly called variants. Next, we compared the methods on an HIV plasmid data set that was sequenced
using an amplicon-tagging protocol called Primer ID, which is designed to reduce errors and amplification bias during
library preparation. We show that the Primer ID consensus does indeed have fewer erroneous variant calls compared to
the variant-calling pipelines, and that hivmmer more closely approaches this low error rate compared to the other pipelines.
Surprisingly, the frequency estimates from the Primer ID consensus do not differ significantly from those of the variant-calling
pipelines. Finally, we built a predictive model for classifying errors in the hivmmer alignment, and show that it achieves high
accuracy for identifying erroneous variant calls.
Availability: hivmmer is freely available for non-commercial use from https://github.com/mhowison/hivmmer.
Contact: mhowison@brown.edu

1 Introduction

Several next-generation sequencing instruments are now
used to study pathogens and viruses (Chabria et al., 2014;
Quiñones-Mateu et al., 2014). Of the many next-generation se-
quencing platforms and approaches that have been developed
over the past two decades, Illumina’s sequencing-by-synthesis
technology has come to dominate the market, in large part
due to increasing yields and decreasing costs (Goodwin et al.,
2016). Deep sequencing of HIV samples with Illumina tech-
nology is frequently used in studies of viral epidemiology,
clinical genotyping, and antiretroviral drug resistance. For
example, deep sequencing can provide for a more sensitive
assay of drug-resistance mutations (Brumme and Poon, 2016);
Sanger sequencing, the current clinical standard, cannot reli-
ably detect mutations at frequencies below 20%, which might
be clinically relevant (Ávila Rı́os et al., 2016). A common
concern in studies using deep sequencing, and also in estab-
lishing clinical standards for these new approaches, is the
measurement error of their sequencing protocols. Measure-
ment errors can arise in sample preparation (including reverse
transcription of RNA genomes to cDNA and amplification
of viral genomes), library preparation, sequencing and base
calling.

Measurement error creates uncertainty in downstream anal-
yses. For example, errors introduced during genome ampli-
fication are difficult to distinguish from real mutations since

they are introduced in the early steps of the process, are ex-
ponentially amplified and may occur at high frequency in
the later steps. Recombination during PCR is difficult to dis-
tinguish from clinically-relevant “real” viral recombination.
Mutations at low frequencies can be difficult to distinguish
from sequencing and base calling errors, and can confound
read alignment, assembly and haplotype reconstruction meth-
ods that rely on accurately identifying exact sequence overlaps
among sequence reads. Beerenwinkel et al. (2012) speculated
that artifacts introduced during the RT-PCR step are likely
the biggest challenge to accurately estimating viral diversity
through reconstructing individual haplotypes for deeply se-
quenced HIV data.

Many HIV studies in recent years have addressed Illumina
sequencing errors by applying a global frequency threshold
– typically 1% – below which variants are excluded with the
reasoning that they are indistinguishable from sequencing
errors. This approach requires establishing a conservative
estimate of the typical error rate for the sequencing protocol,
which is then used as a threshold during variant calling.

The most common approach to estimating sequencing error
rates is to analyze reads that come from known sequences, by
aligning the reads to the known sequence and counting the
frequency of mismatches in the alignment. In the context of
HIV, this can be accomplished by sequencing mixtures of HIV
plasmids with known sequences. In this study, we use this
approach to introduce a new pipeline for HIV pol sequences
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from the Illumina MiSeq platform, hivmmer, and compare it
to other variant-calling pipelines. While existing pipelines use
short-read aligners to align Illumina reads in nucleotide space
against an HIV reference (such as HXB2; accession K03455)
or a de novo assembly, hivmmer instead uses a probabilistic
aligner, HMMER (Eddy, 2011), to achieve a more sensitive
alignment in amino-acid space.

2 Methods and Data
2.1 Pipelines
We created a new pipeline, hivmmer (version 0.1.0), based on
the probabilistic aligner HMMER (Eddy, 2011), that consists
of the following steps:

1. Constructs an amino acid profile Hidden Markov Model
(pHMM) from a multiple sequence alignment of all
HIV-1 Group M amino acid sequences publicly avail-
able in the Los Alamos HIV Sequence Database
(http://www.hiv.lanl.gov) for the pol gene.

2. Preprocesses the NGS data using the paired-end read
merging tool PEAR (Zhang et al., 2014) and con-
solidates duplicate sequences using FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx toolkit/). The number
of duplicates are tracked to enable correct inference of
frequencies later in the pipeline.

3. Translates each de-duplicated sequence into all six pos-
sible frames (forward and reverse), retaining only the
translated sequences that contain no stop codons.

4. Aligns the translated reads to the reference pHMM with
hmmsearch from HMMER, producing a multiple se-
quence alignment of translated reads.

5. Constructs a sample-specific amino acid pHMM from
the multiple sequence alignment of translated reads.

6. Repeats the hmmsearch alignment against the sample-
specific pHMM for increased sensitivity.

7. Maps the translated amino acid coordinates in the align-
ment to the original frame and coordinates in the nu-
cleotide reads to construct a codon frequency table (ad-
justing the counts for duplicate reads).

We compared hivmmer to two of the existing pipelines,
HyDRA (Ji et al. (2015); version 1.2.6-a41ac1f) and shiver
(Wymant et al. (2016); version 1.3.0), both of which use
the short-read aligner bowtie2 (Langmead and Salzberg,
2012). HyDRA aligns the reads to the HXB2 reference,
while shiver uses an iterative alignment to a de novo assem-
bly of the reads. We chose HyDRA and shiver as repre-
sentatives of a broader group of HIV alignment pipelines
such as PASeq (https://paseq.org) and MiCall (http://cfe-
lab.github.io/MiCall), which are also based on bowtie2 (for a
recent comparison of these methods, see Noguera-Julian et al.
(2017)).

2.2 Data
Our study uses four publicly-available HIV plasmid data sets:

1. 5VM (accession SRR961514), a “5 virus mix” of plas-
mid sequences (89.6, HXB2, JRCSF, NL4-3, YU2) in
equal proportions (20%) sequenced by Di Giallonardo
et al. (2014);

2. PL1:1 (accession SRR6725661), a mixture of two plas-
mid sequences in 1:1 proportion generated in our lab and
introduced in this study (described below).

3. PL1:9 (accession SRR6725662), the same mixture as
PL1:1, but in 1:9 proportion;

4. PID (accessions SRR2097103-8), the same mixture as
5VM, but sequenced using the Primer ID protocol (dis-
cussed in depth below) by Seifert et al. (2016).

For PL1:1 and PL1:9, plasmids pNL4.3 (AF324493.2) and
p89.6 (U39362), obtained from the NIH AIDS Reagent Pro-
gram (https://www.aidsreagent.org/), were mixed as 1:1 or
1:9 ratios respectively, followed by amplification of the pol
region using primers previously described by Winters et al.
(1998), and proof reading polymerase Phusion (Thermofisher).
Nextera XT DNA Library Prep chemistry (Illumina) was used
to fragment and add adapter sequences onto template DNA
to generate multiplexed sequencing libraries that were se-
quenced on Illumina’s MiSeq platform generating 2 x 250bp
paired-end reads.

5VM contains near-full-length HIV genomes, although for
this study we considered their alignment and variant calls only
within the first 1044nt of the pol region (HXB2 coordinates
2253-3296). This is also the region contained in PL1:1 and
PL1:9, and is a genomic region that is clinically relevant for
drug resistance mutations. PID is a restricted fragment within
this region, with length 471nt starting at HXB2 coordinate
2736.

The sequencing method used to generate PID was initially
developed by Jabara et al. (2011) to tag each individual HIV
viral template with a unique “Primer ID” prior to PCR. Jabara
et al. (2011) demonstrated with Roche 454 sequencing that
this technique can be used to construct consensus sequences
that accurately reflect the original input templates without
PCR artifacts. Keys et al. (2015) extended this approach to
Illumina MiSeq sequencing and demonstrated improvements
in detecting drug resistance mutations. Zhou et al. (2015)
conducted additional statistical modeling to refine the Primer
ID method with Illumina MiSeq sequencing and address tech-
nical issues, such as the effect of sequencing errors in the
primer sequence itself. They found that greater than 90%
of the sequence reads were useable. In contrast, a study by
Brodin et al. (2015) with 454 Roche sequencing found that
PCR errors in the Primer ID sequences led to skewed resam-
pling and in some cases 99% of the original input templates
were not recoverable as consensus sequences. However, a
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study by Seifert et al. (2016) with Illumina MiSeq sequenc-
ing of plasmid sequences found that the loss of reads due to
incorrect Primer IDs was only 3%.

The PID data set comes from this latter study by Seifert
et al. (2016). We compared the variants calls in the consensus
sequences from their Primer ID aligner, called pidalign, to
those from running each of the pipelines on the original reads
with the Primer ID barcodes removed. That is, we tested the
pipelines under the condition where the Primer ID is unknown.

2.3 Machine learning for error classification
Machine learning refers to the use of statistical and algorith-
mic techniques that learn patterns from a set of training data
to make predictions for a new set of previously unseen data
(Hastie et al., 2009). A common application of machine learn-
ing is classification, meaning to predict to which of a finite
set of classes a data point is most likely to belong. In the
context of sequencing errors, data points could be individual
base calls, alignments, or variant calls; and the classification
task can be classifying them as either errors or non-errors.

We trained and validated a classifier for the variant calls in
hivmmer, using a gradient boosting method called xgboost
(Chen and Guestrin, 2016). Briefly, gradient boosting is a
machine learning algorithm that constructs an ensemble of
decision trees from training data, and makes predictions on
new data by averaging the paths through the decision trees. We
constructed the following predictive features for each variant
call in the final hivmmer alignment: position of call in the read,
read length, read frequency (from the de-duplication count),
position of call in the alignment, alignment length, HMMER’s
posterior probability for the call, and dummy variables for the
aligned frame. We used a cross-validation approach in which
we trained a model for each dataset (5VM, PL1:1, PL1:9)
and validated it on the opposite type. We also evaluated the
model for each dataset on itself, using a randomly sampled
50% hold-out validation set.

2.4 Reproducibility
All scripts required to reproduce the results presented
here are available from https://github.com/mhowison/hiv-
measurement-error and can be executed using an accompany-
ing biomake file (Holmes and Mungall, 2017). Compiled ver-
sions of all software dependencies for 64-bit Linux and Ana-
conda Python (https://www.anaconda.com) are available from
the hivmmer conda channel (http://anaconda.org/hivmmer).
The hivmmer source code is available from
(https://github.com/mhowison/hivmmer) and a pre-compiled
Docker (https://docker.com) image is available from
DockerHub at https://hub.docker.com/r/mhowison/hivmmer.

3 Results
We analyzed the coverage and fragment sizes of the Illumina
reads. Figure 1(a) shows an overview of fragment sizes in
5VM; PL1:1 and PL1:9 have similar fragment size distribu-
tions. Typically, fragment sizes follow a skewed distribution

centered around the read length, 250nt. Fragments shorter
than the read length are fully overlapping, and yield reads that
in practice can be treated as technical replicates. Fragments
sized between the read length and twice the read length yield
partially overlapping reads that can be combined into a sin-
gle sequence using a read-merging tool like PEAR (Zhang
et al., 2014). Finally, fragments larger than twice the read
length yield separate read pairs, with a positive insert size be-
tween the reads. The coverage of the reads across the genome
tends to be variable (Fig. 1b), as does the relative proportion
of replicate, overlapping, and paired reads. For example, in
5VM there are relatively fewer paired reads observed in highly
variable regions such as env (HXB2 coordinates 6045-8795).

To compare pipelines, we first identified both the correct
and erroneous calls in the underlying alignments from each
pipeline. We defined erroneous calls as codons with ¿0 fre-
quency, but which do not exist at that position in any of the
known plasmid sequences for the given data sets. Supple-
mentary Figures 1-4 show a detailed picture of this for each
data set and pipeline. As expected, nearly all of the erroneous
calls are at frequencies below 1%, which is a widely accepted
global threshold. However, a few calls for HyDRA and shiver
on 5VM are above 1%. To measure the overall effectiveness
of each pipeline, we plotted the cumulative number of errors
as we lowered the global frequency threshold from 2% to 0.1%
(Figure 2). From this plot, we find that hivmmer alignments
accumulate fewer errors across all data sets.

Next, we considered the frequencies of correctly called vari-
ants, and compared their distribution across pipelines (Figure
3). While we expect the frequencies to follow the mixture
proportions (e.g. multiples of 20% for 5VM, 1:1 for PL1:1,
and 1:9 for PL1:9), in reality the frequencies deviate from
these expected values. This could be due to sample prepara-
tion or preferential primer amplification. Because we have
no ground truth, we cannot assess which pipeline is most
accurate. However, we can test the null hypothesis that at
least one of the distributions is significantly different from
the others using the Kruskal-Wallis test, a non-parametric
analog to the ANOVA. This test fails to reject the null for any
of the data sets (5VM p = 0.891; PL1:1 p = 0.996; PL1:9
p = 1.000). Visual inspection of Figure 3 confirms this, as
the distributions are nearly indistinguishable. Therefore, none
of the pipelines differed significantly in their measurement of
the variant frequencies for correctly called variants.

The Primer ID protocol was designed to control for the
artifacts during sample preparation that could be potentially
skewing our recovered frequencies of correctly called variants.
We compared the cumulative error rate and distribution of
call frequencies between two of the pipelines (HyDRA and
hivmmer, as the initial de novo assembly of the PID data
set failed for shiver) and the pidalyse method for calling the
consensus sequence of each Primer ID template (Seifert et al.,
2016). Because these consensus sequences should represent
individual templates, we expect that the frequency of calls
across templates would correspond to the plasmid mixture
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proportions (e.g. multiples of 20% for 5VM). The Primer ID
method does indeed reduce the accumulation of erroneous
calls, and hivmmer better approaches this performance than
HyDRA (Fig. 4a). The Primer ID consensus sequences,
however, also do not recover the correct frequency proportions
as one might expect (Fig. 4b). This is consistent with the
results reported by Seifert et al. (2016), and they ascribe the
discrepancy to “noisy RT qPCR quantification.”

We assessed the performance of our machine learning mod-
els for predicting erroneous calls in hivmmer’s final alignment.
In our cross-validation test, the models trained on PL1:1 and
PL1:9 performed exceptionally well. Figure 5 shows the
receiver-operating characteristic (ROC) curve for false pos-
itive versus true positive rates. The area under the ROC (or
AUC) is often used as a metric for model fit, and our scores of
> 0.9 indicate strong predictive power for the models trained
and validated across the PL1:1 and PL1:9 data sets.

Finally, we applied the model trained on 5VM to the hivm-
mer alignments for the PID data set and used it to mask all
alignments with a predicted probably of error ¿0.01. We
labeled this method “hivmmer-ml” in Figure 4a, and it did
perform slightly better than hivmmer alone, although not as
well as pidalyse. However, the hivmmer-ml approach also
appeared to bias the distribution of calls, as seen in Figure 4b.

4 Discussion
We have introduced a new variant-calling pipeline, hivm-
mer, whose alignments exhibit lower error rates than existing
pipelines on deep Illumina sequencing of HIV plasmid data.
We also demonstrated how machine-learning classification of
errors is a promising future extension of this pipeline.

4.1 Global thresholding
Our results validate that in some cases the widely accepted
1% global thresholding method will work as expected, as mea-
sured on plasmid data sets and assuming the variant calling
pipeline has similar accuracy to the pipelines tested here.

Some studies have conducted their own validation of a
global threshold. For example, one of the earliest studies to
use the global thresholding approach with Illumina MiSeq
data was conducted by Dudley et al. (2014), who analyzed
HXB2 plasmid sequences to determine a higher threshold
of 2%. Fisher et al. (2015) conducted additional valida-
tion for the occurrence of NNRTI drug-resistance mutations
at frequencies over 1% in their study using 250 clonal se-
quences. They also presented a method for error correction
using a Bayesian Dirichlet mixture of multinomials proba-
bilistic model to distinguish sequencing error from true low-
frequency variants at posterior probabilities ≥99.99%.

Ode et al. (2015) developed an adaptive threshold approach
for Illumina MiSeq sequencing based on per-site quality
scores and demonstrated that it could reduce mismatches to
below a frequency of 1% at most sites on varying mixtures
of pNL4-3 and pNL101 plasmid sequences. Their method

computes an average quality score across all reads at a refer-
ence site and they threshold the variant calls at that site with
average score ≥20 and frequency ≥1%.

Others, however, have applied thresholding without vali-
dation. Studies by Ekici et al. (2014), Pessôa et al. (2014),
and Pessôa et al. (2016) applied thresholds of 1% without
providing any citation or methodological justification for this
approach to error correction. A review of clinical applications
of deep HIV sequencing by Casadellà and Paredes (2016)
proposed a rule of thumb of a 1% threshold without citation.
However, they emphasized that the frequency threshold is
likely limited by the number of RNA molecules in the sample,
and caution that the frequencies that are retained between
1-100% are likely skewed by many sources of bias during
sequencing, and cannot be treated as a linear scale, which is
confirmed in our results where we do not recover the expected
frequencies given the plasmid mixture proportions.

In our results, we did find erroneous calls above 1% (Hy-
DRA, 5VM), which call into question the rule of thumb of 1%.
Moreover, Ode et al. (2015) claimed in their analysis that they
found mismatches occurring at as high as 6.4% frequency at
some sites. Both their results and ours clearly establish the
heterogeneity in error profiles, and that a global threshold is
overly conservative at most sites.

Going forward, studies using deep Illumina sequencing of
HIV to analyze variants at low frequencies should include
control data sets and detailed analysis of the error profile,
such as the one we have presented in this study. One potential
study design is to multiplex a plasmid mixture control into
every lane; the control can then be used to establish an error
profile for the other HIV samples of interest in that lane.

4.2 Machine learning
Global thresholding is, effectively, a crude model that as-
sumes homogenous error profiles at all sites. Ode et al. (2015)
overcame this limitation by applying an adaptive threshold
and modeling the quality scores of the reads. Still, an even
more promising approach to modeling the heterogeneity of
error profiles is to use a machine learning algorithm that can
learn the signature of erroneous calls using more than just the
quality scores.

An early example of this approach was given by Meacham
et al. (2011), who used Illumina GAIIx data from a human
genome methyl-Seq experiment to train a logistic regression
for classifying errors, specifically focused on GGT motifs.
Like in HIV deep sequencing, methyl-Seq also tends to gener-
ate many short fragments that yield overlapping reads. Using
an alignment to a reference genome, they classified two types
of errors: the case where one of the overlapping reads dis-
agrees with the reference and the case where both of the reads
disagree. The variables for the regression included the direc-
tionality of the read, the quality scores, and the position of the
base call in the read.

In the context of HIV, Li et al. (2014) performed variant-
calling for the int gene after removing sequencing errors using
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a random-forest classifier that they commissioned through
a crowd-sourced TopCoder competition. The top entry in
the competition used variables computed from the quality
scores, alignment scores, and 13-mer frequency of single-end
Illumina HiSeq data. They estimated the limit of detection of
0.095%, after applying a threshold on the classifier prediction
that removed 99% of false-positive variants in a control library
of mixed plasmid sequences at concentrations as low as 0.1%.

Our approach extends this by cross-validating a similar
model across multiple plasmid data sets. An important find-
ing is that while the models cross-validate well between the
PL1:1 and PL1:9 data sets, the cross-validation between those
data sets and 5VM was poor, suggesting over-fitting. PL1:1
and PL1:9 contain the same plasmids, were prepared by the
same lab, and sequenced within the same lane of an Illumina
MiSeq run. Therefore, it appears that predictive modeling
of sequencing errors can be applied successfully within a
lane, suggesting that future HIV-1 studies may benefit from
multiplexing a plasmid mixture into each lane of sequencing.

4.3 Overlapping reads as technical replicates
One potential reason why hivmmer outperforms the other
pipelines is that it more closely models the fragment distri-
bution through its use of the PEAR read merger. As shown
in Figure 1, the majority of reads are complete overlapping
(e.g. technical replicates) or partially overlapping in deep Illu-
mina sequencing of HIV. In particular, the fragment distribu-
tion is non-normal, while many short-read aligners, including
bowtie2, assume a normal distribution of fragments.

PEAR is able to use this replicate information to correct
errors at sites where the replicates disagree, by comparing
quality scores. This approach has not, to our knowledge, been
applied to HIV before, although it was tested by Chen-Harris
et al. (2013) in a study with 1kb regions of the rabies and BCV
viruses. They showed that the PCR error rate exceeds the
sequencing error rate at high enough quality scores, and they
called variants using a position-dependent model to determine
an optimal quality score threshold.

Preston et al. (2016) developed a similar protocol called
Paired-End Low Error Sequencing (PELE-Seq) that combines
barcoding with overlapping read pairs to correct for both
PCR and sequencing error and accurately detect rare variants.
Although that specific protocol has only been tested with
E. coli and nematode DNA samples, the concept is directly
relevant to HIV, where barcoding is already in use through the
Primer ID protocol.

4.4 Primer ID
Our results confirm that the consensus sequences generated by
the Primer ID method do achieve lower error rates than any of
the pipelines. Primer ID is an area of active research, and most
recently Boltz et al. (2016) extended the existing methods
by using shorter PCR primers and more stringent consensus
criteria, in a method they call ultrasensitive single-genome
sequencing (uSGS). In comparisons with the earlier methods
from Jabara et al. (2011), Zhou et al. (2015) and Seifert et al.

(2016), they found that the uSGS technique yielded more
unique Primer IDs and overall consensus sequences.

However, an important limitation of all of the Primer ID
techniques is the difficulty of multiplexing multiple samples
in the same lane, which is a common practice to reduce se-
quencing cost. In fact, because of the short length of the HIV
genome, sufficient depth of coverage can be achieved with
many fewer reads than a full lane of Illumina sequencing pro-
vides. In the extreme case, this was demonstrated with the
successful application of “wide” sequencing by Lapointe et al.
(2015) to sequence a region of the pol gene from 1,143 patient
samples in a single Illumina MiSeq run.

In situations where the cost of Primer ID is prohibitive,
there are still other avenues for controlling RT-PCR error. Or-
ton et al. (2015) developed a computational model for the
accumulation of errors following multiple PCR cycles. They
validated this model using Illumina GAIIx sequencing of
FMDV (not HIV) plasmid sequences with varying rounds
of PCR amplification, including a condition with no ampli-
fication, and found that RT-PCR errors were concentrated
in specific areas related to known variability in the FMDV
genome, and not evenly distributed across the genome. They
also found that most of the error came from the PCR amplifi-
cation rather than the RT step in sample preparation. Overall,
their recommendation is to use the highest fidelity enzymes
and minimize the number of PCR cycles.

Zanini et al. (2016) presented an Illumina MiSeq protocol
with single-round PCR and a new primer design for HIV,
and found an error rate of 0.1% that they attribute to PCR
error, after removing low quality base calls. They validated
the correlation between base calling errors and quality scores
with a PhiX spike-in. Furthermore, they tested for in-vitro
recombination and found it in nearly 10% of reads generated
from nested PCR, but almost none in those from single-round
PCR.

Thus, a viable alternative to Primer ID in future experiments
may be to combine a sequencing protocol using high fidelity
enzymes and single-round PCR with hivmmer.

5 Conclusion
The ideal sequencing technology for genomic studies of HIV
would generate full-length reads, without error, of individual
virus particles from a patient. Although this is not technically
possible with today’s technology, understanding the causes
and corrections for measurement errors and optimizing ways
to avoid them will get us closer to that goal. Newer, longer-
read and single-molecule sequencing technologies such as
PacBio and Oxford Nanopore also hold promise in addressing
these limitations, although they currently have much higher
error rates than Illumina sequencing (Goodwin et al., 2016).
Thus, even with newer and improved sequencing technology,
understanding measurement error will still be a priority for
making robust inferences from HIV sequencing data.

However, a concern with all of the approaches to variant-
calling presented here, both thresholding and machine-
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learning, is the potential of overfitting a method to the train-
ing and validation data. Any robust method will need to be
cross-validated on a wider variety of HIV data before it can be
trusted as a general-purpose tool. It will be important to bench-
mark error correction methods on datasets from different labs,
that use varying protocols to sequence varying mixtures of
plasmid sequences and regions of the HIV genome. This can
be facilitated by more public sharing of plasmid datasets, sev-
eral of which have already been deposited with the Sequence
Read Archive.

Further refinement of error correction methods for deep
Illumina sequencing of HIV that combines protocols to re-
duce PCR errors with overlapping read pairs and machine
learning classification of sequencing errors will be a valu-
able and important step toward more robust, and ultimately
clinically-trusted, tools for HIV genotyping. Overall, these
clear directions for future work will benefit the HIV research
community by enabling more robust inference. In the specific
context of drug resistance mutations, more robust error cor-
rection will allow for more sensitive detection of emerging
resistance at very low variant frequencies and the continued
exploration of their significance.
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Casadellà,M. and Paredes,R. (2016) Deep sequencing for HIV-
1 clinical management. Virus Research, 239, 69–81.

Chabria,S.B., Gupta,S. and Kozal,M.J. (2014) Deep Sequenc-
ing of HIV: Clinical and Research Applications. Annual
Review of Genomics and Human Genetics, 15 (1), 295–
325.

Chen,T. and Guestrin,C. (2016) XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining pp. 785–794, San Francisco, CA,
USA.

Chen-Harris,H., Borucki,M.K., Torres,C., Slezak,T.R. and
Allen,J.E. (2013) Ultra-deep mutant spectrum profiling:
improving sequencing accuracy using overlapping read
pairs. BMC Genomics, 14, 96.
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Figure 1. Overview of read distribution frequencies from the 5VM data set. Fragment size frequencies (a) illustrate the
proportion of reads that are either technical replicates (fragment is less than the maximum read length; blue), overlapping
(fragment is between the read length and twice the read length; orange), or paired-end (fragment is larger than twice the read
length; green). Coverage (b) is non-uniform across the HIV genome due to the use of multiple amplicons to cover the whole
genome.
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Figure 2. Comparison of cumulative errors observed in the alignments, across data sets and methods. For 5VM, hivmmer
alignments display the lowest cumulative error rate. For PL1:1 and PL1:9, the cumulative error rates are closer among the
methods, but hivmmer alignments display fewer errors at thresholds below 0.25%.
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Figure 3. The distribution of variant calls across data sets and methods. Visually, the distributions do not appear significantly
different across methods, which is confirmed using a Kruskal-Wallis test.
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Figure 5. Receiver-operating characteristic (ROC) curves
and area-under-the-curve (AUC) showing the trade-off
between false-positive and true-positive rate for each of the
xgboost models, with the training data set specified on the
right side and the validation data set on the top. The models
cross-validate well between the PL1:1 and PL1:9 data sets,
but not between 5VM and the PL data sets.
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Figure S1. Detailed view of variant calls for the 5VM data set.
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Figure S2. Detailed view of variant calls for the PL1:1 data set.
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Figure S3. Detailed view of variant calls for the PL1:9 data set.
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Figure S4. Detailed view of variant calls for the PID data set.
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