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Abstract: 
 
As smartphone usage has become increasingly prevalent in our society, so have rates of 
depression, particularly among young adults. Individual differences in smartphone usage patterns 
have been shown to reflect individual differences in underlying affective processes such as 
depression (Wang et al., 2018).  In the current study, we identified a positive relationship 
between smartphone screen time (e.g. phone unlock duration) and resting-state functional 
connectivity (RSFC) between the subgenual cingulate cortex (sgCC), a brain region implicated 
in depression and antidepressant treatment response, and regions of the 
ventromedial/orbitofrontal cortex, such that increased phone usage was related to stronger 
connectivity between these regions.  We then used this cluster to constrain subsequent analyses 
looking at depressive symptoms in the same cohort and observed partial replication in a separate 
cohort.  We believe the data and analyses presented here provide relatively simplistic initial 
analyses which replicate and provide a first step in combining functional brain activity and 
smartphone usage patterns to better understand issues related to mental health.  Smartphones are 
a prevalent part of modern life and the usage of mobile sensing data from smartphones promises 
to be an important tool for mental health diagnostics and neuroscience research.  
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Introduction: 

Smartphone usage has become nearly ubiquitous in daily life at a time when depression 
rates are concurrently rising, particularly among college students.  Smartphones contain a variety 
of sensors that can allow researchers to passively measure various behaviors of the phone’s user.  
Previous research has linked smartphone usage to self-reported depressive symptoms (Matar 
Boumosleh & Jaalouk, 2017; Twenge, Joiner, Rogers, & Martin, 2018; Wang et al., 2018).  In 
parallel, depressive symptoms have been linked to brain connectivity using resting-state 
functional connectivity (RSFC) MRI (Greicius et al., 2007).  The current manuscript has multiple 
goals. First, is to provide a proof-of-concept for linking passive mobile smartphone sensing 
technologies to brain connectivity measures that have also been linked to self-reported 
depressive symptoms. Second is to replicate these initial findings in a separate cohort. Third, is 
to identify preliminary links between a key behavior inferred from sensing (e.g. smartphone 
screen time) and brain connectivity metrics. Fourth, is to briefly describe a variety of methods 
which could be used to combine results across these various data types in the future.   
 
Depression assessment 

Depressive disorders affect over 300 million people worldwide and have been ranked 
among the largest contributors to global disability since the early 1990s and currently rate as the 
single largest contributor to global disability (Ustün, Ayuso-Mateos, Chatterji, Mathers, & 
Murray, 2004; WHO depression fact sheet, 2018).  Despite this, the diagnosis of depression has 
remained largely unchanged; further, a reliable means of identifying persons at risk of becoming 
depressed remains absent.  Psychology, psychiatry and neuroscience have long relied upon self-
reported surveys and in-person interviews to measure symptoms, diagnose mental health 
disorders and identify appropriate treatment strategies (Horwitz, Wakefield, & Lorenzo-Luaces, 
2016).  As a result of staggering costs inflicted at both individual and societal levels, clinicians 
and researchers set out to redefine the way mental disorders are conceptualized in hopes of 
creating innovative identification and prevention strategies.  The aforementioned aims have been 
synthesized in a research framework known as RDoC (Research Domain Criteria).  RDoC’s 
objective is to incorporate information across all planes of analysis ranging from cellular level 
data to person level self-report survey data to provide of a holistic picture of mental disorders 
(NIMH).  A core principle within the RDoC framework is the notion that neuroscience will 
inform future psychiatric classification schemes; in other words, aid in moving towards the 
establishment of a neural biomarker for depression.  Thus, of great importance is understanding 
the complete range of human behavior (and neurological functioning) from typical to atypical 
(Insel et al., 2010).  The Patient Health Questionnaire (PHQ, with four, eight and nine question 
versions) is a reliable, short survey which has been validated in clinical settings and can be used 
to assess self-reported symptoms of depression that cause significant impairment and subjective 
distress (Cameron, Crawford, Lawton, & Reid, 2008; Kroenke et al., 2001; Kroenke et al., 2009), 
an approach in keeping within the RDoC research framework, seeking to explain individual 
variance in symptoms across domains, constructs, and units of analysis.  Future methods to 
accurately diagnose depression may hold promise with the inclusion of techniques that capitalize 
on the passive collection of behavioral data through mobile sensors (e.g. smartphones).  
 
Passive sensing 
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Passive sensing using mobile smartphone technology allows for the assessment of daily 
activities by the smartphone user without continual effort on their part.  This increases the 
frequency with which data can be collected and is less vulnerable to self-report bias, which is 
often a problem in prompted surveys (Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015; 
Rosenman, Tennekoon, & Hill, 2011).  Smartphone ownership has increased steadily over the 
last decade, with over 75% of the US population owning one (Smith, 2017).  In parallel, 
depression rates have increased over the last decade (Twenge et al., 2018).  Prevalence of both 
smartphone ownership and depression rates are often reported as being higher in college-age 
students (Eisenberg, Hunt, & Speer, 2013; Nielsen.com, 2016).  Screen time, e.g. the amount of 
time that the screen is unlocked and being used is a relatively simple metric to calculate.  Screen 
time and unlock duration will be used interchangeably henceforth. 
 
Resting-State Functional Connectivity 

Blood-oxygenation-level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) is a non-invasive way to study activity in the human brain.  Changes in BOLD signal are 
highly correlated with changes in neuronal activity in the local area, particularly local field 
potentials (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001).  Resting-state functional 
connectivity (RSFC) measures the relationship between the time-courses of different regions, 
often by using the correlation of the time-series.  While connectivity across the whole brain, or 
“functional connectome” is fairly similar across individuals, there are small individual 
differences in connectivity between individuals which can be reliably observed across time.  
There are a variety of factors which may potentially influence RSFC, including genetics, 
experiences across the lifetime and current physiological and emotional state (Birn et al., 2013; 
Patriat et al., 2013; Poldrack et al., 2015; Richiardi et al., 2015; Shehzad et al., 2009; Sinclair et 
al., 2015; Zuo et al., 2014).  

 
Depression and neuroimaging 

RSFC has been used successfully to distinguish between healthy controls and depressed 
individuals, even going so far as to distinguish between subtypes of depressed individuals 
(Berman et al., 2013; Drysdale et al., 2016; Greicius et al., 2007; Kaiser, Andrews-Hanna, 
Wager, & Pizzagalli, 2015).  Task-based studies of self-referential processing have revealed that 
the sgCC is preferentially involved in processing valenced self-referential information (Moran, 
Macrae, Heatherton, Wyland, & Kelley, 2006; Somerville, Heatherton, & Kelley, 2006).  
Additionally, this region has been associated with antidepressant treatment response, and an area 
proximal to this has been used as a site of deep-brain stimulation for treatment-resistant 
depression (Holtzheimer, 2012; Mayberg et al., 2005).  
 
Combing RSFC and mobile smartphone passive-sensing technology 

There are a wide-variety of approaches that can be taken when combining high-
dimensional data from multiple modalities.  We wanted to answer the following question: do 
smartphone sensing features previously identified as being related to depression show 
correlations with resting-state functional connectivity from a region previously identified to have 
aberrant connectivity in depressed individuals?  In the current study we decided to take a 
targeted approach, selecting screen time with mobile smartphone (e.g. unlock duration), a feature 
previously shown to be linked to depressive symptoms (Twenge et al., 2018; Wang et al., 2018) 
and a brain area, the subgenual cingulate cortex (sgCC) which has previously been identified as 
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having aberrant RSFC in depressed individuals, and more recently has been used as a target for 
deep brain stimulation for treatment resistant depression (Greicius et al., 2007; Holtzheimer, 
2012; Mayberg et al., 2005).  Furthermore, if there are regions identified in the passive-sensing 
unlock duration analysis and RSFC analysis, do these regions also show similar connectivity 
patterns when looking at the same correlations with brief surveys of self-reported depressive 
symptoms (PHQ-2, 4 and 8)?   We expect that they would.  Alternatively, depression may be a 
summation of a variety of factors and may be better understood by interrogating passive-sensing 
mobile technology and neuroimaging than self-reported scales.  Keeping within the RDoC 
matrix, we assess a variety of units of analysis including brain connectivity with fMRI 
(physiological), passive-sensing of phone usage (behavioral) and both computer-based and 
phone-based depression scales (self-report).  
 
Methods: 
Study design 

In the current study two separate cohorts of first-year undergraduate students were 
enrolled and analyzed separately for test-retest comparison.  Individuals were enrolled in three 
study components: neuroimaging, smartphone sensing/EMA and online surveys.  Three modified 
versions of the PHQ-9 were used: PHQ-2/4/8. PHQ-8 is the same as PHQ-9 with the suicide 
ideation question removed.  This question was removed before administration because the survey 
results are not monitored in real-time.  PHQ-4 is a four question survey which includes two 
questions from the PHQ-8 and two from the GAD-7 as to assess both depressive and anxiety 
related symptoms (Kurt Kroenke, Spitzer, Williams, & Löwe, 2009).  They are used because of 
their brief form.  They may miss some of the nuances that the other inventories pick up on but 
have been found to have high internal reliability (Cronbach’s Alpha > 0.8) and are correlated 
with diagnoses of clinically relevant depression (Cameron et al., 2008; Khubchandani, Brey, 
Kotecki, Kleinfelder, & Anderson, 2016).  PHQ-2 is used as a super-brief form of the PHQ-8 
that is slightly more specific to depressive symptoms by excluding the GAD-related questions 
(Arroll et al., 2010). 

Individuals completed an online survey to assess study eligibility (safe for MRI per 
Dartmouth Brain Imaging Center guidelines, no contraindications that would lead to MRI signal 
loss, and owned an Android or iOS smartphone compatible with StudentLife).  If an individual 
was eligible and interested in participating in the study, she or he completed a battery of online 
surveys, including the PHQ-8 through REDCap (Harris et al., 2009).  Individuals were then 
scanned during the academic term and had the StudentLife application (Wang et al., 2014) 
installed on their phone at or near the time of scanning.  In Cohort 1, StudentLife data was 
collected from the time of scanning until the end of the term.  In Cohort 2, StudentLife data was 
collected from the time of scanning and data collection is currently ongoing but the data 
presented here is only from their first term in college.  
 
StudentLife 

A smartphone application, StudentLife is used in the current study to collect a variety of 
data about smartphone usage and mood from participants.  The application is installed on a 
participant’s phone (iOS or Android) and collects data from the GPS, microphone, accelerometer 
and lock/unlock status among others.  Data from StudentLife is uploaded to a secure server 
whenever a participant is both using WiFi and charging their phone, which they were encouraged 
to do daily.  Data from these sensors are processed on the server to create variables that assesses 
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the day-to-day and week-by-week impact of workload on stress, sleep, activity, mood, 
sociability, mental well-being and academic performance of students (Wang et al., 2014).  The 
workflow of the current study includes data collected through StudentLife, MRI scanning 
sessions and self-reported surveys (Figure 1). In Cohort 1, unlock duration (phone usage) was 
continually sampled, providing coverage 100% of the time. This was decreased in Cohort 2 to 
help conserve battery usage.  In Cohort 2, phones were remotely triggered every 10 minutes, 
sampling 1 minute every 10 minute period (minimum 10% temporal coverage), unless 
conversation was detected during the 1-minute sampling period, in which case sampling was 
extended up to 3 minutes for a maximum of 30% temporal coverage). 

 
 
Figure 1. Summary graphic of the study workflow in the current study, showing raw data 
collection from both smartphones (StudentLife, passive sensing) and MRI (resting-state 
functional connectivity, sgCC seed-based analysis).  Calculated features were selected based on 
previous research.  Survey data was collected with both online (REDCap, PHQ-8) and 
smartphone (StudentLife, Ecological Momentary Assessments, PHQ-2/4) sources. 
 
Ecological Momentary Assessments   

Students were prompted once a week within the StudentLife application during the term 
to complete a few short surveys as Ecological Momentary Assessments (EMA, one of which was 
PHQ-4 (Shiffman, Stone, & Hufford, 2008).  In the current study we collected the PHQ-4, a 
modified, shorter version of the PHQ-8 which in four questions provides a glimpse of depressive 
and anxious symptoms (two questions related to each, with the two depression questions 
comprising the PHQ-2).  
 
Subjects 

Subjects were first-year undergraduate students recruited from the Dartmouth College 
community.  Cohort 1 included 151 subjects (94 female, mean age = 19.59, std = 1.69, range = 
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18-28) which were all scanned during their first year at Dartmouth and followed for the 
subsequent academic term.  Cohort 2 included 106 subjects (75 female, mean age = 18.25, std = 
0.63, range = 18-22) which were all scanned during the first academic term of their first year at 
Dartmouth.  In Cohort 2, one subject was removed from the study for having an incompatible 
phone and one MRI session was stopped due to not reporting a permanent top retainer.  

See Table 1 for a summary of the number of individuals included in each analysis, 
grouped by Cohort.  Subjects were only included in each analysis if they met the minimum 
number of time-points for smartphone-based StudentLife data and each analysis and had resting-
state functional connectivity that passed quality control (see RSFC analysis methods section 
below for further details).  Subjects had normal or corrected-to-normal visual acuity.  Each 
subject provided informed consent in accordance with the guidelines set by the Committee for 
the Protection of Human Subjects at Dartmouth College and received either course credit or 
monetary compensation for participating in the study. 
 
Table 1. Summary of the number of subjects in each analysis.  
 
 Cohort 1 Cohort 2 

Total Scanned 151 106 

RSFC Data (Passed QC) 145 93 

PHQ-8 65 89 

PHQ-4 (> 1-Day) 84 89 

PHQ-2 (> 1-Day) 84 89 

Unlock Duration (> 20-Days) 77 89 
 
RSFC data collection 
  
Apparatus 

Cohort 1 imaging was performed on a Philips Intera Achieva 3-Tesla scanner (Philips 
Medical Systems, Bothell, WA).  Cohort 2 imaging was performed on a Siemens MAGNETOM 
Prisma 3-Tesla scanner (Siemens Medical Solutions, Malvern, PA).  Data for both cohorts was 
collected using a 32-channel phased array head coil.  During scanning, participants viewed a 
white fixation cross on a black background projected on a screen positioned at the head end of 
the scanner bore, which participants viewed through a mirror mounted on top of the head coil.  
 
Cohort 1 imaging 

Anatomic images were acquired using a high-resolution 3-D magnetization-prepared 
rapid gradient echo sequence (MP-RAGE; 160 sagittal slices; TE, 4.6 ms; TR, 9.9 ms; flip angle, 
8°; voxel size, 1 x 1 x 1 mm).  Resting-state functional images were collected using T2*-
weighted fast field echo, echo planar functional imaging sensitive to BOLD contrast (TR= 2500 
ms; TE= 35 ms; flip angle= 90°; 3 x 3 mm in-plane resolution; sense factor of 2).  Functional 
scanning was performed in one or two runs; during each run, 240 brain volumes (36 slices, 3.5 
mm slice thickness, 0.5 mm skip between slices) were acquired, allowing complete brain 
coverage.  As such, each participant completed between 10 and 20 minutes of RSFC scanning. 
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Cohort 2 imaging 

Anatomic images were acquired using a high-resolution 3-D magnetization-prepared 
rapid gradient echo sequence (MP-RAGE; 192 sagittal slices; TE, 2.32 ms; TR, 2300 ms; flip 
angle, 8°; voxel size, 1 x 1 x 1 mm) with a Grappa 2 acceleration factor.  Resting-state functional 
images were collected using T2*-weighted fast field echo, echo planar functional imaging 
sensitive to BOLD contrast (TR= 1190 ms; TE= 32 ms; flip angle= 63°; 2.4 x 2.4 mm in-plane 
resolution; SMS factor of 4).  Functional scanning was performed in one or two runs; during 
each run, 605 volumes (46 slices, 3 mm slice thickness, no skip between slices) were acquired, 
allowing complete brain coverage.  As such, each participant completed 12 or 24 minutes of 
RSFC scanning.  Data for cohort 2 was processed and organized into BIDS format with datalad 
(Gorgolewski et al., 2016; Halchenko et al., 2017). 
 
RSFC analyses 

All processing was performed using a standard previously published processing stream 
(Power et al., 2014) with two exceptions: frame-displacement (FD) threshold was set to 0.25mm 
(instead of 0.2mm) and 36 motion parameters (instead of 24) were used for motion regression.  
Functional images were preprocessed to reduce artifacts, including: (i) slice-timing correction, 
(ii) rigid body realignment to correct for head movement within and across runs, (iii) within-run 
intensity normalization such that the intensity of all voxels and volumes achieved a mode value 
of 1000 scale with 10 units equal to ~1% signal change, (iv) transformation to a standardized 
atlas space  (3 mm isotropic voxels) based on (Talairach & Tournoux, 1988), (v) frame 
censoring, (vi) nuisance regression (excluding censored frames), (vii) interpolation, and (viii) 
bandpass filtering (0.009 < f < 0.08Hz) following Power et al. (2014) and using exactly the same 
processing stream as Huckins et al. (2018).  Final correlation calculations between time-courses 
were calculated based upon uncensored frames. Preprocessing steps i-v were completed using 
custom scripts which call 4dfp Tools (ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/). Steps 
specific to resting-state functional-connectivity processing (vi-x) were completed using custom 
MATLAB (Version R2012b, by MathWorks, Natick, MA) scripts. 

 
Nuisance regressors 

To control for motion, a Volterra expansion (Friston, Williams, Howard, Frackowiak, & 
Turner, 1996) with 36 motion parameters was used.  This expansion includes motion (R), motion 
squared (R2), motion at the previous two frames (Rt−1, Rt−2), and motion in the previous 
two frames squared (Rt−12, Rt−22).  Tissue-based nuisance regressors were calculated by 
taking the mean signal across voxels within each of the following individual masks from 
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) (Dale, Fischl, & Sereno, 1999; Desikan et al., 
2006): an eroded (up to 4x) ventricular mask for the cerebrospinal fluid, an eroded white matter 
mask for the white matter signal, and a whole-brain mask for global signal. When eroded masks 
included no voxels, lesser erosions were progressive considered until a mask with qualifying 
voxels was identified. This occurred infrequently for white-matter masks while erosions of 1 
were often used for CSF masks. The first derivative for each tissue regressor, as calculated by the 
difference from the current from to the previous frame, was also included. 

 
Volume censoring and data retention 
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Movement of the head from one volume to the next (FD) was calculated by the sum of 
the absolute values of the differentiated realignment values (x, y, z, pitch, roll, yaw) at each time-
point (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). A frame displacement threshold of 
0.25mm was used.  Volumes with motion above the frame displacement threshold were 
identified and replaced after multiple regressions but prior to frequency filtering.  Spectral 
decomposition of the uncensored data was performed and used to reconstitute (stage vii: 
interpolation) data at censored time-points.  The frequency content of uncensored data was 
calculated with a least squares spectral analyses for non-uniformly sampled data (Mathias et al., 
2004) based upon the Lomb-Scargle periodogram (Lomb, 1976).  Segments of data with less 
than 5 contiguous volumes below the FD threshold were flagged for censoring.  Functional runs 
were only included in the final analysis if the run contained 50 or more uncensored frames.  Only 
subjects with at least 5 minutes of uncensored data across runs were included in the current 
study.  Consistent with Power et al. (2014), only uncensored volumes were used when 
calculating temporal correlations. 
 
Neurosynth analysis and subgenual cingulate cortex seedmaps 

To identify an unbiased subgenual cingulate cortex (sgCC) seed to create voxelwise 
functional seed maps, an automated meta-analysis was performed using Neurosynth for the term 
“subgenual” (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011).  Subgenual cingulate 
cortex seed maps were created from a 4mm spherical seed placed at 0, 25, -10 (MNI 
coordinates), which was the peak of the term “subgenual” as of February 17th, 2017 and are 
centered around BA 25.  The mean time-course from this seed was correlated with the time-
course from every voxel within the brain.  These seed maps, i.e. maps of resting-state 
connectivity from the subgenual region, were produced for each individual that passed quality 
control (more than 5 minutes of uncensored frames, see above for more details).  
 
Combining data 

Since the version of the StudentLife application used in the current study generates 182 
features automatically, and with RSFC it is possible to generate thousands of features, it is 
necessary to minimize the number of features compared given the relatively small size of the 
Cohorts (N<100).  To minimize the number of features inspected, unlock duration was the only 
feature inspected given its simplicity to calculate and previously-identified relationship with 
PHQ-8 (Wang et al., 2018).  While many features were identified, we specifically chose unlock 
duration (e.g. screen time) as a simple feature both to calculate and to conceptualize as it can be 
considered similar to total phone screen time.  

For all surveys analyzed here, one time-point was sufficient for a subject to be included 
in the current analyses.  If there were multiple responses to ecological momentary assessments 
(EMAs, e.g. surveys prompted by the application) over the course of the term those responses 
were averaged.  Individuals were included in the passive sensing unlock duration analysis if they 
had 20 days of quality data with more than 16 hours of quality unlock duration data for each day 
included. 
 
Group analyses and statistics 

SgCC seedmaps from Cohort 1 were correlated with unlock duration sampled from 
smartphone usage with the StudentLife application.  For each analysis, the degrees of freedom 
was N-2, with N being the number of subjects which is listed in Table 1.  Results from the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/276568doi: bioRxiv preprint 

https://doi.org/10.1101/276568


 
Huckins et al. Page 10 

unlock duration and sgCC correlational analysis from Cohort 1 were volume corrected to 
account for multiple comparisons using AFNI’s 3dClustSim ACF function.  Results from the 
sgCC/unlock duration analysis were used to restrict the regions investigated in further analyses.  
Given the proof-of-concept and exploratory nature of the current work, clusters are marked as 
having passed volume-correction or not.  
 
Visualization 

All results were transformed into MNI space (Montreal Neurological Institute) and 
mapped onto the Conte69 template for volume-based slices or inflated surfaces for visualization 
(Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012).  Group results were viewed in 
Connectome Workbench Version 1.1.1 (Marcus, Fotenos, Csernansky, Morris, & Buckner, 
2010).  
 
Results 
Unlock duration correlated with sgCC connectivity 

In Cohort 1 exploratory whole-brain analyses of the correlation between unlock duration 
and sgCC seedmaps identified a large cluster (584 voxels, 15,768mm3) in the ventromedial 
prefrontal cortex with a positive linear relationship (Figure 2, S1A).  This cluster extended from 
the ventral striatum to medial frontal orbitofrontal cortex and dorsally to medial prefrontal 
cortex.  Information about subpeaks within this cluster can be found in Table 2.  To determine if 
these results replicated in Cohort 2, the cluster identified in Cohort 1 was used as a mask and 
voxels which showed a significant positive relationship between unlock duration and sgCC 
connectivity in Cohort 2 were identified.  This analysis identified a cluster with the peak located 
at -6, 51 -18 (MNI coordinates, peak T = 2.94, voxel extent = 42, volume-corrected to p<0.05) 
(Figure S1B).  
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p<0.01     p<0.001 

 
Figure 2. Exploratory analysis correlation sgCC RSFC seedmaps correlated with mean unlock 
duration identified a cluster with a positive relationship to unlock duration in the ventromedial 
prefrontal cortex (p<0.01, volume corrected using ACF to p<0.001) shown on inflated lateral 
(top left), medial (bottom left) and ventral (right) cortical surfaces.  The sgCC seed is represented 
as a black 10mm sphere, larger than the 4mm sphere used to create the seedmaps for 
visualization purposes. 
 
Table 2. Exploratory analysis correlation sgCC RSFC seedmaps correlated with mean unlock 
duration (smartphone screen time) identified one cluster in the ventromedial prefrontal cortex 
(p<0.01, volume corrected using AFNI’s ACF to p<0.001, k>449, voxel extent=548). Peaks 
were identified with xjview 9.6, showing 3 maximia within this cluster, at least 8mm apart. 

Best Estimate of Region X Y Z T 

Caudate -15 21 -9 4.29 

Caudate 12 21 -9 3.64 

Anterior sgCC 6 33 -12 3.34 
 
 
Self-reported depression symptoms correlated with sgCC connectivity 

Previous research (Wang and colleagues, 2018) identified a relationship between 
depressive symptoms and unlock duration.  To determine if depressive symptoms and unlock 
duration had overlap in the brain connectivity (seed based subgenual RSFC) regressions for both 
computer-based pre-screening (PHQ-8), phone based post-scanning (PHQ-2/4 as EMA) were 
performed.  Results from each of these analyses were masked with the cluster identified in 
Cohort 1’s sgCC/unlock duration analysis.  
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PHQ-8 computer-based surveys correlated with sgCC connectivity maps identified 
clusters with a positive relationship with sgCC connectivity in both Cohorts and identified a 
cluster which overlapped between the two.  Cohort 1 revealed one cluster at which passed 
volume-correction -21, 42, -12 (peak T = 3.19, voxel extent = 63, volume corrected to p < 0.05), 
24, 51, -9 (peak T = 2.55, voxel extent = 15, did not pass volume correction) (Figure 3, Table 3).  
In the PHQ-8 analysis of Cohort 2, results were further masked by the cluster which passed 
volume-correction in the Cohort 1 PHQ-8 analysis (63 voxels), identifying 1 significant cluster 
in Cohort 2, located at -15, 33, -12 (peak T = 2.98, voxel extent = 8, volume corrected to p < 
0.05).  In addition to identifying a cluster with overlap between the both Cohorts for the PHQ-8 
analysis, qualitative visual inspection suggests proximal cortical regions in both cohorts meeting 
a voxelwise threshold of p<0.05, with regions proximal to the mask having overlap at a threshold 
of p < 0.05 and increased overlap, including right OFC at a more liberal threshold of p < 0.1. 
 
 (A) 

 
 (B) 

 

  
p<0.05     p<0.001 

Figure 3. PHQ-8 regression for sgCC connectivity seedmaps for A) Cohort 1 (MNI Z of -10 to -
22 in steps of 4)  and B) overlap between Cohort 1 and Cohort 2 (MNI Z of -12).  Cohort 1 PHQ-
8 results were masked with the volume-corrected cluster identified in the Cohort 1 phone usage 
analysis (unlock duration) and Cohort 2 PHQ-8 results were masked with the PHQ-8 results from 
Cohort 1.  
 
Table 3. Results for the correlation of sgCC RSFC seedmaps, correlated with PHQ-8, masked by 
phone screen time results (Top). Overlap between Cohort 1 and Cohort 2 for sgCC RSFC 
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seedmaps correlated with PHQ-8 (Bottom). Subpeaks are at least 8mm apart. * signifies that 
cluster didn’t pass volume correction.  Cohort 1 PHQ-8 results were masked with the cluster 
identified in the Cohort 1 phone usage analysis (unlock duration) and Cohort 2 PHQ-8 results 
were masked with the PHQ-8 results from Cohort 1. 
 
Cohort 1      

Best Estimate of Region X Y Z T Extent 

Left OFC -21 42 -12 3.19 63 

 -18 51 -15 3.09 Subpeak 

 -6 48 -21 3.04 Subpeak 

Right OFC* 24 51 -9 2.55 15 

 18 42 -12 2.19 Subpeak 
Overlap Between 
Cohorts      

Best Estimate of Region X Y Z T Extent 

Left OFC -15 33 -12 2.98 8 
 

PHQ-4 EMAs correlated with sgCC connectivity maps identified peaks in Cohort 1 and 
2, but there was no overlap in the clusters between the Cohorts (Table S1). In Cohort 1 no 
significant clusters were identified when PHQ-4 was masked with Cohort 1 unlock duration.  As 
Cohort 1 didn’t identify any regions which passed volume-correction, there was no overlap of 
significant volume-corrected regions between Cohort 1 and Cohort 2 for PHQ-2.  As such, 
Cohort 2 results were masked with the Cohort 1 unlock duration cluster which identified one 
significant cluster with the peak at -15, 30, -12 (peak T = 3.71, voxel extent = 41, volume 
corrected to p < 0.05). Two clusters were identified that didn’t pass volume correction were also 
identified at -9, 51, -18 (peak T = 2.87, voxel extent = 28, volume correction ns) and 24, 39, -15 
(peak T = 1.87, voxel extent = 9, volume correction ns). 

As PHQ-4 includes two anxiety questions, we wanted to examine if there were more 
robust results when restricting the analysis to the two depressive symptoms, specifically PHQ-2.  
As Cohort 1 didn’t identify any regions which passed volume-correction, there was no overlap of 
significant volume-corrected regions between Cohort 1 and Cohort 2 for PHQ-2.  As such, 
Cohort 2 results were masked with the Cohort 1 Unlock Duration cluster which identified 1 
cluster which passed volume correction, with the peak at -18, 30, -12 (peak T = 3.81, voxel 
extent = 60, volume corrected to p < 0.05).  One cluster was identified that didn’t pass volume 
correction with peak at -9, 42, -27 (peak T = 2.93, voxel extent = 40, ns).  
 
Overlap across analyses here 

Given the similarity of regions found across the PHQ analyses in Cohort 2, we 
investigated the overlap between the results of PHQ 2/4 masked by the Cohort 1 unlock duration, 
with 39 voxels out of the 41 voxels identified in the PHQ-2 analysis overlapping with the PHQ-4 
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analysis. The overlap between Cohort 2 PHQ-2, 4 and 8 identified 11 voxels, which are located 
around the peaks of the PHQ-8 analysis. 
 
Discussion 

In the current manuscript, we provide an example of how to link passive smartphone 
metrics, active smartphone-based surveys of mental health and computer-based surveys of 
mental health with brain connectivity measures. Specifically, RSFC between the subgenual 
cingulate cortex, a region previously implicated in depression, and nearby ventral prefrontal 
regions, was strongly related to unlock duration, such that more connectivity was associated with 
more screen time, which has been implicated as being related to self-reported depressive 
symptoms. The link between RSFC and individual differences has long been established but 
extending that and combining it with an individual’s behavior inferred from smartphone sensors 
provides exciting new directions. While the results presented here are a relatively simple analysis 
of complex, highly dimensional data, we discuss some methods which could be used in the 
future to combine these highly multivariate and complex datasets in exciting ways. 

Phone-related screen time, which we define here as the amount of time a phone is 
unlocked, or unlock duration, has previously been shown to be related to self-reported depression 
levels (Twenge et al., 2018; Wang et al., 2018).  An exploratory analysis in Cohort 1 of the 
correlation between unlock duration and sgCC seedmaps identified a large cluster which 
extended from the anterior caudate to medial frontal orbitofrontal cortex and dorsally to medial 
prefrontal cortex, a result which was replicated in Cohort 2 with a smaller voxel extent, even 
though the sampling rate for screen time was greatly reduced, reducing our sensitivity to pick up 
individual differences in phone usage for this cohort.  Next, to determine if depressive symptoms 
showed a similar pattern of connectivity between sgCC and ventral prefrontal cortex the cluster 
from Cohort 1’s unlock duration analysis was used as a mask with PHQ-8, a commonly used 
survey to assess depressive symptoms in the general population.  Two small clusters of overlap 
were identified in the left OFC, one of them neighboring voxels that were identified to replicate 
in the unlock duration analysis between the Cohorts.  While these clusters are not large and 
would not necessarily survive volume correction on their own, observing similar regions across 
Cohorts and analyses suggests that there is a link between depressive symptoms and related 
behaviors and sgCC-OFC connectivity, particularly left OFC that should be further investigated.  
The PHQ-4, which contains two depression questions and two anxiety questions, did not show 
the same robust relationship across both Cohorts, with no voxels overlapping, although Cohort 2 
identified a cluster in the left OFC which overlapped with results observed with PHQ-8 in both 
Cohorts. Connectivity between the sgCC seed (BA 25), located at 0, 25, -10 and the left OFC 
region around -15, 33, -12 shows a consistent relationship between self-reported depressive 
symptoms and screen time, which has previously been associated with depression.  Increased 
connectivity between sgCC, a region involved in processing of valenced information about the 
self (Moran et al., 2004) and OFC, which is involved in valuation and reward processing has 
been linked increased depressive symptoms and screen time across both Cohorts.  Similar results 
were observed with PHQ-2, which only contains the two questions directly related to mood.  It 
seems quite plausible that regions involved in valence processing related to the concept of self 
and a more general reward valuation processing region would have increased connectivity in 
individuals with higher depressive symptoms. 

We have shown that resting-state functional connectivity of the brain, as measured with 
MRI, in two separate Cohorts of individuals, with two separate MRI’s and two separate versions 
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of the StudentLife applications show similarity in the results observed.  The cluster identified 
with the unlock duration analysis covered an extent similar to that of the limbic network 
previously identified (Choi, Yeo, & Buckner, 2012; Yeo et al., 2011).  Due to the constraints we 
imposed on the analysis, all of the subsequent results were within this area, but noticeably, many 
of the results were proximal to the left OFC, which is also a member of a set of nodes which are 
commonly activated during reward processing and can form their own preferentially coupled 
system (Huckins et al., 2018) and is identified as a peak of the term “reward” in reverse-
inference meta-analyses using Neurosynth (Yarkoni et al., 2011). 
 
Limitations and Future Directions: 

The current work is a first-pass at analyzing longitudinal multi-cohort, multimodality data 
and has several limitations.  There are several ways in which future research may provide a more 
comprehensive survey of the relationships between the diverse set of features provided from 
passive smartphone sensing, functional brain connectivity measures and self-reported measures 
of depression or other mental health metrics.  The relatively small number of clinically depressed 
individual in the current sample weighs the results heavily on the RSFC and passive-sensing 
features from those individuals.  Test-retest within the moderately sized samples allows for 
identification of factors with reliable cross-cohort replicability in RSFC both and passive-sensing 
features.  Ideally, similar sensing features could be collected across many sites, allow for 
identification and characterization of depressive subtypes that span across passive-sensing and 
RSFC as has been done by Drysdale and colleagues (2016) with RSFC and survey data.  In the 
current study, particularly Cohort 2 in which data quality was actively monitored, we retained a 
relatively large portion of individuals from those scanned (see Table 1).  The sample sizes used 
here would have been considered relatively large several years ago.  Increased sample sizes in 
the current study would help future analyses given the large number of features from both 
passive mobile smartphone sensing and RSFC.  An outstanding question is if long-term changes 
in depressive symptoms can be better predicted by RSFC or smartphone sensing metrics at the 
initiation of the study or if changes in either of these over time parallel depressive symptoms.  
Ideally to assess this a large number of individuals would be tracked over multiple years.  In the 
second Cohort our working group aims to track them over multiple years while eventually 
increasing the number of individuals enrolled.  Furthermore, including multiple sites, as the 
ABCD study does (Volkow et al., 2017), would increase applicability to a wider population.  
Multiple research sites are currently collecting MRI data, self-reported surveys and smartphone 
sensing metrics.  An unresolved issue is what, exactly, is the optimal approach to analyze the 
huge amounts of multivariate data produced by these methods. 
 
Application changes Between cohorts 

In the current study, unlock duration data collection changed between the cohorts. In 
Cohort 1, unlock duration was continually sampled, while in Cohort 2 unlock duration was 
adaptively sampled between 10 and 30% of the time.  This change was instituted to optimize 
battery life, a primary limitation to users being willing to keep the StudentLife app on their 
phone.  By decreasing the amount of time sampled from 100% to 10-30%, our ability to 
accurately estimate unlock duration may decrease slightly as evidenced by an observed decrease 
in peak effect (T-value) and voxel extent.  As with all passive and active smartphone features, 
the ability to collect data must be weighed against the invasiveness to the user experience, either 
through app prompts or decreased battery life and phone speed.  
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Temporal factors related to school 

The demands of the academic term provide a generally applicable path of stress which is 
shaped over the term.  Avoiding, or potentially purposefully collecting MRI data during finals, 
which may be particularly stressful, or during popular social weekends may lead to changes in 
stress levels, sleep patterns and other variables which could alter connectivity patterns and self-
reported behavioral data that would have otherwise been observed.  In the study herein, we 
attempted to scan before finals and avoid well-known “party weekends”.  Future studies may be 
able to capitalize on temporal differences in stress and depression levels by scanning at these 
peak times of stress or sleep deprivation and comparing that data to less stressful times, such as 
the beginning of the term. 
 
Functional Differences and Alignment Across Individuals 

Resting-state functional connectivity shows robust and relatively reliable connectivity 
across large groups of individuals across methods (Gordon et al., 2016; Yeo et al., 2011). 
Meanwhile there are individual differences in the cortical extent of large-scale functional regions 
across individuals and even the network membership of these regions can vary (Gordon et al., 
2017).  Furthermore, critical to identifying group and individual differences is acquiring a large 
quantity of high-quality data (Gratton et al., 2018).  Defining networks on an individual basis 
will likely help in the pursuit of the individual differences in brain connectivity that underlie 
depression.  Variability in resting-state functional connectivity has been observed at the 
functional parcel level, but what about at finer resolutions?  While a departure of traditional 
anatomical alignment methods, hyperalignment is a method which attempts to align brain based 
on similar response patterns in high-dimensional space (Guntupalli et al., 2016).  While this 
method originated using time-locked dynamic stimuli such as a movie, it has recently been 
applied to resting-state functional connectivity as connectivity hyperalignment (CHA), which 
revealed both coarse-scale, areal structure as previously observed, along with fine-scale structure 
which was previously inaccessible.  Applying connectivity hyperalignment to RSFC data is will 
hopefully allow for increased ability to discern individual differences in depression and other 
mental-health metrics. 
 
Voxelwise Resting-State Functional Connectivity 

A relatively simple first-pass method is to target specific region and feature pairs.  If 
there are a priori hypotheses related to the topic of interest it may be possible to look at 
connectivity from one region using seed maps or between a small number of regions and relate 
them to specific passive-sensing features.  As shown here this is plausible but even correlating 
seed maps with 1 sensing variable leads to potential multiple comparisons issues based on the 
50,000+ voxels in the brain using a 3mm3 voxel size.  Recent statistical simulations have 
suggested an increased false-positive rate associated with older versions of 3dClustSim, a 
function of AFNI (Cox, Chen, Glen, Reynolds, & Taylor, 2017).  Indeed, the authors of 
3dClustSim now suggest using a different algorithm with the same program, the autocorrelation 
function (ACF) with a high p-value threshold per voxel to minimize the possibility of false-
positives.  In some datasets, at lower p-value thresholds ACF requires a much larger voxel-extent 
than the old version of 3dClustSim.  The increased voxel-extent may make it less likely to 
identify smaller functional regions in a whole-brain regression using a lower per-voxel p-value 
threshold (p<0.05).  This evolution of methods decreases the rate of the false-positives which is 
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critical but requires a larger expected functional region, a very strong effect size or a very large 
number of participants.  Across all possible methods presented here there are a variety of factors 
which should be taken into consideration to decrease false positive rates.  Having a large number 
of subjects to draw data will increase the portion of the population sampled.  

If possible having two distinct Cohorts to analyze then looking for overlap in results 
between the Cohorts would decrease false positives due to random sampling, Cohort specific 
variance, and further increase the total size of individuals sampled.  The above factors apply to 
most any study.  With passive smartphone mobile sensing there are many features which can be 
measured or computed based on the intersection of multiple features.  For example, “phone 
unlock duration” is a very simple metric, which measures the time that the smartphone was 
unlocked.  This can be further broken down into location specific features, such as “phone 
unlock duration at dorm” or “phone unlock duration at study places” by looking at the 
intersection of location on a geo-tagged campus and “phone unlock duration.  Given the large 
number of initial features that can be calculated, along with the nearly endless number of meta-
features that could potentially be generated, making sure that the feature is relatively 
straightforward to calculate and interpret should be at the forefront of anyone analyzing passive-
mobile phone sensing features.  Features that are difficult to calculate or interpret could easily be 
embedded with unforeseen confounds.  Furthermore, such features should be validated to make 
sure they are measuring the effect or phenomena they are supposed to in an accurate manner.  

Typically, only features with sensing data from many days should be used to get a more 
stable estimate of that features’ value.  While putting a sensing application of many students’ 
phones may seem like a plausible method for maximizing data collect, there are a variety of 
factors which can lead to reduced data collection, potentially rendering an individual’s sensing 
data unusable.  Phone operating system (OS) updates can often change application permission or 
render the sensing application completely useless.  To avoid this beta testing should be done as 
early as possible and new versions of the application that are compatible with the latest OS 
pushed to participants.  Participant non-compliance or attrition is another important factor to 
consider. Individuals may delete the application, limit its permissions within the OS or otherwise 
limit the researcher's’ ability to accurately measure data.  Clearly, it is the individual's choice to 
continue to participate in any study, particularly one where large amounts of data are being 
collected (anonymously) on their habits.  It may be difficult for the researcher to determine if the 
individual has deleted the application or simply not uploaded their data in while.  Finally, a rate 
of attrition is expected in all longitudinal studies and some individuals may simply decide that 
they do not wish to continue their participation in the study.  
 
Whole-brain and network-based connectivity 

A possible method to deal with the large number of comparisons related to voxelwise or 
whole-brain connectivity is to simply look at connectivity between a set of predefined regions or 
parcellation (Huckins et al., 2018; Gordon et al., 2016; Poldrack et al., 2015; Power et al., 2011; 
Yeo et al., 2011). Connectivity between each pair of regions can be correlated with the sensing 
feature of interest.  Unfortunately, many of the commonly used parcellations have many nodes, 
which increases the total number of comparisons in a nonlinear manner as the number of nodes 
increases.  The number of comparisons can soon approach the number of comparisons evident 
when using voxelwise seed maps without methods such as voxel extent to appropriately correct 
for the associated multiple comparisons. 
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A simple but perhaps relatively unsophisticated sophisticated method is to calculate mean 
connectivity within a functional system or network.  The system or network would be 
determined off of data driven approach such community detection using a random walk 
technique like InfoMap (Rosvall & Bergstrom, 2008) or regions identified as being part of a 
coherent functional system using another method.  In this approach, the mean of all Fisher r-to-z 
transformed correlation values between nodes of interest is calculated.  For example, mean 
connectivity within the Cingulo-Opercular network would be calculated between all nodes or 
parcels belonging to that network.  Between-network or system connectivity can also be 
calculated by taking the mean of all pairwise connections between the two networks of interest.  
This can greatly reduce the number of total connections observed, thus reducing the multiple 
comparisons problem mentioned under the whole-brain connectivity section.  One drawback to 
this method is that it is not selective about which connections it is using in the calculation - 
specifically, that it may be and probably is including connections that are not physiologically or 
psychologically relevant.  

A plausible may to reduce the number of connections by selections ones that are likely to 
be “real”, such that information may actually travel through that connection on the neural level, 
even if not on a first-order or even second-order synapse. Multiple approaches have been taken 
to identify meaningful connections. Within or between networks there are likely to be positive 
and negative correlations, which then somewhat cancel out. One could take the absolute value of 
each connection before averaging across the network, but this would introduce bias in any 
connections with a distribution of correlation values that included positive and negative values. 
Values of correlation, or connectivity measures in the brain vary by orders of magnitude. 
Identifying a multiscale network backbone that accounts for important connections within and 
between communities, regardless of the connectivity strength would be a method to decrease the 
number of connections analyzed. One way of identifying the network backbone is to use the z-
value from each connection as the weight, or amount of information that could travel between 
the two brain regions that the connectivity was estimated from. A group did just this (Serrano, 
Boguñá, & Vespignani, 2009), identifying connections which are statistically relevant across 
multiple scales of connectivity, work which has been extended non-parametrically (Foti, Hughes, 
& Rockmore, 2011). By identifying the network backbone for each individual, it may be 
plausible to identify a variety of subcategories or continuums of depression along which different 
symptom severities fall for each individual, along with passive smartphone monitoring will allow 
for greater insight into interactions of behavioral, self-report and physiological RDoC matrix 
criteria. 
 
Wrangling high dimensional data 

A variety of techniques can be used to extract information from data that are both 
longitudinal and high-dimensional; that is, situations where the data are collected from 
participants at multiple time points and the number of covariates begins to approach, or even 
surpasses the number of subjects in the dataset (Cheng, Honda, Li, & Peng, 2014; Chu, Li, & 
Reimherr, 2016; L. Wang, Zhou, & Qu, 2012; Zipunnikov et al., 2014). 

As has been mentioned repeatedly above, both with resting-state and passive smartphone 
sensing there are a large quantity of features and analyses that can be generated. In the current 
study we chose features that were reasonable based on previous data but are unlikely to be the 
optimal features that describe the relationship between depression, passive mobile sensing and 
brain connectivity. Multiple approaches could be taken with data from both sources. One 
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approach which would greatly decrease the number of features that were necessary including 
trying to create a singular propensity metric, or biomarker of depression for both the resting-state 
fMRI data and a separate one for the sensing data then observing the relationship between the 
two. Alternatively, data reduction techniques such as independent component analysis could be 
applied to each group then the relationship between them could be measured. Many researchers 
have taken a “risk” or “propensity” score approach, where they generate models which contain 
predictive variables (gender, substance use, family history) pertinent to the outcome of interest 
and use the propensity score as a regressor when doing analyses at the group or individual 
difference level (Hansen et al., 2012; Stuart, 2010). This could be applied to smartphone data, 
but only once appropriate sensor features, and model have been calculated. By creating a unitary 
risk feature multiple comparison issues can be greatly mitigated. Data reduction techniques that 
account for variance that is common between two data modalities such as joint ICA, parallel ICA 
and CCA-Joint ICA, which has been implemented for combining high-dimension data across 
fMRI and genetic data (FusionICA, available from http://mialab.mrn.org/software/fit/).  
 
Unresolved Questions about Directionality and Timing 

In the current sample, resting-state fMRI data is from 1 time-point while mobile 
smartphone sensing data is dynamic and collects data over a longer period of time. An 
unresolved question is if changes in fMRI data across multiple sessions reflects or predicts 
changes in smartphone usage. Likely a more sensitive measure would be to do the reverse - using 
changes in smartphone usage, which is continuously monitored, to predict when there may be 
changes in brain connectivity as measured by fMRI. Changes in depressive symptoms have been 
successfully predicted with passive smartphone features (Wang et al., 2018), and may be useful 
for signaling when an individual should be referred to clinical services or brought in for a 
subsequent fMRI session. Longitudinal penalized functional regression is a method designed to 
deal with multiple timepoints of both exposure and outcomes (Goldsmith et al., 2012) which may 
help provide insight into the temporal association between brain connectivity, depression and 
phone usage. 
 
Moderating Factors of RSFC 

RSFC has repeatedly been shown to be relatively stable across individuals and time, 
displaying similar network structure across thousands of individuals. While similar network 
structure and connectivity patterns are observed between sites, preprocessing methods, and 
Cohorts, differences between individuals are observed across individual differences in 
personality, affect and current mood have been related to alterations in RSFC. Furthermore, 
individual differences in the network structure on an individual level have been observed. 
Properly mapping individual differences in networks across the cortex would allow for better 
cross-subject alignment. The network assignment of particular regions may in itself be linked to 
depressive symptoms, while lining up networks would allow for the proper comparison of 
networks across individuals. Additionally, the current state physiological state an individual is in, 
such as food satiety or caffeination status can influence their mood (Rogers & Lloyd, 1994) and 
has also been shown to influence an individual’s brain connectivity (Poldrack et al., 2015). 
While there are a variety of factors that can influence RSFC, reliable individual differences 
across brain disorders have been observed in previous studies and here. As the predictive 
accuracy of RSFC or other neuroimaging methods increases the field may move closer to using 
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MRI as a biomarker of depression, as has been done with physical pain (Atlas, Bolger, Lindquist, 
& Wager, 2010; Wager et al., 2013).  
 
Conclusions: 

In summary, we have identified proof-of-concept relationships between resting-state 
functional connectivity of the brain, web-based self-reported surveys of depressive symptoms 
(PHQ-8), a passive mobile smartphone sensing feature (unlock duration) and mobile smartphone 
based ecological momentary assessments of depressive symptoms (PHQ-4). An important 
mental health implication is that the amount of time spent using a phone is correlated with 
depressive symptoms. Further, these symptoms, both before time-of-scanning (PHQ-8) and after 
time-of-scanning (PHQ-2/4), show a relationship with connectivity between areas implicated in 
depression, reward and processing of valenced self-relevant material. Importantly, these initial 
results predominantly replicate across the two separate cohorts, increasing the applicability and 
scope of the findings herein. Although the current results do not elucidate causality in the 
relationship between screen-time, depression and brain connectivity, future work should aim to 
do so, especially given recent changes to public policy, with professional groups such as the 
American Academy of Pediatrics providing suggesting screen-time limits and policy and 
investor groups calling on media device makes such as Apple and other phone makers. In the 
current work we extend previous research, replicate results across multiple MRI scanners and 
cohorts all while combining data from a while variety of sources. The analyses done here are by 
no means comprehensive and we hope that the findings of this study and future research methods 
proposed herein are useful to a wide-range of researchers. Ultimately continuation and 
extensions of this research has the potential to provide important insights into mental health, as 
well as inform psychological treatments and other interventions. 
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p<0.01     p<0.001 

(B) 

 

  
p<0.05     p<0.001 

Figure  S1. Exploratory analysis correlating sgCC RSFC seedmaps correlated with mean unlock 
duration in Cohort 1 (A) identified a cluster with a positive relationship to unlock duration in the 
ventromedial prefrontal cortex (p<0.01, volume corrected using ACF to 0.001, k>449) shown on 
axial slices. Replication of the relationship between unlock duration and sgCC connectivity 
between Cohorts 1 and 2 are observed in (B).  The cluster identified in Cohort 1 showed a 
positive relationship with unlock duration was subsequently used to restrict the area interrogated 
in Cohort 2, showing positive clusters in ventral medial orbitofrontal cortex (p<0.05, volume 
corrected using ACF to p<0.05, k > 38).  
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A)                                                                  

 
B) 

 
 

  
p<0.05     p<0.001 

Figure S2. PHQ-4 regression for sgCC connectivity seedmaps for A) Cohort 1, B) Cohort 2 
masked by the results from unlock duration in Cohort 1. No common regions were found 

between the two analyses. 
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Figure S3. PHQ-2 regression for sgCC connectivity seedmaps for Cohort 2 masked by the 
results from unlock duration in Cohort 1, volume corrected to p < 0.05. No significant cluster 

were found in the Cohort 1 analysis and thus there was no overlap between the two analyses. 
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Table S1. Exploratory analysis identifying peaks with a positive relationship from sgCC RSFC 
seedmaps correlated with phone-based surveys of depressive symptoms (EMA form of PHQ-4).  
Only clusters showing overlap with the Cohort 1 unlock duration analysis, with a positive 
relationship between PHQ-4 and connectivity with greater than 5 contiguous voxels are reported 
here.  * signifies that cluster didn’t pass volume correction. 
 
Cohort 1           

Best Estimate of Region X Y Z T Extent 

 Superior Frontal Gyrus* -21 72 -3 2.99 7 

 Medial PFC* 9 57 3 2.31 7 

Cohort 2           

Best Estimate of Region X Y Z T Extent 

 Ventromedial PFC -15 30 -12 3.71 139 
  -9 51 -18 2.87 Subpeak 
  3 48 -21 2.49 Subpeak 

 Anterior Medial OFC* 9 57 -24 2.38 7 

 Right OFC* 18 33 -24 2.11 5 

 Right OFC* 24 39 -15 1.87 13 
  15 51 -15 1.72 Subpeak 

No Cohort Overlap Observed           
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