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Abstract

We propose an empirical Bayes approach using a three-component mixture model,
the L2N model, that may be applied to detect both differential expression (mean) and
variation. It consists of two log-normal components (L2) for the differentially expressed
(dispersed) features (one component for under-expressed [dispersed] and the other for
over-expressed [dispersed] features), and a single normal component (N) for the null
features (i.e., non-differentially expressed [dispersed] features). Simulation results show
that L2N can capture asymmetries in the numbers of over- and under- expressed (dis-
persed) features (e.g., genes) when they exist, can provide a better fit to data in which
the distributions of the null and non-null features are not well-separated, but can also
perform well under symmetry and separation. Thus the L2N model is particularly ap-
pealing when no a priori biological knowledge about the mixture density is available.
The L2N model is implemented in an R package called DVX, for Differential Variation
and eXpression analysis. The package also includes an implementation of differential
expression analysis via the limma package, and a differential variation and expression
analysis using a three-way normal mixture model. DVX is a user-friendly, graphical
interface implemented via the ‘Shiny’ package [6], so that a user is not required to have
R programming knowledge. It offers a set of diagnostics plots, data transformation
tools, and report generation in Microsoft Excel- and Word-compatible formats. The
package is available on the web, at https://haim-bar.uconn.edu/software/DVX/ .
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1 Introduction

High-dimensional data arise frequently in health sciences and biomedical studies, and has
emerged in recent years as a consequence of the rapid advance of “-omic” research. For
example, array-based technologies allow scientists to simultaneously collect measurements
on hundreds of thousands of genetic markers from an experimental sample. Due to high
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cost, it is common that these markers are measured for a relatively small number of inde-
pendent samples in a given study, and as a consequence, one faces the ‘large G, small n’
problem, where G is the total number of markers or features and n is the number of sam-
ples. The resulting datasets consist of observed values quantifying relative abundance levels
of platform-dependent biological material at multiple sites across the genome. Particularly
for gene expression and DNA methylation array experiments, the goal is often to identify
genetic markers that are differentially expressed (methylated) across clinically relevant sub-
groups. Similar settings and goals are also found in next-generation sequencing platforms
(e.g., RNA-seq), as well as fields beyond genomics (e.g., metabolomics, brain imaging), how-
ever, the terminology of gene expression will be used below for simplicity of exposition. As
such, the objective is to conduct simultaneous tests across the G genetic markers for differen-
tial mean expression due to a particular predictor variable of interest (e.g., clinical subgroup,
age group, etc).

The existing methods for detecting differential mean expression between two popula-
tions are numerous, as classical parametric (t-/F-) statistics evaluated at each marker do
not provide a reliable methodology for determining differential mean expression across the
genome. The large number of markers with relatively few samples not only induces a severe
multiple testing problem, but also yields marker-wise variance estimates that are often inac-
curate [e.g. 20, 8]. More powerful tests have since been proposed that combine information
across genetic markers for stabilization. Indeed, the most widely-used methods currently for
detecting differential gene expression ‘borrow strength’ across genetic markers by treating
marker-specific effects as random variates [e.g., 18, 7, 10, 1, 3].

In this work, we take a broader interpretation of ‘differential expression’ and allow for
identification of genes which are differential across populations not only in terms of their
mean expression levels, but also possibly their variances. Differential variation is important,
for example, in the analysis of heritability of complex diseases [16], epigenetic analysis [9],
and gene network regulation [17]. Recently, Bar et al. [2] proposed an extension of the
‘lemma’ model in [1, 3] by introducing a bivariate modeling strategy which accounts for
both differential mean expression and differential dispersion across two populations, and
yields a substantial gain in power to detect differential mean expression when differential
dispersion is present. As with the limma [18] and lemma [1] models, Bar et al. [2] uses
a mixture model, but in contrast to limma and lemma, it is based on a mixture of three
normal distributions with one component designed to capture the non-differentially expressed
(dispersed) genes, and the remaining two components designed to capture the underexpressed
(underdispersed) and overexpressed (overdispersed) genes relative to a reference group. The
two-component mixture models of limma [18] and lemma [1] implicitly assume that the
differentially expressed genes are symmetrically up- and down-regulated, which may or may
not be reasonable depending on the data at hand (see, e.g., [11]). In the extreme case
where only up- or down-regulated genes are expected or relevant, Ivanek et al. [11] proposed
first using limma [18] to estimate certain hyperparameters and rank the genes, and then
fitting an extreme value distribution to the tail of interest. While the three-component
Normal mixture of Bar et al. [2] can adequately capture asymmetries in the numbers of
over- and under- expressed (dispersed) genes when they exist, the performance of the three-
component Normal mixture model can be suboptimal when there is a large degree of overlap
between the three mixture components. In this situation, for example, a large portion of
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the density near zero may be allocated counterintuitively to the nonnull components, the
mixture component corresponding to the over-expressed genes may attribute an overly large
probability to negative values of test statistic (e.g., difference in means), and vice versa.

To overcome these challenges, we propose an empirical Bayes approach using a different
three-component mixture model, the L2N model, that consists of two log-normal components
(L2) for the differentially expressed (dispersed) genes (one component for under-expressed
(dispersed) and the other for over-expressed (dispersed) genes), and a single normal com-
ponent (N) for the null genes (i.e., non-differentially expressed (dispersed) genes). Our
simulation results show that this approach can still capture asymmetries in the numbers of
over- and under- expressed (dispersed) genes when they exist, but can also provide a better
fit to data exhibiting a large degree of overlap in the three-component Normal mixture while
still providing a good fit when the numbers of over- and underexpressed (dispersed) genes are
similar. Thus the L2N model is particularly appealing when no a priori biological knowl-
edge about the mixture density is available. This type of mixture, in which the non-null
components have zero mass or density at the center of the null distribution and a negligible
mass in a sufficiently small neighborhood around it, is similar to what was defined in [12] as
‘non-local alternative priors’ in the Bayesian hypothesis testing framework. In that paper,
Johnson and Rossell use point-mass null and a different form of alternative which, unlike the
L2N model, is symmetric and assigns equal probabilities to over- and underexpressed genes.
They further show (under additional constraints) the gain that their model yields in terms
of rate of convergence of the Bayes factor.

The L2N model is implemented in an R package called DVX [4], for Differential Variation
and eXpression analysis. The package also includes an implementation of a three-way nor-
mal mixture model, which we refer to as N3, similar to the one proposed in [2]. The software
also allows for differential expression analysis via the limma package. DVX is a user-friendly,
graphical interface implemented via the ‘Shiny’ package [6], so that a user is not required
to have R programming knowledge. It offers a set of diagnostics plots, data transforma-
tion tools, and report generation in Microsoft Excel- and Word-compatible formats. All
three models implemented in DVX (namely, L2N , N3, and limma) allow for adjustment for
covariates. Furthermore, DVX allows users to define more general contrasts than the sim-
ple two-group comparison. An extensive documentation of the software is provided in the
Supplementary Materials.

The paper is organized as follows. We introduce the L2N model in Section 2 and further
describe the relationship between the three models implemented in DVX. In Section 3 we
present results from the three model implementations under various simulation experiments
as well as a case-study in which we identify change in gene expression levels as a result of
aging (across four age groups) in normal brains [15]. We conclude with a brief discussion in
Section 4.

2 Methods

We are interested in identifying which genes have different distributional properties of ex-
pression levels between two populations. With normalized expression data this is usually
interpreted as testing for differences between the means of two distributions. However, we
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use a more general interpretation and ask which genes are differentially expressed (different
means) and/or differentially dispersed (different variances) between the two populations.

In the following, the normalized expression levels for gene g in group i = 1, 2 have
mean µig and variance σ2

ig. The sample versions are mig and s2ig, respectively. A gene is
differentially expressed (DE) if βg = µ1g − µ2g 6= 0. With normalized data, testing the null
hypotheses H0g : βg = θ0 relies on a statistic of the form

zg =
dg − θ0
sd(dg)

, (2.1)

where dg = m1g − m2g. For non-DE genes, if var(dg) are assumed to be known, zg has a
standard normal distribution for non-DE genes. Otherwise, zg follows a t distribution. A
common approach to detecting DE genes is to use a mixture model in which non-DE genes
are assumed to follow a ‘null distribution’ and belong to one component, and DE genes
follow another distribution and belong to a different mixture component. For example, in
the limma model [18], the variances are assumed equal across groups, i.e., σ2

ig ≡ σ2
g , i = 1, 2,

and dg ∼ N(βg, vgσ
2
g) such that for non-DE genes βg = 0 and for DE genes βg ∼ N(0, v0σ

2
g).

This results in a two-component mixture model for dg|σ2
g , in which both components have

mean zero, but expression levels of genes in the DE component have greater variability. The
model in [2] is a three component mixture in which for non-DE genes dg ∼ N(θ0, κ

2
g), where

κ2g = σ2
1g/n1g + σ2

2g/n2g, and for DE genes dg ∼ N(θ0 + θg, κ
2
g) where θg ∼ N(±θD, κ2). This

model consists of three normal components, with means θ0, θ0 − θD, and θ0 + θD, where
θD > 0. Here, we use a more general model in which the means of the non-null components
are θ0 + θD1 and θ0 − θD2 and where θD1 may be different than θD2. We denote this model
by N3. Table 1 summarizes the differences between three approaches for detecting DE: the
standard t-test (one gene at a time), limma, and N3. A key difference between the three
models is in how var(dg) is estimated. In the standard t-test approach the variances are
estimated separately for each gene and each group, while in the mixture models (limma
and N3) the variances are estimated by borrowing information across all genes. This is
achieved by assuming a prior distribution for the error variances of all genes. Typical gene
expression experiments involve small sample sizes, and thus lack power to detect differentially
expressed genes. Power is further reduced when one accounts for multiple testing and adjusts
the significance level for the large number of hypotheses (one per gene). When sample sizes
are small (or even moderate) and the number of genes is large, the mixture models yield
a substantial increase in power for detection of DE genes, due to the so-called ‘shrinkage
estimation’ [e.g., 18, 10].

The L2N Model: In the model presented in this paper we also assume that {zg}
come from a mixture distribution, and that non-DE genes follow a normal distribution,
zg ∼ N(θ0, κ

2
g), where κ2g are also assumed to follow a prior distribution. For the DE genes,

we assume that

zg − θ0|[zg > θ0, g ∈ DE] ∼ LogNormal(θD1 , κ
2
D1

) , (2.2)

−(zg − θ0)|[zg < θ0, g ∈ DE] ∼ LogNormal(θD2 , κ
2
D2

) . (2.3)

The parameter θ0 represents an overall difference between non-DE genes in the two groups.
While it may be close to 0 in many applications, this is not always the case, and models
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Table 1: Models for differential expression. βg = µ1g − µ2g, dg = m1g − m2g. In all three
models inference is based on zg from (2.1).

Model βg|H0 βg|H1 var(dg)

t-test θ0 = 0 6= 0
σ2
1g

n1g
+

σ2
2g

n2g

limma θ0 = 0 ∼ N(0, v0σ
2
g) σ2

g

(
1
n1g

+ 1
n2g

)
N3 θ0 ∼ N(θ0 + θD1, κ

2) if βg > θ0
σ2
1g

n1g
+

σ2
2g

n2g

∼ N(θ0 − θD2, κ
2) if βg < θ0

which assume that θ0 = 0 when it is not so, yield many false discoveries as we discuss in
Section 3.3.

Denote the non-DE probability density function (p.d.f.) of zg by f0 and the p.d.f.s of the
two DE components by f1 and f2. Denote the three components of the mixture by C0, C1, or
C2, and let the corresponding proportions of genes belonging to each component j = 0, 1, 2,
be pj such that

∑2
j=0 pj = 1. Classifying genes into one of the three components is then

achieved by computing their posterior probabilities

Pr(g ∈ Cj) =
pjfj(zg)

p0f0(zg) + p1f1(zg) + p2f2(zg)
, j = 0, 1, 2. (2.4)

This mixture model, which we call L2N , allows for different proportions of overexpressed
and underexpressed genes. Under this model, the probability that a gene with a positive
(negative) zg statistic is misclassified as underexpressed (overexpressed) is zero. In contrast,
the limma model assumes that the distribution of DE genes is symmetric, and while the
N3 model allows for different proportions of over and underexpressed genes, the unbounded
support of the DE components implies that an overexpressed gene has a non-zero probability
of being classified as underexpressed, and vice versa. Figure 1 demonstrates the three types of
mixtures mentioned here, with the limma model on the left, the N3 model in the middle, and
the L2N model on the right. The dotted blue lines represent the distributions of the non-DE
genes, which are distributed normally, and in all three models we set Pr(g ∈ C0) = 0.8. The
dashed red lines represent the distributions of DE genes, and the thick gray lines represent
the mixture distributions. In the limma model, the assumptions imply symmetry, and thus,
that the proportions of overexpressed and underexpressed genes are the same. This may
be a biologically reasonable assumption in some situations, but not in others. In both the
limma and N3 models, the probability of a type II error is greater than in the L2N model -
for a DE gene, i.e. g /∈ C0, and for some small ε > 0, P (|zg| < ε | g /∈ C0) is smaller for L2N
than for the limma and N3 models.

Both the N3 and L2N models use a hierarchical mixed model in which σ2
ig, i = 1, 2,

are assumed to have a common prior distribution for all g, within group i. This allows
‘borrowing information’ across genes and shrinks larger variances toward the overall mean
of variances. To obtain ‘shrinkage estimates’ for the variances, σ2

ig, we follow [2] and define

uig = log(s2ig)− log(X2/fig), i = 1, 2, (2.5)

where X2 is a Chi-squared random variate with fig = nig − 1 degrees of freedom. Given
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A B C

Figure 1: Three mixture models for differential expression. A. The limma model [18] B. the
N3 model [2] C. the L2N model. In all cases, Pr(g ∈ C0) = 0.8.

log(σ2
ig),

uig ≈ N(log(σ2
ig), 2ψ′(fig/2)), i = 1, 2, (2.6)

where ψ′ is the trigamma function. The normal approximation in (2.6) allows us to test for
differential dispersion, which may be of interest in its own right. To do that, we place a
three-component L2N prior on log(σ2

2g/σ
2
1g). Then, the differential dispersion statistics

ug = u2g − u1g , (2.7)

follow an L2N mixture distribution having the same form as (2.2) and (2.3): using the
superscript v to indicate that the model parameters for the dispersion statistics are different
from those for the expression model, for differentially dispersed (DD) genes we assume

ug − θv0 |[ug > θv0 , g ∈ DD] ∼ LogNormal(θDv
1
, κ2Dv

1
) , (2.8)

−(ug − θv0)|[ug < θv0 , g ∈ DD] ∼ LogNormal(θDv
2
, κ2Dv

2
) . (2.9)

Similarly to the expression model, we denote the mixture components for ug, by Cv
j , j =

0, 1, 2 (which may be different from the DE mixture components, Cj), and the posterior
probabilities Pr(g ∈ Cv

j ), have the same form as (2.4).
We compute the posterior mean of σ2

ig, i = 1, 2, denote it by σ̃2
ig and fit the L2N model

to {zg}, with
√
σ̃2
ig replacing the sd(dg) in (2.1). To fit the L2N model to {zg} (or {ug}),

we use the EM algorithm, where the ‘missing data’ are indicator variables such that bgj = 1
for g ∈ Cj (or bvgj = 1 for Cv

j ), j = 0, 1, 2, and bgj = 0 if g /∈ Cj (or bvgj = 0 if g /∈ Cv
j ). We

estimate bgj (bvgj) by taking its expectation (i.e., (2.4) for expression; similar for dispersion),
given the current estimates of the mixture component parameters. Maximum likelihood
estimates for θ0, θDj

, and κ2Dj
(or θv0 , θDv

j
, and κ2Dv

j
) are obtained in each iteration, while

holding the values bgj fixed at their current estimates. Additional details regarding the
estimation procedure are provided in the Supplementary Materials. If Pr(g ∈ C1 ∪ C2)
is sufficiently large, we conclude that gene g is DE. Similarly, if the posterior probability
Pr(g ∈ Cv

1 ∪ Cv
2 ) is sufficiently large, we conclude that gene g is DD. The normality of the

null component under the L2N model also allows us to use the frequentist approach so that
gene g is DE (DD) if h[2(1−Φ(|zg|))] < q (or, h[2(1−Φ(|ug|))], when testing for differential
dispersion), where h is a function which adjusts the p-values to account for multiple testing.
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3 Results

Experiments which aim to identify differentially expressed genes are usually performed un-
der the assumption that the proportion of DE genes is relatively small. When the total
number of genes is large and the sample sizes are small or moderate, as is often the case, the
challenge from the statistical point of view is to maximize the power (i.e., find the largest
number of true DE genes), while limiting the false discovery rate (FDR). The goal of the
simulations presented here was to evaluate and compare the performance of the three mod-
els implemented in DVX (limma, N3, and L2N) in terms of power and FDR. To clarify the
terminology used in this section, when we refer to the performance of limma, N3, or L2N we
mean the software implementation of the corresponding mixture model.

In each of almost 50 different configurations we simulated 5,000 genes and n = 5 subjects
in each group. Each configuration was simulated 30 times. We varied the number of DE
genes, the mean of the difference between expression for DE genes between the two groups,
which we denote by θ, and the variance of the random error. The error variances were
simulated from an inverse gamma distribution: σ−2ig ∼ Gamma(α, β). The shape and scale
parameters, α and β, were set so that E[V ar(zg)] = 1, so that we can control the mean
signal to noise ratio (SNR) in the simulation only in terms of the signal, θ. With this setting,
β = n(α−1)/2, and the variance of {V ar(zg)} is determined by α. We let α ∈ {4.5, 6, 7.5, 9},
corresponding to V ar[V ar(zg)] ∈ {1, 0.63, 0.45, 0.36}. Here, we show results with α = 9. We
note that as α increases, the variances across genes become more homogenous, and the power
to detect DE genes increases for all three methods (for a fixed mean difference between the
two groups, θ; results not shown).

With each of the three methods, the null distribution is obtained, and a gene is declared
as DE if its Benjamini-Hochberg [5] adjusted p-value is less than 0.05. Note that all three
methods allow for Bayesian inference, as well, in terms of posterior probabilities or Bayes’
factors.

3.1 Simulation Study – Differential Expression, no Differential
Dispersion

First, we consider scenarios in which the data are generated according to the N3 model,
when there are no differentially dispersed genes. We compare the three methods under
consideration for different signal strengths, and different number of DE genes. Table 2 shows
the median power of the three methods for θ ∈ {2.5, 3}. The median for each configuration
was taken over 30 iterations. Note that the observed FDR for all three methods in the
configurations described here, was indeed, on average, controlled at the desired level. In the
table, D1 and D2 denote the number of genes that are over-expressed in groups 1 and 2,
respectively. When θ and D = D1 + D2 are large, the three methods have similar power
(defined as the fraction of the D differentially expressed genes correctly classified.) However,
as the signal strength or the total number of DE genes decreases, N3 and L2N tend to have
higher power than limma. Of course, the power of all methods increases with θ. What is
perhaps less obvious is that the power decreases with D. The difference in power between the
methods in these situations is particularly important because in many cases, it is believed
that the proportion of DE genes is small. For example, when G = 20, 000 and D = 400
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Table 2: Simulation results – median true positive DE genes. G =5,000 genes, n1 = n2 = 5.

θ = 2.5 θ = 3
D1 D2 limma N3 L2N limma N3 L2N
500 500 0.31 0.3 0.31 0.59 0.57 0.57
225 25 0.1 0.13 0.13 0.35 0.36 0.35
50 50 0.05 0.08 0.08 0.2 0.22 0.24
35 15 0.03 0.06 0.06 0.14 0.19 0.19

(proportional to the third row in Table 2) , and θ = 3, the 4% difference in power between
L2N and limma translates into 16 additional true DE discoveries. Arguably, from a practical
standpoint, finding these additional 16 genes could have important consequences.

We also simulated data according to the limma model, and in this scenario the three
method have identical power. For example, with a total of D = 250 DE genes, the powers
obtained by all three methods for v0 = 6, 9, 12 are 0.18, 0.28, and 0.35, respectively. When
we hold v0 fixed and decrease D we again observe that the power decreases. For example,
with v0 = 9, the powers of all three methods for D = 1000, 500, 200, 100 are 0.34, 0.3, 0.27,
0.24, respectively.

3.2 Simulation Study – Differential Expression and Differential
Dispersion

We simulated datasets in which some genes were differentially dispersed across the two
groups, as well as differentially expressed. The goal was to test not only whether the L2N
method can detect those differentially dispersed genes, but also to check if and how the
presence of DD genes affects the power to detect DE genes. The results presented here were
obtained with α = 9 (relatively low variability of the error variance), and θ ∈ {2.5, 3}. We
simulated 50 over-dispersed genes in group 1 and 50 over-dispersed genes in group 2, by
dividing the standard deviation for the DD genes in one of the groups by 6.

Table 3 shows the results for D = 500 and D = 250, for θ = 2.5, 3. It is clear that
the approaches of N3 and L2N , where the variance estimates are obtained from a three-
way mixture model for differential dispersion, greatly increase the power to detect DE genes
when DD is present as compared with limma. We also see that L2N is slightly more powerful
than N3. When the variance of the null distribution increases (i.e., when α decreases) the
difference in power between L2N and N3 increases. For example, with α = 6, θ = 2.5, and
250 DE genes, L2N has a power of 0.46, vs. 0.44 for N3 (and limma has a power of 0.15).

Table 3: Simulation results – median true positive DE genes when 100 genes are also differ-
entially dispersed. G =5,000 genes, n1 = n2 = 5.

θ = 2.5 θ = 3
D1 D2 limma N3 L2N limma N3 L2N
250 250 0.16 0.35 0.36 0.38 0.55 0.55
200 50 0.18 0.45 0.46 0.35 0.60 0.61
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As was the case in the previous subsection, the observed FDR for all three methods was
controlled at the desired level.

3.3 Simulation Study – Mean Shift

The three-way mixture models, N3 and L2N , include a term for an overall difference between
the mean expression in the two groups, whereas the limma model assumes there is none. This
difference was denoted earlier by θ0. To understand why it is important to account for this
difference, we also simulated data sets in which θ0 = 0.5 and θ0 = 1. In these simulations no
genes were differentially dispersed.

The overall difference is estimated correctly by the N3 and L2N methods automatically,
and accounting for θ0 6= 0 yields results which are practically identical to the simulations in
which θ0 = 0 in terms of power and FDR. In contrast, when we use limma the FDR is no
longer controlled at the desired level (0.05, in these simulations.) For example, with α = 9,
θ ∈ {2.5, 3}, D = 250, and there is a small overall mean shift, θ0 = 0.5, limma’s actual FDR
is 0.11. When the overall mean shift is greater, θ0 = 1, limma’s actual FDR is 0.39.

To ensure that the FDR is controlled at the desired level when using the limma modeling
approach in DVX, one has to center the gene expression data around the group means (or
medians) for each gene. That is, if yijg if the expression level of gene g for subject j in
group i, transforming it to yijg − ȳ··g resolves the problem of high false positive rate. The
DVX software provides an easy way to transform gene expression data, and in particular it
allows the user to perform median-centering.

3.4 Case Study

Understanding the mechanisms that preserve normal neuronal functionality is very important
for treating Alzheimer’s disease (AD) patients. REST/NRSF (repressor element 1-silencing
transcription/neuron-restrictive silencer factor) is known to regulate neuronal genes during
embryonic development, and Lu et al. [15] showed that it is ”induced in the aging human
brain and regulates a network of genes that mediate cell death, stress resistance and AD
pathology.” Lu et al. [15] observed that REST is lost from the nucleus of cells among AD
and mild cognitive impairment (MCI) patients, which leads to dysregulation of this gene
network.

In the experiment, gene expression levels for 54,675 genes were obtained from 41 people,
in four groups: extremely aged (95-106yr) (n=4), normal aged (70-94yr) (n=16), middle
aged (40-69yr) (n=9), and young (<40yr) (n=12). There are 21 females and 20 males in this
sample. The data has been deposited in the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) repository with accession number GSE53890.

The deposited data has been normalized, but we observed some skewness which can
be explained by a large number of low-abundance and low-variance genes. We eliminate
these genes, as they may be indistinguishable from ‘background noise’. We filter out genes
which have an overall median log-expression ≤ 5.5, across all subjects. We also equalized
the medians across all samples, in order to ameliorate any subject-specific effects. The
resulting dataset contained 17,833 genes. Since the change in neuronal condition is known
to deteriorate gradually over time for adults, we tested three contrasts: young vs. middle
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Figure 2: Fitted distributions for the differential expression statistics. The sub-figures in
the top row (A-C) were obtained by fitting the L2N model. Sub-figures D-F were obtained
by using limma. Panels A and D depict the fitted distributions for the comparion between
middle aged and young (the baseline); B and E correspond to the comparison between
Middle-aged (baseline) and Normal-aged, and C and F correspond to the contrast Normal-
aged (baseline) vs. Extremely-aged.

aged, middle aged vs. normal aged, and normal aged vs. extremely aged. We performed the
differential analysis using L2N , N3 and limma, and in all cases we controlled for gender.

Figure 2 shows the fitted distributions for each of the three contrasts, namely, Young
as the baseline group vs. Middle-aged as treatment (left), Middle-aged vs. Normal-aged
(center), and Normal-aged vs. Extremely aged (right). Sub-figures A-C were obtained by
fitting the L2N model, and D-F were obtained by using limma. The red curve represents
the distribution of the ‘null’ (non differentially expressed) genes, and the green curves show
the distribution of the non-null genes, per the selected model. Note that limma, by default,
uses P(non-null) = 0.01. The dashed blue line is the fitted mixture distribution. These plots
also show the estimated goodness of fit, in terms of the root mean squared error (rMSE). For
all three contrasts, the L2N model yields a better fit than limma. For example, rMSE=0.02
vs. 0.35 for the Young vs. Middle-aged comparison. Note that the scales on the x-axis
are different for limma and L2N (and N3, which is not shown here.) For limma, dE is the
estimated contrast between the two groups, accounting for predictors. If no predictors are
included in the model, dE is just the difference between the mean expression level in the
treatment group and that in the control group. When using N3 or L2N to fit the data, the
x-axis is labeled dEv which is the estimated standardized contrast between the two groups,
accounting for predictors. The standardized contrasts are obtained by dividing dE by the
estimated gene-specific standard deviations.

It is clear from the plots that in the comparisons young vs. middle aged and normal
aged vs. extremely aged, the vast majority of genes are not differentially expressed, whereas
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in the comparison between middle aged vs. normal aged many genes are estimated to be
differentially expressed. Furthermore, plots B and C show that according to the L2N model,
there are more genes which are overexpressed in the younger cohort (the baseline group in
each comparison), since the mixture component in the (−∞, 0] range has a higher weight
than the component in the [0,∞) range.

Both L2N and N3 also test for differential variation. With this dataset and with a q-value
[19] threshold of 0.01, no genes are differentially dispersed in any of the three comparisons.
The number of differentially expressed genes obtained from each method for each of the three
contrasts (using q≤0.01) is summarized in Table 4. The columns labeled ”B>T” (”T>B”)
contain the total number of genes found to be overexpressed in the baseline (treatment)
group. The numbers in parentheses are the root mean squared errors for the fitted model.
In all three comparisons, L2N gives the best fit, in terms of the rMSE. In the comparison
between Young and Middle Aged, no genes are found to be DE when using limma, while
N3 and L2N find 157 DE genes with q-value ≤ 0.01. Similarly, in the comparison between
”Normal Aged” and ”Extremely Aged” limma detects no DE genes, and N3 and L2N find
64 DE genes. All three methods detect hundreds of DE genes in the comparison between
”Middle Aged” and ”Normal Aged” (limma: 522, N3: 2,682, L2N : 2,725), suggesting that
a significant change, as pertains to cognition, takes place after 70yrs.

A detailed version of this case study which demonstrates several features of the DVX

package (e.g., use of diagnostic plots and data transformation tools, generation of report and
result files in Microsoft Word- and Excel-compatible formats, respectively) is available in the
supplementary material.

4 Discussion

We introduced the L2N three-component mixture model and corresponding empirical Bayes
implementation as a flexible approach for assessing differential variation and expression.
The proposed model is particularly well-suited for situations in which there is no a priori
knowledge of the mixture distribution of the data: it can capture asymmetries in the numbers
of over-expressed [dispersed] and under-expressed [dispersed] genes when they exist and can
provide a better fit to null and non-null components that are not well-separated, while still
performing well under symmetry and little overlap. In our power analysis, we compared

Table 4: Case study - the REST dataset (GSE53890) - total number of differentially expressed
genes obtained from limma, N3, and L2N .

Test limma N3 L2N
Baseline Treatment B<T B>T B<T B>T B<T B>T
< 40 [40− 70] 0 0 66 91 66 91

(rMSE) (0.35) (0.02) (0.02)
[40− 70] [71− 94] 200 322 1130 1552 1087 1638

(rMSE) (0.6) (0.05) (0.01)
[71− 94] [95− 106] 0 0 24 40 24 40

(rMSE) (0.29) (0.02) (0.01)
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L2N with two other hierarchical mixture models, namely, limma [18], and N3 which consists
of three normal distributions [2]. A key feature common to all three models is that the
differential expression dg of non-DE genes are assumed to come from a normal distribution.
Each model assumes that the DE genes arise from a common distribution, but the choice
of nonnull distribution differs across the three models. This hierarchical modeling approach
results in ‘borrowed information’ across genes, which leads to greater power, when compared
to naive (one gene at a time) approaches.

Both L2N and N3 have two advantages over limma. First, the DE genes are allowed to
have a non-symmetrical prior distribution, which makes the three-component mixture models
less restrictive, and more realistic in many cases, as demostrated by the case study. Second,
the same mixture model can be used to account for differential variation when evaluating
differential (mean) expression. We see in our simulations that this leads to improved power
when differential variation truly exists.

L2N was shown to be a bit more powerful than N3 when differential dispersion exists, and
more so when the variability of the random errors increases. Furthermore, in our simulations
and analysis of real datasets, L2N seems to provide the best fit to the differential expression
statistics in terms of rMSE. Also, of the three mixture models, L2N is the only one which
uses non-local priors for the DE genes. Conceptually, this is advantageous because it implies
that there is a negligible probability of declaring a gene as DE when the actual differential
expression statistic is close to 0.

To make the method easily accessible to biologists, we created a user-friendly R Shiny
interface called DVX [4], which also includes the implementations of N3 and limma. With
all three models, it is possible to control for the effects of other factors and covariates,
and to set up linear contrasts, beyond the simple two-group comparison. DVX offers a set
of diagnostic plots and transformation tools, and options for exporting Word-compatible
reports and Excel-compatible result tables. DVX may also be used with count data (e.g.,
RNA-seq read counts) with proper data transformation, using tools such as ‘voom’ (see,
e.g., [14] and [13].)
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