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ABSTRACT 
Time series data provide a crucial window into ecological dynamics, yet their utility is often 
limited by the spatially aggregated form in which they are presented. When working with time 
series data, violating the implicit assumption of homogeneous dynamics below the scale of 
aggregation could bias inferences about underlying processes. We tested this assumption in the 
context of the 2015-2016 Zika epidemic in Colombia, where time series of weekly case reports 
were available at national, departmental, and municipal scales. First, we performed a descriptive 
analysis, which showed that the timing of departmental-level epidemic peaks varied by three 
months and that departmental-level estimates of the time-varying reproduction number, R(t), 
showed patterns that were distinct from a national-level estimate. Second, we applied a 
classification algorithm to six features of cumulative incidence curves, which showed that 
variability in epidemic duration, the length of the epidemic tail, and consistency with a normal 
distribution function made the greatest contributions to distinguishing groups. Third, we applied 
this classification algorithm to data simulated with a stochastic transmission model, which 
showed that group assignments were consistent with simulated differences in the basic 
reproduction number, R0. This result, along with associations between spatial drivers of 
transmission and group assignments based on observed data, suggests that the classification 
algorithm is capable of detecting meaningful differences in temporal patterns that are associated 
with differences in underlying ecological drivers. Overall, this diversity of temporal patterns at 
local scales underscores the value of spatially disaggregated time series data. 
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INTRODUCTION 
Time series have been used for many years to make inferences about processes that shape the 
dynamics of a wide range of ecological systems (Turchin & Taylor 1992). This long history has 
resulted in appreciation of a number of common challenges for time series analysis (Hastings 
2010). One such challenge is disentangling the effects of multiple interacting forces, which can 
include both extrinsic forces, such as weather, and intrinsic forces, such as density-dependent 
feedbacks (Bjørnstad & Grenfell 2001; Koelle & Pascual 2004). An even more fundamental 
challenge lies in defining the time series in the first place, especially with respect to space (Levin 
1992). The question is, at what spatial scale should ecological data be aggregated for time series 
analysis? 

In practice, the spatial scale at which data are aggregated to form a time series is more 
often dictated by the scale at which data are available than by the scale that is optimal for 
inference or prediction. For example, during the recent invasions of chikungunya virus (CHIKV) 
and then Zika virus (ZIKV) across the Americas, the Pan American Health Organization 
published weekly case reports aggregated nationally. Despite an abundance of evidence that 
chikungunya and dengue viruses – another virus transmitted by Aedes aegypti mosquitoes – are 
characterized by spatially focal transmission (Salje et al. 2016, 2017), applications ranging from 
estimation of time-varying reproduction numbers (Ferguson et al. 2016) to forecasting (Escobar 
et al. 2016) have utilized data aggregated at national scales for countries as vast and spatially 
heterogeneous as Brazil and Mexico. 

Unlike most other countries in the Americas, routine surveillance of Zika in Colombia 
was reported on a weekly basis in each of its 1,123 municipalities during the 2015-2016 
epidemic (INS 2017). Although such case reports are underestimates of the true extent of 
transmission of many infectious diseases, particularly those with high proportions of 
asymptomatic infections, they still provide a uniquely valuable resource given the paucity of 
publicly available data at similar scales in most countries (Chretien et al. 2016). Such data are 
particularly valuable for Zika, given that a range of spatial scales are relevant for activities 
related to its prevention and control. On the one hand, vector control activities are planned and 
budgeted on multiple administrative levels but must be targeted on a very local level. On the 
other hand, communications, surveillance, and possible vaccination programs are generally 
planned and implemented only on larger administrative scales. 

Our goal in this study was to utilize this unique data set on the ZIKV invasion of 
Colombia to perform a case study on the characteristics of temporal patterns at different spatial 
scales in the context of an emerging infectious disease. To do so, we took a three-part approach. 
First, we performed a descriptive analysis of time series of weekly case reports at three distinct 
scales in Colombia: national, departmental, and municipal. Second, we performed a 
classification analysis of proportional cumulative incidence curves at departmental and 
municipal scales to identify distinct patterns of temporal dynamics at each of these scales. Third, 
we repeated the classification analysis for data simulated with a mechanistic model of ZIKV 
transmission to determine the extent to which distinct temporal patterns may reflect distinct 
ecological drivers. All data and code used in this study are available at 
https://github.com/TAlexPerkins/TimeSeriesSpatialScale. 
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METHODS 
Data 
The focal point of our analysis was a collection of municipal-level time series of weekly Zika 
case reports at the municipal level in Colombia. The primary source of these data was the 
Colombian National Institute of Health (Instituto Nacional de Salud, INS), which made official 
weekly reports of the cumulative numbers of suspected and confirmed Zika cases available in 
real time during the epidemic (Boletín 2018). The version of these data that we used in this 
analysis were processed in a manner that addressed inconsistencies between data reported at 
municipal and departmental scales, as described by Siraj et al. (in press). In addition to the time 
series of weekly case reports, we used several other municipal and departmental data sets 
compiled by Siraj et al. (in press) in a manner consistent with those time series: human 
population, Ae. aegypti occurrence probability, two measures of normalized difference 
vegetation index (NDVI), mean temperature, percent urban land cover, population, and the gross 
cell product economic index. 

To drive the transmission model, we based estimates of R0 on a set of ZIKV epidemic 
size projections for Latin America made early in the epidemic using relationships between 
environmental variables and transmission metrics (Perkins et al. 2016). To obtain a single value 
of R0 for each municipality, we took a weighted sum of the R0 raster at 5 km x 5 km resolution 
weighted by a population raster aggregated to that scale. We calibrated these R0 estimates to 
observed dynamics in Colombia by scaling municipal values of R0 from Perkins et al. (2016) by 
a constant (2.72) such that the value for Girardot matched an estimate of 4.61 derived from an 
analysis of temporal incidence patterns there (Rojas et al. 2016). 
 
Descriptive analysis of weekly case reports 
We performed two preliminary analyses of differences in weekly case report patterns at different 
scales of spatial aggregation. First, we generated a bar plot of national case reports color-coded 
by which of 32 departments those national cases arose from. Likewise, for each of those 
departments, we generated a bar plot of departmental case reports color-coded by which of its 
municipalities those departmental cases arose from. Second, we made estimates of the time-
varying effective reproduction number, R(t), for each time series. Following Ferguson et al. 
(2016), we used the EstimateR function from the EpiEstim library (Cori 2013) in R to estimate 
R(t) for each time series based on the method introduced by Cori et al. (2013). 
 
Classification analysis of cumulative incidence curves 
We focused our analysis on cumulative, rather than raw, incidence because of the extreme 
variability in raw incidence patterns in this data set. With raw incidence, time series with a small 
number of cases appear extremely jagged, and temporal patterns would be difficult to extract. 
With proportional cumulative incidence, vastly different temporal patterns are more readily 
comparable, because they all begin at 0 and end at 1 but arrive there by different paths. Others 
(King et al. 2015) have criticized the use of cumulative incidence data from epidemics, although 
these criticisms mostly pertain to parameter estimation and forecasting, neither of which we do 
here. Rather, our goal was to perform a descriptive analysis of diversity in the temporal patterns 
of an epidemic as viewed from different perspectives spatially. 

The cumulative incidence curves that we examined were proportional such that they all 
reached 1 at the time the last case was reported in a given area. Mathematically, for weekly 
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reported Zika incidence Ii,t in location i in week t, we calculated proportional cumulative 
incidence as 

!",$ = &',(()*
&',((
.      (1) 

We excluded areas from our analysis that reported no Zika cases. 
As a basis for classifying cumulative incidence curves, we defined six features of these 

curves that we hypothesized represent dimensions in which curves from different areas vary: 
1. ,-.: Standard deviation of !"(0); 
2. ,23: R2 between Ci,t and !"(0); 
3. ,4%: Difference between the 5% quantile of Ci,t and the 5% quantile of !"(0); 
4. ,64%: Difference between the 95% quantile of Ci,t and the 95% quantile of !"(0); 
5. ,7$: Weeks between first and last non-zero Ci,t; 
6. ,8: Weeks with Ci,t = 0 between first and last non-zero Ci,t. 

Four of these features were defined in reference to cumulative normal density curves, !"(0), that 
we fitted to each Ci,t. This involved estimating mean and standard deviation parameters of !"(0) 
for each Ci,t on the basis of least squares using the optim function in R. We chose these features 
because they provided a way to quantify the duration of local epidemics (small ,-., short ,7$ = 
short epidemic), to capture whether epidemics appeared strongly locally driven (low ,23, large 
,8= sporadic transmission fueled by importation), and to characterize shapes that deviated 
substantially from those predicted by simple epidemic models (,4% and ,64% near zero = “SIR-
like” epidemic). Although these idealized scenarios motivated the selection of these features, the 
fact that all six features were calculated for each Ci,t meant that we were able to capture a wide 
range of patterns in between these extremes. 

We explored variation in Ci,t at both departmental and municipal scales. To describe how 
variation in Ci,t curves at those scales was distributed across the six-dimensional feature space, 
we performed a partitioning around medoids (PAM) clustering analysis (Reynolds et al. 2006) 
on centered and scaled values of the features using the pam function in the cluster library 
(Maechler et al. 2017) in R. This algorithm identifies medoids of k groups that minimize the sum 
of distances between each medoid and all group members. We performed this analysis for values 
of k ranging 2-10 and compared groupings for different values of k on the basis of their average 
silhouette values. A silhouette value describes how much more dissimilar one point is from 
points in the next most similar group compared to points in its own group (Rousseeuw 1987). An 
ideal classification would be indicated by silhouette values for data points in all groupings close 
to 1. Silhouette values nearer to or below 0 indicate that points do not cluster well with the group 
to which they are assigned. 
 
Elucidation of driving processes 
To aid in the interpretation of the classification analysis of observed patterns of temporal 
incidence, we performed an identical analysis of simulated patterns of temporal incidence. The 
value of doing so is that it provides an opportunity to determine the extent to which groups 
identified by the classification analysis might reflect meaningful differences among those groups 
in terms of transmission processes and their drivers. In other words, we viewed this exercise as a 
form of validation of the overall approach of performing a classification analysis on features of 
proportional cumulative incidence patterns. 

We simulated a data set comparable to the observed data using an R implementation of 
the ZIKV transmission model described by Ferguson et al. (2016) parameterized to match the 
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municipal-level R0 values described at the end of the previous section. The model by Ferguson et 
al. had a number of attractive features, including plausible values of a number of parameters 
common to ZIKV transmission models, realistic accounting of the timing of transmission-
relevant processes in mosquitoes and humans, seasonal variation in transmission, and the ability 
to capture multiple forms of stochasticity associated with transmission and surveillance. In brief, 
the model assumes that humans transition from a susceptible compartment into a recovered and 
immune compartment following a period of incubation and infectiousness and that mosquitoes 
become infectious and remain so following bites of infectious humans and a seasonally variable 
incubation period. Mosquito population density is also seasonally variable, driven by seasonal 
variation in larval carrying capacity and adult mortality. A full description of the model can be 
found in the paper by Ferguson et al. (2016). 

To apply this model to Colombia, we used municipal-level human population sizes 
derived from WorldPop (Sorichetta et al. 2015) and adjusted seasonally averaged mosquito 
densities such that seasonally averaged values of R0 matched our municipal-level R0 estimates. 
Another departure from the original model that we made was to remove explicit spatial coupling, 
given the complexity of doing so realistically for all 1,122 municipalities in Colombia. Instead, 
we simulated imported infections (i.e., infections acquired outside a given municipality) to occur 
at a daily per capita rate that was proportional to a normal probability density function fitted to 
the temporal pattern of national-scale incidence (timing of national-scale incidence: mean = 
32.57 weeks after the first reported case, standard deviation = 8.85 weeks). This time-varying 
importation function was scaled by a value of 1.55 x 10-3, which along with an assumed 
reporting rate of 11.5% (Kucharski et al. 2016) allowed us to approximately match the national 
total of 85,353 suspected Zika cases. Also, given that our interest was in short-term dynamics 
rather than long-term dynamics as in Ferguson et al. (2016), we removed human age 
stratification from the model. 

Our analysis of simulated data focused on whether group assignments by the 
classification algorithm were consistent with simulated values of R0 above or below 1, given the 
significance of this threshold for determining invasion outcomes. We did so for 100 simulated 
data sets. To further examine the possibility of ecologically meaningful differences associated 
with group assignments based on empirical data, we performed a series of one-way analyses of 
variance at both departmental and municipal scales to examine whether mean values of relevant 
environmental variables differed across these groups. Variables that we examined included R0 
from this paper and Ae. aegypti occurrence probability, two measures of normalized difference 
vegetation index (NDVI), mean temperature, percent urban land cover, population, and the gross 
cell product economic index, as compiled by Siraj et al. (in press). 
 
RESULTS 
Descriptive analysis of weekly case reports 
As a whole, the temporal pattern at the national level was consistent with a typical epidemic 
trajectory, marked by an increase over approximately five months, a peak around the beginning 
of February 2016, and a steady decline thereafter over a period of approximately eight months 
(Fig. 1A). Under a standard set of assumptions about epidemic dynamics, this pattern can be 
used to estimate the temporal trajectory of the effective reproduction number, R(t) (Cori et al. 
2013). Applying this technique at the national level yielded estimates of R(t) that began high 
(range: 1.5-3.5 for the first four months) and gradually declined below 1 by the time the 
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epidemic concluded (Fig. 1A), all of which is consistent with standard expectations for an 
epidemic of an immunizing pathogen in an immunologically naive host population. 
 

 
Figure 1. Weekly Zika case reports at the national level (A), for each of the four departments 
with the largest case report totals (B: Valle del Cauca; C: Norte de Santander; D: Santander; E: 
Tolima), at the departmental level for Norte de Santander (F), and for each of its four 
municipalities with the largest case report totals (G: Cucuta; H: Villa del Rosario; I: Los Patios; 
J: Ocaña). On the top, colors match across A and B-E, with the addition of yellow in A that 
includes all departments other than those in B-E. On the bottom, colors match across F and G-J, 
with the addition of yellow in F that includes all municipalities other than those in G-J. Time-
varying estimates of the effective reproduction number, R(t), are shown in each panel. 
 

Examination of temporal incidence patterns for each of the four largest departments in 
terms of total incidence (Valle del Cauca, Norte de Santander, Santander, Tolima) showed that 
patterns at the departmental level were quite different than those at the national level. First, the 
timing of peak incidence in the departments in Fig. 1B-1E varied by around three months. 
Second, the shapes of the incidence patterns in those departments varied, with Valle del Cauca 
and Santander (Fig. 1B & 1D) showing high incidence sustained over a period of several months 
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and Norte de Santander and Tolima (Fig. 1C & 1E) showing sharper peaks trailed by relatively 
low incidence for several months after. 

This high degree of variability in temporal incidence patterns had substantial impacts on 
estimates of R(t). At the national level, R(t) estimates never exceeded 3.5, whereas in Santander 
R(t) was estimated to exceed 5 (Fig. 1D) and in Valle del Cauca it was estimated to exceed 10 
(Fig. 1B), due in both cases to more rapid increases in incidence at the departmental level than 
the national level. In Norte de Santander, R(t) appeared to twice fall well below 1 but then 
quickly rise back above 1 (Fig. 1C). 

Examination of temporal patterns at the municipal scale revealed even more variability in 
temporal patterns than at the department level. In the department of Norte de Santander (Fig. 
1C), for example, it was clear that one municipality dominated the departmental pattern (Fig. 
1F). The municipalities with the second and third highest incidence both experienced short, 
unimodal patterns of incidence during the first two months, but incidence patterns thereafter 
were mostly low and erratic (Fig. 1G & 1H). Other municipalities in the department had only 
low, erratic incidence with no sign of a distinct epidemic (e.g., Fig. 1J). With the exception of the 
first few weeks of transmission, estimates of R(t) at the municipal level were characterized by 
erratic fluctuations and much larger uncertainty than was apparent at the departmental or national 
level. 
 
Classification analysis of cumulative incidence curves 
At the departmental level, there was only modest clustering overall, with the highest average 
silhouette value corresponding to two groups (0.256), a slightly lower value for three groups 
(0.254), and falling no lower than 0.201 for up to ten groups (Fig. S1). ,-. and ,64% were the 
features that were most important for distinguishing two groups (Fig. S2), and ,7$ contributed 
further to distinguishing three groups (Fig. S3). Differences in ,-. were associated with a 
difference of approximately two months in the time elapsed between the attainment of 5% and 
80% of cumulative incidence (Fig. 2, top left: blue longer than red), and differences in ,64% were 
associated with a difference of approximately two months in the time elapsed between the 
attainment of 80% and 99% of cumulative incidence, but for different groups (Fig. 2, top left: red 
longer than blue). Overall, this meant that the time elapsed between attainment of 5% and 99% 
of cumulative incidence for both groups was similar, but with one group experiencing epidemics 
that were fast initially but slow to finish and another group experiencing epidemics that were 
slower initially but finished more quickly. These patterns were clearest for the curves associated 
with the medoid of each group (Fig. 2, top) but were generally apparent for the curves associated 
with the groups as a whole (Fig. S4). Spatially, groups tended to cluster along northern, central, 
and southern strata (Fig. 3, left), with incidence-weighted cartographs showing that the epidemic 
was mostly dominated by distinct northern and central strata (Fig. 3, top right). 
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Figure 2. Proportional cumulative incidence curves at the departmental level (top) with two 
(left) or three (right) groups and at the municipal level (bottom) with two (left), three (middle), 
and four (right) groups. Only one representative curve is shown for each group, with that curve 
being chosen on the basis of being associated with the medoid of its group. 
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Figure 3. Cartograms at the departmental level weighted by area (left), population (center), and 
incidence (right). Department assignments to two (top) and three (bottom) groups are indicated 
by color, with transparency inversely proportional to silhouette value. The one department 
(Bogotá) with zero incidence is indicated in black and given a weight equivalent to 1/5 of a case 
to allow for its inclusion in the right column. 
 

There was somewhat stronger clustering at the municipal level, with the highest average 
silhouette value corresponding to three groups (0.352), somewhat lower values for five and six 
groups (0.334, 0.326), and no lower than 0.297 for up to ten groups (Fig. S5). ,7$ and ,-. were 
the features that were most important in distinguishing two groups (Fig. S6), ,64% made 
additional contributions to distinguishing three groups (Fig. S7), and ,23 contributed to 
distinguishing four groups (Fig. S8). Proportional cumulative incidence curves for the group with 
short ,7$ and small ,-. were the most visually distinct group and remained relatively consistent 
regardless of the number of groups (Fig. 2, bottom). Some differences among the other groups 
were also apparent in the proportional cumulative incidence curves, with some having a long tail 
(Fig. 2, bottom middle: green) or two discrete jumps (Fig. 2, bottom middle: blue). The timing of 
discrete jumps varied across municipalities, but curves within a group otherwise resembled the 
curve associated with the medoid for that group (compare Fig. 2 bottom with Fig. S9). Spatially, 
departments generally consisted of a mixture of municipalities from different groups, and the 
prominence of some groups in the cartograms varied depending on whether the cartograms were 
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weighted by area, population, or incidence (Fig. 4). The cartograms weighted by population 
showed that a sizeable portion of the population lives in cities that had no reported cases, such as 
Medellín and Bogotá (Fig. 4, black in the center column). Among municipalities that did have 
reported cases, the cartograms weighted by incidence showed that a relatively large proportion of 
reported cases came from municipal-level epidemics characterized by large ,7$ and ,-. (Fig. 4, 
right column). 
 

 
Figure 4. Cartograms at the municipal level weighted by area (left), population (center), and 
incidence (right). Municipality assignments to two (top), three (middle), and four (bottom) 
groups are indicated by color, with transparency inversely proportional to silhouette value. 
Municipalities with zero incidence are indicated in black and were given a weight equivalent to 
1/5 of a case to allow for their inclusion in the right column. 
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Elucidation of driving processes 
We focused our analysis of simulated data at the municipal level given that the simulation model 
was not equipped to simulate transmission between municipalities, which is likely important for 
recreating departmental-level patterns. Overall, our model parameterization assumed that R0 > 1 
in 34.6% of municipalities. A total of 12.6% (range: 10.4-14.1%) of municipalities had zero 
simulated cases, with 99.0% (range: 97.0-100.0%) of those having R0 < 1. 

Out of 100 simulated datasets, the classification algorithm selected two groups eight 
times, three groups 80 times, and five and six groups four times each. Average silhouette value 
was 0.313 (range: 0.288-0.347) when there were two groups and 0.327 (range: 0.291-0.352) 
when there were three groups (see Fig. S10 for a representative silhouette plot from a randomly 
selected simulated dataset). Although this indicates a modest preference of the algorithm for 
three groups, we focused subsequent analyses on the two-group classification due to our desire to 
evaluate the correspondence between groups selected by the classification analysis and groups 
defined by R0 above or below 1. 

With the two-group classification, 99.1% (range: 90.3-100.0%) of municipalities with R0 
> 1 were placed into the group characterized by larger ,7$ and ,-.. Of the municipalities with R0 
< 1, 74.0% (range: 36.3-80.5%) were also placed into that group, with the others placed into the 
group with smaller ,7$ and ,-. (see Fig. S11 for an example from a randomly selected simulated 
dataset). When municipalities were classified into three groups, a new group characterized by 
moderately low ,7$ and ,-. and negative ,64% contained 18.8% (range: 0.2-36.1%) of 
municipalities with R0 > 1 and 44.7% (range: 23.0-56.5%) with R0 < 1 (see Fig. S12 for an 
example from a randomly selected simulated dataset). In the presence of this third group, 79.9% 
(range: 63.4-89.7%) of municipalities with R0 > 1 and 32.1% (range: 22.8-38.8%) with R0 < 1 
were placed into the group characterized by larger ,7$ and ,-..  

Visual inspection of five simulated datasets showed that the proportional cumulative 
incidence curves of municipalities placed in the group characterized by large ,7$ and ,-. 
generally resembled the curves of municipalities with R0 > 1 (Fig. 5, red). In contrast, 
proportional cumulative incidence curves of municipalities with R0 < 1 were more diverse than 
those placed in the group characterized by low ,7$ and ,-. (Fig. 5, blue). A similar pattern was 
apparent spatially, with municipalities placed in the group characterized by large ,7$ and ,-. 
generally overlapping with municipalities with R0 > 1, but municipalities with R0 < 1 frequently 
placed in the group characterized by large ,7$ and ,-. (Fig. 6). 
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Figure 5. Proportional cumulative incidence curves at the municipal level from five randomly 
selected simulated datasets. The left two columns show two different groups classified by the 
curve classification algorithm, and the right two columns show two different groups defined by 
whether those municipalities have a R0 above or below 1. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 
Figure 6. Cartograms at the municipal level weighted by area based on model simulations. Each 
municipality’s status as having R0 > 1 (red) or R0 < 1 (blue) is indicated in the top left panel. In 
each of five simulated datasets shown in the other panels, municipality assignments to two 
groups are indicated by color, with transparency inversely proportional to silhouette value. 
 

With respect to the empirical data, group assignments at the municipal scale were 
associated with meaningful differences in relevant environmental variables. For two groups, 
differences between groups were significant for all eight variables examined (p<0.002 for all; 
Table S1). The group typified by steep, short curves (Fig. 2, bottom left: red), was associated 
with lower Ae. aegypti occurrence probability (0.04 vs. 0.05; F836=19.7, p<10-5), higher NDVI 
(aqua: 0.09 vs. 0.07; F836=12.9, p<10-3) (terra: 0.10 vs. 0.07; F836=13.3, p<10-3), lower 
temperature (21.7 vs. 23.9 °C; F836=32.9, p<10-7), lower urban cover (0.02 vs. 0.07; F836=29.6, 
p<10-7), lower population (13,506 vs 49,144; F836=10.2, p<10-2), lower GCP (6,016 vs. 6,676; 
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F836=8.3, p<10-2), and lower R0 (1.1 vs. 1.7; F836=16.1, p<10-4) (Table S1). For three and four 
groups, differences among groups were significant for only one variable (Table S1). At the 
departmental scale, group assignments based on empirical data were generally not associated 
with meaningful differences in relevant environmental variables (Table S2). 
 
DISCUSSION 
Temporal incidence patterns play a vital role in inferring ecological dynamics and drivers 
thereof. By analyzing data from the 2015-2016 Zika epidemic in Colombia, we showed that 
temporal patterns can appear very different depending on the spatial scale at which data are 
aggregated. Whereas national-level dynamics appeared to follow a unimodal pattern consistent 
with behavior of standard epidemic models, departmental-level dynamics were somewhat more 
varied and municipal-level dynamics were the most varied. Combining these observations with a 
formal classification of temporal incidence patterns and a model-based exploration of 
mechanisms capable of generating those patterns, we deduced that there is distinct variation in 
temporal patterns subnationally and that much of that variation may be driven by spatial 
variation in local conditions. Associations between group assignments and relevant 
environmental variables were most apparent at the municipal scale, consistent with the 
hypothesis that linkages between temporal dynamics and underlying ecological processes are 
strongest at fine spatial scales. 

Similar to our findings of differing dynamics at municipal and departmental scales, 
theoretical analyses of a range of ecological models have proposed that dynamics approach 
deterministic behavior as spatial scales grow larger and data become increasingly more 
aggregated (Rand & Wilson 1995). Methods based on long-term dynamics have been proposed 
for identifying the scales at which behavior transitions from stochastic to deterministic in models 
of plant competition and predator-prey interactions (Keeling et al. 1997; Pascual & Levin 1999). 
Epidemics, however, are inherently transient in nature, leaving open the question of how best to 
define characteristic spatial scales in that context. It is certainly the case that the data from 
Colombia that we examined displayed greater stochasticity at finer spatial scales. At the same 
time, the greater variability in temporal patterns that we observed at finer scales suggests that 
models that aspire to a deterministic representation of behavior at coarser scales must account for 
spatial structure at finer scales. Indeed, a recent attempt to fit a national-scale transmission model 
to national-scale time series of Zika case reports from Colombia showed that ignoring 
subnational spatial structure inhibited that model’s fit to the data (Shutt et al. 2017). A 
theoretical exploration of similar issues concluded that the scale at which spatial structure must 
be modeled explicitly is expected to vary by pathogen and geographic context, with less mobile 
pathogens requiring explicit spatial representation at finer scales (Mills & Riley 2014). 

Both stochasticity and spatial interaction are expected to contribute to variability in 
temporal dynamics at local scales (Durrett & Levin 1994). For some municipalities, temporal 
incidence patterns appeared to be dominated by stochasticity (e.g., those with discrete jumps). 
For others, there were implications for a role of spatial interaction (e.g., those with two sharp 
increases or a long tail). Whereas our simulation model was realistic with respect to demography 
and the inclusion of spatiotemporal variability in local transmission, it made the very simplistic 
assumption that importation patterns have identical timing and magnitude in all municipalities. 
This may have caused municipalities with R0 < 1, particularly those with larger populations, to 
display patterns that simply reflected the national trend used to drive importation. Analyses of 
subnational spatiotemporal dynamics in a range of contexts show that importation patterns vary 
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substantially over time and as a function of regional connectivity or being positioned on an 
international border (Grenfell et al. 2001; Cummings et al. 2004; Dalziel et al. 2013; Rodriguez-
Morales et al. 2016). Future work that includes more realistic spatial interaction among 
subnational units would be helpful for resolving the hypothesis proposed here about the 
importance of spatial interaction in shaping temporal patterns at each of the spatial scales that we 
considered. 

Our analysis identified intriguing differences in temporal patterns across spatial scales, 
but at the same time there are important limitations to acknowledge. First, although our 
conclusions are not dependent on the magnitude of transmission, they do require that patterns in 
case report data reflect patterns in underlying transmission. With a high rate of asymptomatic 
infection and the likelihood of extensive variability in reporting rates (Lessler et al. 2016), 
particularly at the municipal level, some caution is due. Second, our ability to ascribe meaning to 
the groups identified by our classification algorithm was limited by the simplicity of our 
simulation model, particularly with respect to spatial interaction. Consequently, while this 
analysis identified important relationships between spatial scale and epidemic characteristics, it 
does not provide a complete or comprehensive understanding of the spatial transmission 
dynamics of ZIKV in Colombia. Third, our model relied on a simplified description of seasonal 
transmission, when in fact patterns of seasonality are likely to vary spatially and to interact 
strongly with introduction timing (Huber et al. 2017). 

Previous analyses of Zika (Ferguson et al. 2016; Shutt et al. 2017), as well as 
chikungunya (Perkins et al. 2015; Escobar et al. 2016), have drawn inferences and made 
forecasts on the basis of nationally aggregated time series data. These efforts depend on the 
implicit assumption that spatially disaggregated temporal patterns are homogeneous and 
consistent with spatially aggregated temporal patterns. Our analysis showed that while national-
level patterns may be somewhat reflective of departmental-level patterns, municipal-level 
patterns of cumulative incidence are diverse and not well approximated by national-level 
patterns. Although our analysis was limited in its ability to explain the mechanisms that drove 
these diverse patterns, applying our classification algorithm to simulated data in which driving 
mechanisms were known showed that spatial differences in driving mechanisms can be 
associated with perceptible differences in temporal patterns. The initial wave of the Zika 
epidemic appears to have subsided, but understanding of spatial variation in transmission 
dynamics remains imperative for time-sensitive applications such as site selection for vaccine 
trials (Perkins 2017; Asher et al. 2017) and anticipating future epidemics (Ferguson et al. 2016). 
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SUPPORTING FIGURES 

 

Figure S1. Silhouette plots at the departmental level for groups numbering two to ten obtained 
by partitioning around medoids. Each bar corresponds to the silhouette value of a given 
department according to the group assignments indicated by different colors in each panel. 
Higher average silhouette values indicate stronger clustering.  
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Figure S2. Pairwise plots of features of proportional cumulative incidence curves, with colors 
distinguishing group assignment of the departments into one of two groups. Histograms show 
the marginal distributions of the features, and numbers in the upper right half indicate pairwise 
correlation coefficients between each pair of features. The transparency of each point is 
inversely proportional to silhouette value.  
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Figure S3. Pairwise plots of features of proportional cumulative incidence curves, with colors 
distinguishing group assignment of the departments into one of three groups. Histograms show 
the marginal distributions of the features, and numbers in the upper right half indicate pairwise 
correlation coefficients between each pair of features. The transparency of each point is 
inversely proportional to silhouette value.  
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Figure S4. Proportional cumulative incidence curves at the departmental level with two (top) or 
three (bottom) groups. Within each row, groups are distinguished by color. 
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Figure S5. Silhouette plots at the municipal level for groups numbering two to ten obtained by 
partitioning around medoids. Each bar corresponds to the silhouette value of a given 
municipality according to the group assignments indicated by different colors in each panel. 
Higher average silhouette values indicate stronger clustering.  
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Figure S6. Pairwise plots of features of proportional cumulative incidence curves, with colors 
distinguishing group assignment of the municipalities into one of two groups. Histograms show 
the marginal distributions of the features, and numbers in the upper right half indicate pairwise 
correlation coefficients between each pair of features. The transparency of each point is 
inversely proportional to silhouette value.  
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Figure S7. Pairwise plots of features of proportional cumulative incidence curves, with colors 
distinguishing group assignment of the municipalities into one of three groups. Histograms show 
the marginal distributions of the features, and numbers in the upper right half indicate pairwise 
correlation coefficients between each pair of features. The transparency of each point is 
inversely proportional to silhouette value.  
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Figure S8. Pairwise plots of features of proportional cumulative incidence curves, with colors 
distinguishing group assignment of the municipalities into one of four groups. Histograms show 
the marginal distributions of the features, and numbers in the upper right half indicate pairwise 
correlation coefficients between each pair of features. The transparency of each point is 
inversely proportional to silhouette value.  
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Figure S9. Proportional cumulative incidence curves at the municipal level with two (top), three 
(middle), or four (bottom) groups. Within each row, groups are distinguished by color.  
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Figure S10. Silhouette plots at the municipal level based on a randomly selected simulated data 
set for groups numbering two to ten obtained by partitioning around medoids. Each bar 
corresponds to the silhouette value of a given municipality according to the group assignments 
indicated by different colors in each panel. Higher average silhouette values indicate stronger 
clustering.  
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Figure S11. Pairwise plots of features of proportional cumulative incidence curves based on a 
randomly selected simulated data set, with colors distinguishing group assignment of the 
municipalities into one of two groups. Histograms show the marginal distributions of the 
features, and numbers in the upper right half indicate pairwise correlation coefficients between 
each pair of features. The transparency of each point is inversely proportional to silhouette 
value.  
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Figure S12. Pairwise plots of features of proportional cumulative incidence curves based on a 
randomly selected simulated data set, with colors distinguishing group assignment of the 
municipalities into one of three groups. Histograms show the marginal distributions of the 
features, and numbers in the upper right half indicate pairwise correlation coefficients between 
each pair of features. The transparency of each point is inversely proportional to silhouette 
value. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2018. ; https://doi.org/10.1101/276006doi: bioRxiv preprint 

https://doi.org/10.1101/276006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

SUPPORTING TABLES 

 
 Two groups Three groups Four groups 

 F836 p F836 p F836 p 

Ae. aegypti 19.7 9.9x10-6 8.7x10-3 0.93 0.86 0.35 

NDVIterra 13.3 2.8x10-4 1.1 0.30 0.046 0.83 

NDVIaqua 12.9 3.5x10-4 1.1 0.29 0.072 0.79 

Mean temp. 32.9 1.4x10-8 0.14 0.71 1.7 0.19 

Pct. urban 29.6 7.0x10-8 7.9 5.2x10-3 0.029 0.86 

Population 10.2 1.4x10-3 1.7 0.19 0.50 0.48 

GCP 8.3 4.1x10-3 2.0 0.16 1.6 0.21 

R0 16.1 6.6x10-5 0.056 0.81 1.7 0.19 
 
Table S1. Summary of results from one-way analyses of variance at the municipal scale 
(n=836). For each relevant environmental variable (rows), we performed an analysis of variance 
to test for differences in the mean of that variable across two, three, or four groups identified by 
the classification analysis (columns). The F statistic and p value of each test is shown.  
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2 

 
 Two groups Three groups Four groups 

 F31 p F31 p F31 p 

Ae. aegypti 2.9 0.10 0.24 0.63 0.38 0.54 

NDVIterra 1.2 0.29 0.022 0.88 2.8x10-4 0.99 

NDVIaqua 0.52 0.48 0.32 0.58 0.21 0.65 

Mean temp. 5.5 0.025 4.0 0.055 3.9 0.058 

Pct. urban 0.28 0.60 0.37 0.54 0.42 0.52 

Population 0.13 0.72 0.04 0.84 8.0x10-3 0.93 

GCP 1.5 0.23 1.5 0.24 1.1 0.31 

R0 3.1 0.086 0.38 0.54 1.0 0.32 
 
Table S2. Summary of results from one-way analyses of variance at the departmental scale 
(n=31). For each relevant environmental variable (rows), we performed an analysis of variance 
to test for differences in the mean of that variable across two, three, or four groups identified by 
the classification analysis (columns). The F statistic and p value of each test is shown. 
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