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HEAD MOTION, AGING, AND BRAIN MORPHOLOGY 2

Abstract12

Cortical morphology is known to differ with age, as measured by cortical thickness,13

fractal dimensionality, and gyrification. However, head motion during MRI scanning14

has been shown to influence estimates of cortical thickness as well as increase with age.15

Studies have also found task-related differences in head motion and relationships16

between body–mass index (BMI) and head motion. Here I replicated these prior17

findings, as well as several others, within a large, open-access dataset (Centre for18

Ageing and Neuroscience, CamCAN). This is a larger dataset than these results have19

been demonstrated previously, within a sample size of more than 600 adults across the20

adult lifespan. While replicating prior findings is important, demonstrating these key21

findings concurrently also provides an opportunity for additional related analyses:22

Critically, I test for the influence of head motion on cortical fractal dimensionality and23

gyrification; effects were statistically significant in some cases, but small in magnitude.24
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HEAD MOTION, AGING, AND BRAIN MORPHOLOGY 3

Age differences in head motion and estimates of cortical morphology25

1 Introduction26

Head motion during the acquisition of magnetic resonance imaging (MRI) can lead to27

artifacts when estimating brain activity and structure. With functional MRI (fMRI),28

volumes are acquired relatively quickly–often every 1-3 seconds–allowing for the29

estimation and correction of head motion artifacts. Using innovative techniques such30

as prospective motion correction (Dosenbach et al., 2017; Federau & Gallichan, 2016;31

Maclaren et al., 2013; Stucht et al., 2015; Tisdall et al., 2016) and custom-designed,32

individualized head-cases (https://caseforge.co), effects of head motion can be33

attenuated. However, these solutions are not suitable for large studies of34

inter-individual differences in brain morphology where changes to the MRI scan35

sequence or custom-built equipment for each participant are often not practical. In the36

current study, I assessed relationships between age and body–mass index (BMI) on37

head motion, task-related differences in head motion, and the influence of head motion38

on estimates of cortical morphology. In light of these findings, many of which are39

replications, I propose a potential method for attenuating head motion during40

structural MRIs, as well as discuss limitations of this method.41

Prior studies have demonstrated that older adults tend to have more head motion42

than younger adults (Andrews-Hanna et al., 2007; Chan et al., 2014; Savalia et al., 2017;43

Pardoe et al., 2016). Unfortunately, other studies have also shown that head motion can44

lead to lower cortical thickness estimates (Alexander-Bloch et al., 2016; Pardoe et al.,45

2016; Reuter et al., 2015; Savalia et al., 2017), as such, age-related differences in cortical46

thickness (e.g., Fjell et al., 2009; McKay et al., 2014; Salat et al., 2004) may be47

exaggerated by age-related differences in head motion. In addition to age, obesity has48

also been associated with head motion (Beyer et al., 2017; Hodgson et al., 2017). In49

particular, these associations have been shown with respect to body–mass index (BMI;50

kg/m2), which is measured as body weight (in kg) divided by body height (in m)51

squared–despite the relatively coarse nature of BMI (e.g., does not differentiate52
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between muscle vs. fat mass) (Diverse Populations Collaborative Group, 2005;53

Romero-Corral et al., 2008). Findings of relationships between obesity and cortical54

thickness have been mixed (Shaw et al., 2017, 2018; Veit et al., 2014). More generally,55

head motion has been suggested to be a neurobiological trait–being both stable over56

time and heritable (Engelhardt et al., 2017; Hodgson et al., 2017; Zeng et al., 2014).57

There is also evidence that fMRI tasks can differ in the degree of associated head58

motion (Alexander et al., 2017; Huijbers et al., 2017; Greene et al., 2018; Vanderwal et59

al., 2015; Wylie et al., 2014; Yuan et al., 2009). With this in mind, it may be beneficial to60

present participants with a task to attend to during structural scans, with the objective of61

decreasing head motion; typically structural scans are accompanied by the presentation62

of a blank screen or otherwise lack of instruction of attending to a visual stimulus.63

Madan and Kensinger (2016) showed that a structural metric, fractal64

dimensionality (FD), may be more sensitive to age-related differences in cortical65

structure than cortical thickness (also see Madan & Kensinger, 2018). In a preliminary66

analysis to examine the influence of head motion on age-related differences in cortical67

fractal dimensionality, Madan and Kensinger (2016) showed qualitative evidence of68

age-related differences in fractal dimensionality in a small sample (N = 7) of69

post-mortem MRIs. However, as this sample was small and also less indicative of70

potential head motion effects in in vivo MR imaging, further work is necessary. To more71

directly test for the additive influence of head motion on estimates of cortical72

morphology, beyond aging, here I also tested for a relationship of fMRI-estimated head73

motion on cortical fractal dimensionality, as well as on mean cortical thickness.74

Additionally, as recent studies have found that gyrification also decreases with age75

(Cao et al., 2017; Hogstrom et al., 2013; Madan & Kensinger, 2016, 2018), it was also76

included in the analysis presented here. Test-retest reliability of estimates for these77

structural measures has recently been compared (Madan & Kensinger, 2017b), but78

robustness to head motion has yet to be assessed.79

Using the rich, open-access dataset from Cambridge Centre for Ageing and80

Neuroscience (CamCAN) (Shafto et al., 2014; Taylor et al., 2017), here I sought to81
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replicate these myriad of prior findings, as well as test for influences of head motion on82

fractal dimensionality and gyrification.83

2 Methods84

2.1 Dataset85

Data used in the preparation of this work were obtained from the Cambridge Centre86

for Ageing and Neuroscience (CamCAN) repository, available at87

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ (Shafto et al., 2014;88

Taylor et al., 2017). The CamCAN dataset includes structural and functional MRI data89

for a sample of 648 adults across the adult lifespan (aged 18-88; Mean (SD)90

= 54.2 (18.5)). All participants were cognitively healthy (MMSE> 24) and were free of91

any neurological or serious psychiatric conditions. See Taylor et al. (2017) for92

additional details about the sample.93

A total of 8 participants were excluded from further analyses due to problems94

with cortical reconstruction or gyrification estimation, yielding a final sample size of95

640 adults (326 female, 314 male). Height and weight measurements were available for96

559 of the 648 participants (280 female, 279 male), additionally allowing for the97

calculation of body–mass index (BMI) for this subset of participants (also see Ronan et98

al., 2016).99

Structural measures are derived from a T1-weighted volume acquired using a 3 T100

Siemens Trio MRI scanner with an MPRAGE sequence. Scan parameters were as101

follows: TR = 2250 ms, TE = 2.99 ms, flip angle = 9◦, voxel size = 1×1×1 mm,102

GRAPPA = 2, TI = 900 ms. Head motion was primarily estimated from two fMRI scans,103

during rest and a movie-watching task. Both scans lasted for 8 min and 40 s (i.e., 520 s104

total). For the rest scan, participants were instructed to rest with their eyes closed. For105

the movie scan, participants watched and listened to condensed version of Alfred106

Hitchcock’s (1961) “Bang! You’re Dead” (Campbell et al., 2015; Hasson et al., 2008).107

Note that different scan sequences were used for both of these scans, with volumes108
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collected every 1.970 s or 2.470 s for the rest and movie scans, respectively (see Taylor109

et al., 2017, for more details); both rest and movie scans had the same voxel size,110

3×3×4.44 mm (32 axial slices, 3.7 mm thick, 0.74 mm gap).111

2.2 Preprocessing of the structural MRI data112

The T1-weighted structural MRIs were processed using FreeSurfer v6.0113

(https://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl, 2012; Fischl114

& Dale, 2000). Surface meshes and cortical thickness was estimated using the standard115

processing pipeline, i.e., recon-all, and no manual edits were made to the surfaces.116

Gyrification was calculated using FreeSurfer, as described in Schaer et al. (2012).117

Fractal dimensionality (FD) is a measure of the complexity of a structure and has118

previously been shown to decrease in relation to aging for cortical (Madan & Kensinger,119

2016, 2018) and subcortical (Madan & Kensinger, 2017a; Madan, 2018) structures and120

has been shown to have high test-retest reliability (Madan & Kensinger, 2017b). FD121

was calculated using the calcFD toolbox (http://cmadan.github.io/calcFD/)122

(Madan & Kensinger, 2016) using the dilation method and filled structures (denoted as123

FDf in prior studies). Briefly, FD measures the effective dimensionality of a structure124

by counting how many grid ‘boxes’ of a particular size are needed to contain a125

structure; these counts are then contrasted relative to the box sizes in log-space,126

yielding a scale-invariant measure of the complexity of a structure. This is127

mathematically calculated as FD = −∆log2(Count)/∆log2(Size), where Size was set128

to {1, 2, 4, 8, 16} (i.e., powers of 2, ranging from 0 to 4). To correct for the variability in129

FD estimates associated with the alignment of the box-grid with the structure, a130

dilation algorithm was used which instead relies on a 3D-convolution operation131

(convn in MATLAB) as this approach yields to more reliable estimates of FD. This132

computational issue is described mathematical and demonstrated in simulations in133

Madan and Kensinger (2016), and empirically shown in Madan and Kensinger (2017b).134

See Madan and Kensinger (2016, 2018) for additional background on fractal135

dimensionality and its application to brain imaging data.136
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2.3 Estimates of head motion137

Head motion was estimated using two approaches:138

(1) Measured as the frame-wise displacement using the three translational and139

three rotational realignment parameters. Realignment parameters were included as140

part of the preprocessed fMRI data (Taylor et al., 2017), in the form of the rp_*.txt141

output generated by SPM realign procedure. Rotational displacements were converted142

from degrees to millimeters by calculating the displacement on the surface of a sphere143

with a radius of 50 mm (as in Power et al., 2012). Frame-wise displacement was144

substantially higher between volumes at the beginning of each scan run, so the first145

five volumes were excluded. This is the same approach to estimating head motion that146

is commonly used (e.g., Alexander-Bloch et al., 2016; Engelhardt et al., 2017; Power et147

al., 2012; Savalia et al., 2017).148

(2) Estimated directly from the T1-weighted volume as ‘average edge strength’149

(AES) (Aksoy et al., 2012; Zacà et al., in press). This approach measures the intensity of150

contrast at edges within an image. Higher AES values correspond to less motion, with151

image blurring yielding decreased tissue contrast and lower AES values. AES was152

calculated using the toolbox provided by Zacà et al. (in press), on the skull-stripped153

volumes generated as an intermediate stage of the FreeSurfer processing pipeline. AES154

is calculated on two-dimensional image planes and was performed on each plane155

orientation (axial, sagittal, and coronal).156

2.4 Model comparison approach157

Effects of head motion on estimates of cortical morphology (thickness, fractal158

dimensionality, and gyrification) were assessed using a hierarchical regression159

procedure using MATLAB. Age was first input, followed by BMI (both with and160

without age), followed by estimates of head motion from each fMRI scan and the161

related interaction term with age. In total, eight models were examined, as listed in162

Table1. Model fitness was assessed using both R2 and ∆BIC.163

Bayesian Information Criterion, BIC, is a model fitness index that includes a164
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penalty based on the number of free parameters (Schwarz, 1978). Smaller BIC values165

correspond to better model fits. By convention, two models are considered equivalent166

if ∆BIC < 2 (Burnham & Anderson, 2004). As BIC values are based on the relevant167

dependent variable, ∆BIC values are reported relative to the best-performing model168

(i.e., ∆BIC = 0 for the best model considered).169

3 Results170

3.1 fMRI-estimated head motion171

As shown in Figure 1, older adults head increased head motion relative to younger172

adults in both the rest and movie scans [rest: r(638) = .351, p < .001; movie:173

r(638) = .430, p < .001]. Head motion was also greater in the rest scan than during the174

movie watching [t(639) = 23.35, p < .001, Cohen’s d = 0.99, Mdiff = 1.528 mm/min].175

Nonetheless, head motion was correlated between the fMRI scans [r(638) = .484,176

p < .001]. While this correlation between scans is expected, particularly since both177

were collected in the same MRI session, studies have provided evidence that head178

motion during scanning may be a trait (Engelhardt et al., 2017; Hodgson et al., 2017;179

Zeng et al., 2014). Moreover, this correlation provides additional evidence that motion180

during the fMRI scans is consistently larger in some individuals than others,181

suggesting it similarly affected the structural scans more for some individuals than182

others and appropriate to include as a predictor for the cortical morphology estimates.183

As expected based on prior literature (Beyer et al., 2017; Hodgson et al., 2017),184

head motion was also correlated with body–mass index (BMI) [rest: r(557) = .456,185

p < .001; movie: r(557) = .335, p < .001] (Figure 1). While BMI was also correlated with186

age [r(557) = .274, p < .001], BMI-effects on head motion persisted after accounting for187

age differences [rest: rp(555) = .340, p < .001; movie: rp(555) = .249, p < .001].188

While head motion was substantially lower in the movie condition than during189

rest, it was relatively stable over time (e.g., it does not tend to decrease over time).190

However, in the movie watching task, there is evidence of systematic stimuli-evoked191
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Figure 1. Age-related differences in head motion. Correlations between average head

motion (mm/min) with age and body–mass index (BMI) for the rest and movie fMRI

scans, between fMRI scans, and between age and BMI. Head motion axes are log-10

scaled to better show inter-individual variability.

increases in head motion (Figure 2), e.g., around 280 s and 360 s. These periods of192

increased head motion correspond to events within the movie; in the first period the193

boy is loading the real gun with bullets, the second, more prominent period is a194

suspenseful scene where it appears that the boy may accidentally shoot someone.195

Moreover, these events also correspond to fMRI differences in attentional control and196

inter-subject synchrony (see Campbell et al., 2015).197
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Figure 2. Averaged time-course of head motion for rest (red) and movie (blue) fMRI

scans for young and older adults. Bands represent 95% confidence intervals.

3.2 T1-estimated head motion198

Head motion was also estimated directly from the T1-weighted volume as the average199

edge strength (AES), following from Zacà et al. (in press); higher AES values200

correspond to less motion. Based on the T1 acquisition parameters, AES in the axial201

plane orientation should be the most affected by head motion; nonetheless, I calculated202

AES for each plane orientation. AES in the axial and sagittal planes was moderately203

related to age [axial: r(639) = .493, p < .001; sagittal: r(639) = .525, p < .001] (Figure 3);204

AES in the coronal was only weakly correlated with age [r(639) = −.131, p < .001].205

AES in the axial and sagittal planes were strongly correlated with each other206

[r(639) = .702, p < .001].207

Interestingly, AES was relatively not related to BMI [all |r|’s < .2]. AES was also208

relatively unrelated to fMRI-estimated head motion [rest: r(639) = .112, p = .005;209

movie: r(639) = .148, p < .001]. Thus, while AES is sensitive to an MR image property210

related to age, it seems to be distinct from fMRI-estimated head motion. A likely211
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possibility is tht AES here is detecting age-related differences in gray/white matter212

contrast ratio (GWR), as have been previously observed (Knight et al., 2016; Magnaldi213

et al., 1993; Salat et al., 2009).214
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Figure 3. Relationships between motion estimated from the structural volume using

average edge strength (AES) in different planes with age, BMI, rest-fMRI estimated

motion, cortical thickness, and fractal dimensionality.

3.3 Cortical morphology215

As shown in Figure 4, mean cortical thickness significantly decreased with age216

[r(638) = −.652, p < .001, −0.0432 mm/decade], as did fractal dimensionality217

[r(638) = −.705, p < .001, −0.0097 FDf /decade] and gyrification [r(638) = −.427,218

p < .001, −0.0372 GI/decade]. All three slopes (change in metric per decade) are219

nearly identical to those first calculated by Madan and Kensinger (2016), as is the220

general finding of higher age-related differences in fractal dimensionality and weaker221

differences in gyrification (also see Madan & Kensinger, 2018). However, it is also222

worth acknowledging that AES in the axial and sagittal planes were comparably223

correlated with age as gyrification. Effects of BMI on all three measures of cortical224

morphology were relatively weak [thickness: r(557) = −.169, p < .001; fractal225
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dimensionality: r(557) = −.168, p < .001; gyrification r(557) = −.083, p = .049].226
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Figure 4. Age- and BMI-related differences in the three cortical morphology measures

examined here: thickness, fractal dimensionality, and gyrification.

Of particular interest, I examined the influence of head motion on the cortical227

morphology estimates. For all three measures, head motion explained only a small228

amount of additional variance beyond age, as shown in Table 1. Nonetheless, head229

motion from the movie scan did explain significant additional variance, as measured230

by ∆BIC, however, this only accounted for an additional 1% variance in the cortical231

morphology measures. In the model of cortical thickness including head motion from232

the movie scan (but not the interaction), age related changes corresponded to −0.0398233

mm/decade, while head motion contributed −0.0135 mm/(mm/min).234
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Model Predictors R2 ΔBIC R 2 ΔBIC R 2 ΔBIC

1 Age 0 .425 6.98 0 .497 3.15 0 .192 3.65
2 BMI 0 .029 455.85 0 .028 805.25 0 .007 243.17
3 Age + BMI 0 .425 168.82 0 .487 454.69 0 .183 140.23
4 Age + Movement(Rest) 0 .429 10.01 0 .500 5.65 0 .192 10.07
5 Age + Movement(Movie) 0 .437 0.00 0 .504 0.00 0 .194 8.44
6 Age + Movement(Movie) + Age×Movement(Movie) 0 .427 11.64 0 .499 6.58 0 .205 0.00
7 Age + AES(axial) 0 .443 0.23 0 .507 3.18 0 .194 14.83
8 Age + AES(axial) + Age×AES(axial) 0 .428 17.58 0 .500 12.42 0 .208 3.76

Thickness FD Gyrification

Table 1

Variance explained and model fits of cortical measures by age, BMI, and head motion estimates.

Note that R2 decreases after the inclusion of BMI as models 2 and 3 can only be calculated on a

subset of participants (559 out of 640 participants) since height and weight information was not

available for all participants.

4 Discussion235

In the current study, I replicated several prior findings as well as tested for a few novel236

effects of head motion. First I outline the key findings of prior studies that were237

replicated here:238

(1) Increased head motion in older adults (replicating Savalia et al., 2017; Pardoe et239

al., 2016).240

(2) BMI is correlated with head motion (replicating Beyer et al., 2017; Hodgson et al.,241

2017).242

(3) Less head motion occurs when watching a movie than during rest (replicating243

Vanderwal et al., 2015; Huijbers et al., 2017).244

(4) Head motion in different scans from the same individuals is correlated and245

indexes reliable inter-individual differences (replicating Zeng et al., 2014;246

Engelhardt et al., 2017; Hodgson et al., 2017).247

(5) Cortical thickness decreases with age (replicating Fjell et al., 2009; Salat et al.,248

2004).249
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(6) Fractal dimensionality and gyrification also decrease with age (replicating Madan250

& Kensinger, 2016, 2018; Hogstrom et al., 2013).251

(7) More head motion leads to lower estimates of cortical thickness (replicating252

Reuter et al., 2015; Savalia et al., 2017).253

254

In addition to these replications, the new findings were:255

(8) Head motion leads to nominally lower estimates of fractal dimensionality and256

gyrification.257

(9) Head motion estimated from the structural volume itself (i.e., average edge258

strength [AES]) correlated with age, but not BMI.259

(10) AES may be sensitive to gray/white matter contrast ratio (GWR).260

(11) AES was only weakly related to fMRI-measured head motion.261

(12) Global cortical morphology is not related to BMI.262

Likely most important, I found significantly more movement during resting state263

than watching a movie, but are quite correlated still (replicating the findings of264

Huijbers et al., 2017; Greene et al., 2018). Based on this evidence, I would recommend265

that participants be given movie-watching task during structural scans to reduce266

movement during these longer volume acquisitions and improve scan quality.267

Suggestions of potential systematic increases in head motion, however, suggest that268

less eventful movie content may be preferable for both maintaining participants’269

attention and minimizing movement-based reactions (e.g., see Vanderwal et al., 2015).270

While this approach is not common, it has been used in some recent large-scale studies,271

such as the Human Connectome Project (HCP) (Marcus et al., 2013) and Adolescent272

Brain Cognitive Development (ABCD) study (Casey et al., in press), and has also been273

suggested and used elsewhere, particularly in MRI studies with children (Greene et al.,274

2016; Bellis et al., 2001; Howell et al., in press; Overmeyer, 1996; Pliszka et al., 2006;275

Raschle et al., 2009; Theys et al., 2014; von Rhein et al., 2015; Wu Nordahl et al., 2008).276
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However, it is also important to consider the context that this movie watching would277

occur in. For instance, if the structural scan is followed by a resting-state fMRI scan,278

cognitive processes related to the movie watching will ‘spill over’ and influence279

patterns of brain activity in a subsequent rest period (e.g., Tambini & Davachi, 2013;280

van Kesteren et al., 2010; Eryilmaz et al., 2011).281

Estimates of cortical thickness were significantly influenced by head motion282

(replicating Savalia et al., 2017; Reuter et al., 2015), though the influence of this283

appeared to be relatively small. Effects of head motion on fractal dimensionality were284

also significant, but even smaller in magnitude, while head motion did not285

significantly influence estimates of gyrification. The results here also served as a286

replication age-related differences in fractal dimensionality and gyrification (Madan &287

Kensinger, 2016, 2018).288

Interestingly, average edge strength (AES) did not correlate well with fMRI289

motion, but did correlate with age. This may be related to age-related differences in290

gray/white matter contrast ratio (GWR), as AES corresponds to the degree of tissue291

intensity contrast. This finding may be important when examining differences in AES292

between different samples (e.g., patients vs. controls).293

While the results here are predominately replications of prior work, they294

nonetheless integrate the key findings of several papers through a single, open-access295

dataset, that also has a larger sample size than these previous studies. Moreover, these296

results serve as an example to highlight the benefits of open data sharing on improving297

our understanding of brain morphology (see Madan, 2017, for a detailed discussion).298

5 Conclusion299

Head motion influences estimates of cortical morphology, but can be attenuated by300

using an engaging task, such as movie watching, rather than merely instructing301

participants to rest. Decreasing head motion is particularly important when studying302

aging populations, where head motion is greater than for young adults, but303

considerations are necessary to see how this may ‘carry over’ and influence a304
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subsequent scan, such as resting-state fMRI.305
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