
  Revised July 2018 

 1 

Task-evoked pupil responses reflect internal belief 
states 
 
O. Colizoli1,2, J.W. de Gee1,2, A.E. Urai1,2, T.H. Donner1,2,3,* 
 
1 Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany 
2 Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands 
3 Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands 
 
*Tobias H. Donner 
University Medical Center Hamburg-Eppendorf 
Department of Neurophysiology and Pathophysiology, N43 
Martinistraße 52 
20246 Hamburg 
t.donner@uke.de 
   

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2018. ; https://doi.org/10.1101/275776doi: bioRxiv preprint 

https://doi.org/10.1101/275776
http://creativecommons.org/licenses/by/4.0/


  Revised July 2018 

 2 

Abstract 

Perceptual decisions about the state of the environment are often made in the face of 
uncertain evidence. Internal uncertainty signals are considered important regulators of 

learning and decision-making. A growing body of work has implicated the brain’s arousal 
systems in uncertainty signaling. Here, we found that two specific computational variables, 

postulated by recent theoretical work, evoke boosts of arousal at different times during a 
perceptual decision: decision confidence (the observer’s internally estimated probability that 

a choice was correct given the evidence) before feedback, and prediction errors (deviations 
from expected reward) after feedback. We monitored pupil diameter, a peripheral marker of 

central arousal state, while subjects performed a challenging perceptual choice task with a 
delayed monetary reward. We quantified evoked pupil responses during decision formation 

and after reward-linked feedback. During both intervals, decision difficulty and accuracy had 

interacting effects on pupil responses. Pupil responses negatively scaled with decision 
confidence prior to feedback and scaled with uncertainty-dependent prediction errors after 

feedback. This pattern of pupil responses during both intervals was in line with a model using 
the observer’s graded belief about choice accuracy to anticipate rewards and compute 

prediction errors. We conclude that pupil-linked arousal systems are modulated by internal 
belief states.  
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Introduction 
Many decisions are made in the face of uncertainty about the state of the environment. A body 

of evidence indicates that decision-makers use internal uncertainty signals for adjusting choice 
behavior1–3, and deviations between expected and experienced rewards for learning4,5. The 

brain might utilize its arousal systems to broadcast such computational variables to circuits 
implementing inference and action selection4,6–9. 

Recent theoretical work postulates two variables at different moments during a 
challenging perceptual decision1,10,11: (i) decision confidence before feedback (i.e., the 

internally estimated probability of a choice being correct, given the available evidence) and (ii) 
prediction error (i.e., the difference between expected and experienced reward) after receiving 

feedback. Critically, and different from previous work on reinforcement learning7,8,12, the 

prediction error signals depend on graded internal confidence10 rather than on the categorical 
stimulus identity (see Model Predictions below). Such internal belief states have been 

incorporated in more recent models of reinforcement learning13. Building on previous work 
implicating arousal in uncertainty monitoring3,14–16, we here asked whether these two 

computational variables would evoke responses of central arousal systems. 
It has long been known that the pupil dilates systematically during the performance of 

cognitive tasks, a phenomenon referred to as task-evoked pupil response17–24. Physiological 
work indicates that non-luminance mediated changes in pupil diameter are closely linked to 

central arousal state25–28. We quantified pupil responses during a perceptual choice task 
combined with reward-linked feedback, analogous to the task used in recent monkey work on 

uncertainty and prediction errors10. We then compared pupil responses before and after 

reward-linked feedback to predictions derived from alternative computational models of the 
internal variables encoded in the brain. Our goal was to (i) replicate the previously found 

scaling of pupil responses with decision uncertainty before feedback3 and (ii) test for the same 
scaling of pupil responses after feedback, as observed for dopamine neurons10.  

 

Results 
We monitored pupil diameter in 15 human participants performing an up vs. down random dot 

motion discrimination task, followed by delayed reward-linked feedback (Figure 1). The 
random dot motion task has been widely used in the neurophysiology of perceptual decision-

making29,30. Importantly, our version of the task entailed long and variable delays between 

decision formation and feedback, enabling us to obtain independent estimates of the pupil 
responses evoked by both of these events. We titrated the difficulty of the decision (by varying 

the evidence strength, or motion coherence, see Methods), so that observers performed at 
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70% correct in 2/3 of the trials in one condition (‘Hard’) and at 85% correct in 1/3 of the trials 

in the other condition (‘Easy’). Correct vs. error feedback was presented after choice and 
converted into monetary reward, based on the average performance level across a block (25 

trials), as follows: 100% correct yielded 10 Euros, 75% yielded 5 Euros, chance level (50% 
correct) yielded 0 Euros. The total reward earned (in Euros) was presented on the screen to 

participants at the end of each block.  

 
Figure 1. Perceptual choice task with delayed reward. Random dot kinematograms (RDK) were presented in 
one half of the visual field during each block of trials (counterbalanced). Random motion (0% coherence) was 
presented throughout all intervals except for the ‘motion stimulus’ interval, during which the RDKs to be 
discriminated were shown, prompted by an auditory cue (250 ms). Motion coherence of the stimulus varied from 
trial to trial, yielding a Hard and an Easy condition. A change from an open to a closed rectangle in the fixation 
region (constant luminance) prompted subjects’ choice (‘response interval’). After a variable delay (3.5-11.5 s) 
following the choice, feedback was presented that was coupled to a monetary reward (see main text). The white 
circle surrounding the RDKs is for illustration only and was not present during the experiment.  

 

Model predictions 
We used two computational models based on signal detection theory31 to generate qualitative 

predictions for the behavior of internal signals before and after reward feedback that might 
drive pupil-linked arousal (Figure 2a, see Materials and Methods for details). Both models 

assumed that observers categorize the motion direction based on a noisy decision variable, 
which in turn depended on the stimulus strength (Hard or Easy), the stimulus identity (Up or 

Down), and on internal noise. The models’ choices were governed by comparing this noisy 
decision variable to zero, ensuring no bias towards one over the other choice. 

The two models differed in how confidence was defined. Here, with confidence we 
refer to the observer’s internally estimated probability that a choice was correct given the 

available evidence11. Because choice accuracy was coupled to a fixed monetary reward in our 
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experiment (see above), confidence equaled an ideal observer’s internally estimated 

probability of obtaining the reward, in other words, reward expectation. In the ‘Belief State 
Model’, confidence was computed as the absolute distance between the decision variable 

(depending on the stimulus identity, stimulus strength, and internal noise) and the decision 
criterion (i.e., zero) (Figure 2a; see Methods and ref.1). By contrast, in the ‘Stimulus State 

Model’, confidence was computed as the absolute distance between the physical stimulus 
value (i.e. physical stimulus identity times stimulus strength) and the criterion (zero). In both 

models, reward prediction error was computed as the difference between the confidence and 
the reward-linked feedback. Thus, in the Belief State Model, the observer’s internal belief 

about the state of the outside world (encoded in the noisy decision variable) determined both 
reward expectation (i.e., confidence) and reward prediction error; in the Stimulus State Model, 

these computational variables did not depend on the observer’s internal belief, but only on the 

strength and identity of the external stimulus. 
We simulated these two models to derive qualitative predictions that distinguished 

between their internal signals. To this end, we computed confidence and reward prediction 
errors at the level of individual trials (see above) and then collapsed these single-trial signals 

within each Accuracy and Difficulty condition. The rationale was that the interaction between 
conditions (defined as [Easy Error - Easy Correct] - [Hard Error - Hard Correct]) most clearly 

dissociated between the predictions generated from both models (Figure 2b-g).  
Previous pupillometry work on a similar task showed that pre-feedback pupil 

responses scaled with decision uncertainty (i.e. the complement of decision confidence)3. We 
thus generated predictions for decision uncertainty during the pre-feedback interval (Figure 

2b,e) and, by analogy, for the complement of prediction error during the post-feedback interval 

(Figure 2 c,f). 
The critical observation is that the Belief State Model predicts a positive Accuracy x 

Difficulty interaction pre-feedback, and a negative interaction post-feedback (Figure 2d). This 
pattern is consistent with predictions from a reinforcement learning model based on a partially 

observable Markov decision process (POMDP)10. In contrast, the Stimulus State Model does 

not predict an Accuracy x Difficulty interaction either pre- or post-feedback (Figure 2g). This 
pattern is consistent with traditional reinforcement learning models7,8,12.  

 Previous work on perceptual choice has shown that reaction time (RT) scales with 
decision uncertainty3,32,33, in line with the Belief State Model. The same was evident in the 

present data: There was a main effect of accuracy, F(1,14) = 51.57, p < 0.001, and difficulty, 

F(1,14) = 19.53, p < 0.001, as well as an interaction effect of both, F(1,14) = 34.95, p < 0.001, on 
RT (see Supplementary Fig. S1, compare with Figure 2b), in line with the Belief State Model. 
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This indicates that, in our current data, a graded, noisy decision variable similar to the one 

postulated by the Belief State Model was encoded and used for the decision process. We next 
tested which of the two models better reflected responses of pupil-linked arousal systems. We 

analyzed pupil responses as a function of motion coherence and choice correctness for the 
two critical intervals of the trial: the phase of reward anticipation before feedback, as in 

previous work3, and critically, the phase of reward prediction error signaling after feedback. 
 

 
Figure 2. Alternative predictions for internal signals during pre- and post-feedback intervals of the task. (a) 
Computations underlying choice, confidence, uncertainty and prediction error. Repeated presentations of a 
generative stimulus produce a normal distribution of internal decision variables (𝑑𝑣) due to the presence of internal 
noise, which is centered around the generative stimulus (𝜇). In this model, confidence is defined as the single-trial 
distance between 𝑑𝑣 and 𝑐, the internal decision bound. Prediction errors are computed by comparing experienced 
reward (i.e. feedback) with the observers’ expected outcome. (b-d) Computational variables were simulated for 
every trial, then averaged separately for Correct and Error conditions for each level of task difficulty (in this case, 
motion coherence). Belief State Model predictions. (e-g) Stimulus State Model predictions. (b, e) Decision 
uncertainty (complement of confidence) as function of task difficulty during pre-feedback interval. (c, f) Prediction 
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error as function of task difficulty during post-feedback interval. (d, g) Interaction term computed as (Easy Error - 
Easy Correct) - (Hard Error - Hard Correct). See main text for model details. 

 

Sustained pupil response modulations during pre- and post-feedback intervals 
The pupil responded in a sustained fashion during both intervals: after the onset of the motion 

stimulus and locked to the observers’ reported choice (i.e., pre-feedback) and post-feedback 
(Figure 3a, blue and purple lines). The pupil response remained elevated during feedback 

anticipation, long after stimulus processing (maximum of 3 s, 0.75 s stimulus duration plus 
response deadline of 2.25 s, see Figure 1). Upon feedback presentation, the pupil initially 

constricted due to the presentation of the visual feedback stimulus (see Supplementary Fig. 
S2) and then dilated again to a sustained level for the remainder of the post-feedback interval. 

Please note that we subtracted the pupil diameter during the pre-feedback period from the 

feedback-locked responses (see Methods), so as to specifically quantify the feedback-evoked 
response.  

For comparison, we measured, in the same participants (separate experimental 
blocks), pupil responses evoked during a simple auditory detection task (button press to 

salient tone), which did not entail prolonged decision processing and feedback anticipation 
(see Methods). The resulting response, termed ‘impulse response function’ (IRF) for simplicity, 

was more transient than those measured during the main experiment: the IRF returned back 
to the pre-stimulus baseline level after 3 s (Figure 3a, compare grey IRF with the blue line). 

Thus, the sustained elevations of pupil diameter observed beyond that time in the main 
experiment reflected top-down, cognitive modulations in pupil-linked arousal due to decision 

processing and reward anticipation (for the responses locked to the onset of the motion 

stimulus), or due to reward processing (for the feedback-locked responses). To quantify the 
amplitude of these cognitive modulations of the pupil response, we collapsed the pupil 

response across the time window 3-6 s from response (for pre-feedback interval) or from 
feedback tone (post-feedback interval; see gray shaded area in Figure 3a). For the cognitive 

modulations during the pre-feedback interval, we further extracted the mean pupil response 
values in the 500 ms before the feedback (gray shaded area in Figure 3b). 
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Figure 3. Pupil responses before and after feedback reflect observers’ belief state. (a) Pupil responses locked 
to the observer’s reported choice (blue) and locked to feedback (purple). Shown for comparison is the pupil ‘impulse 
response’ from same participants (IRF, see main text). Grey shading indicates sustained time window (3-6 s), in 
which IRF returned to baseline. (b) Evoked pupil responses for Correct and Error trials in pre-feedback interval. 
Black bar indicates correct vs. error effect, p < 0.05 (cluster-based permutation test). (c) Evoked pupil responses 
for Correct and Error trials in post-feedback interval. Black bar indicates correct vs. error effect, p < 0.05 (cluster-
based permutation test). (d) Interaction term (Easy Error - Easy Correct) - (Hard Error - Hard Correct) for choice-
locked (blue, coinciding with observers’ reported choice) and feedback-locked (purple) responses. Horizontal bars 
indicate effect, p < 0.05 (cluster-based permutation test): blue bar indicates choice-locked response tested against 
0; purple bar indicates feedback-locked response tested against 0; black bar indicates difference in interaction 
between both responses. (e) Mean response in the pre-feedback interval (500 ms preceding feedback), as a 
function of difficulty and accuracy. (f) Mean response (in sustained time window) during the post-feedback interval, 
as function of difficulty and accuracy. Error bars, standard error of the mean (N = 15). *p < 0.05, **p < 0.01, ***p < 
0.001.  

 

Interacting effects of decision difficulty and accuracy on evoked pupil responses  
The sustained pupil responses during both the intervals, pre- and post-feedback, scaled in 

line with the predictions from the Belief State Model, not the Stimulus State Model (compare 
Figure 3d-f with Figure 2b-d). First, pupil responses during both intervals were overall larger 

on error than correct trials (Figure 3b-c). The Stimulus State Model did not predict any 

difference between the two categories during the pre-feedback interval, because this model 
was only informed by external information (motion stimulus or feedback), not by noisy internal 

states. The larger pupil responses during errors in the pre-feedback interval were in line with 
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previous results3, supporting the idea that arousal state between response and feedback 

reflects the observer’s decision uncertainty.  
Second, the sustained pupil responses during both intervals exhibited a pattern of 

interactions between decision difficulty and accuracy as predicted by the Belief State Model 
but not the Stimulus State Model (compare Figure 3d to Figure 2d and Figure 2g). Hereby, the 

interaction was defined as (Easy Error - Easy Correct) - (Hard Error - Hard Correct). 
Specifically, the Belief State Model predicted a significant interaction of opposite sign for both 

intervals (Figure 2d, compare blue and purple dots). That same pattern was evident in the 
time course of the interaction term in the pupil response. During both intervals, the interaction 

terms were significant, with opposite signs: positive during the pre-feedback interval and 
negative during the post-feedback interval (Figure 3d, blue and purple bars). Consequently, 

the interaction terms were significantly different from one another throughout the entire part of 

the sustained pupil response (Figure 3d, black bar).  
Finally, also the full pattern of sustained pupil responses for the Hard vs. Easy and 

Correct vs. Error conditions in both trial intervals (Figure 3e,f) resembled the pattern predicted 
by the Belief State Model (Figure 2b,c). In the sustained window during the post-feedback 

interval, there was a significant interaction between difficulty and accuracy (Figure 3f, F(1,14) = 
9.31, p = 0.009; Hard Error vs. Hard Correct, p = 0.001; Easy Error vs. Easy Correct, p = 

0.174; Hard Error vs. Easy Error, p = 0.037; Hard Correct vs. Easy Correct, p = 0.031). The 
sustained window before feedback exhibited a trend towards an interaction (F(1,14) = 4.12, p = 

0.062). This effect became stronger during the pre-feedback interval: In the 0.5 s window just 
before (and locked to) the feedback delivery (grey window in Figure 3b), the interaction was 

significant (Figure 3e; F(1,14) = 6.66, p = 0.022; post hoc comparisons: Hard Error vs. Hard 

Correct, p = 0.500; Easy Error vs. Easy Correct, p = 0.006; Hard Error vs. Easy Error, p = 
0.037; Hard Correct vs. Easy Correct, p = 0.060). For all subsequent analyses, we focus on 

this interval 500 ms before feedback to probed into participants’ reward anticipation, referring 
to this time window as “pre-feedback interval”. 

In sum, in this perceptual choice task, sustained pupil responses during both reward 
anticipation (pre-feedback) as well as after reward experience (post-feedback) were 

qualitatively in line with the predictions from a model of reward expectation and prediction 
errors model, in which the computation of these internal variables depended on internal belief 

states. The results from all main figures are only based on trials with long delay (> 7.5 s) 

intervals between choice and feedback, and feedback and subsequent trial, in order to 
minimize possible contamination of evoked pupil responses by responses to the next event 
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(i.e., feedback or the next trial’s cue; see Methods). We found the same pattern of results 

when performing the analyses on trials (Supplementary Fig. S3).  
 

Control analysis for confounding effects of variations of RT and motion energy 
In the current study, as in previous work using a similar perceptual choice task3, both RT and 

pre-feedback pupil dilation scaled with the decision uncertainty signal postulated by the Belief 
State Model. Indeed, RTs were significantly correlated to pre-feedback pupil responses in the 

pre-feedback window (-0.5-0 s) across all trials, r(13) = 0.12, p < 0.001, and within the following 
conditions: Hard Error, r = 0.11, p = 0.001; Hard Correct, r = 0.09, p < 0.001; Easy Correct, r 

= 0.16, p < 0.001, but not within the Easy Error condition, r = 0.07, p = 0.223.  
While this association was expected under the assumption that RT and pupil dilation 

were driven by internal uncertainty signals3, the association also raised a possible confound. 

Arousal drives pupil dilation in a sustained manner throughout decision formation25,34,35. The 
peripheral pupil apparatus for pupil dilation (nerves and smooth muscles) has temporal low-

pass characteristics. Consequently, trial-to-trial variations in decision time (the main source of 
RT variability) can cause trivial trial-to-trial variations in pupil dilation amplitudes, simply due 

to temporal accumulation of a sustained central input of constant amplitude but variable 
duration25,34. Then, pre-feedback pupil response amplitudes may have reflected RT-linked 

uncertainty, but without a corresponding scaling in the amplitudes of the neural input from 
central arousal systems. Note that this concern applied only to the pre-feedback pupil 

dilations, not the post-feedback dilations, which were normalized using the pre-feedback 
interval as baseline (see above). Another concern was that trial-by-trial fluctuations in motion 

energy, caused by the stochastically generated stimuli (see Methods) contributed to 

behavioral variability within the nominally Easy and Hard conditions.  
Our results were not explained by either of those confounds (Figure 4). To control for 

both of them conjointly, we removed the influence of trial-to-trial variations in RT (via linear 
regression) from the pre-feedback pupil responses. And we used motion energy filtering3,36 to 

estimate each trial’s sensory evidence strength. We finally regressed the RT-corrected pupil 
time courses onto evidence strength (absolute motion energy), separately for the Error and 

Correct trials. The interaction term was defined as the difference in beta weights for the Error 
vs. Correct trial regressions. In this control analysis, the critical interaction effect was 

significant during both the pre-feedback and post-feedback time courses (ps < 0.05, cluster-

based permutation test; Figure 4a). The interaction terms furthermore differed between 
intervals (p < 0.05, cluster-based permutation test; Figure 4a). When regressing mean RT-

corrected pupil responses in the pre-feedback time window onto evidence strength, the critical 
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interaction term (i.e. beta weights) within the pre-feedback window still reflected decision 

uncertainty (Figure 4b; M = 1.35, STD = 1.81, p = 0.001). In sum, while trial-to-trial variations 
in RT and motion energy explained some variance in the pupil responses, the key patterns of 

the pupil responses diagnostic of modulation by belief states were robust even when 
controlling for these parameters. 

 
Figure 4. Pupil responses before feedback reflect observers’ belief state even when controlling for RT and 
motion energy fluctuations. (a) Time course of belief state scaling in the pupil, computed as trial-by-trial 
regression of RT-corrected pupil dilation onto motion energy strength. The interaction term (beta weights Error - 
beta weights Correct) is shown for choice-locked (blue, coinciding with onset of the choice) and feedback-locked 
(purple) responses. Horizontal bars indicate effect, p < 0.05 (cluster-based permutation test): blue bar indicates 
choice-locked response tested against 0; purple bar indicates feedback-locked response tested against 0; black 
bar indicates difference in interaction between both responses. (b) Mean response in pre-feedback time window (-
0.5-0 s) as a function of difficulty and accuracy. Absolute motion energy was divided into four equally sized bins 
(per participant) for visualization. Error bars, standard error of the mean (N = 15). *p < 0.05, **p < 0.01, ***p < 
0.001.  

 

Relationship to Urai et al, 20173 
Our current results from the pre-feedback interval replicate our earlier finding3 that pupil 

responses in perceptual choice scale with decision uncertainty as postulated by the Belief 
State Model. This previous study focused on the pre-feedback responses and did not 

specifically assess the feedback-locked pupil responses (pupil measures were corrected with 
the same pre-trial baseline for the entire trial3). We here re-analyzed the post-feedback 

responses in the data from Urai et al. (2017) for comparison (see Supplementary Fig. S5). As 

in our current data, post-feedback responses were larger after incorrect than correct feedback 
(Supplementary Fig. S5a). However, the uncertainty-dependent scaling of post-feedback 

responses differed: rather than a negative interaction effect (Figure 1d), the interaction effect 
after feedback was positive (Supplementary Fig. S5b,c). One possible explanation for this 

difference the effect of reward-linked feedback: while participants in the current study were 
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paid a compensation depending on their performance, feedback in the study by Urai et al. 

(2017) did not affect monetary reward. It is thus possible that the prospect of receiving 
performance-dependent monetary reward is required for the recruitment of pupil-linked 

arousal systems by uncertainty-dependent prediction errors. A number of further differences 
between these two studies complicate a direct comparison: the behavioral task (i.e. 

comparison of two intervals of motion strength vs. coarse direction motion direction 
discrimination), the short vs. long delay periods between events, and the two cohorts of 

participants. Despite these limitations, the difference in results between studies is potentially 
relevant and should be tested directly in follow-up work that eliminates the confounding factors 

listed above.  
 

Belief State Model predicts pupil responses quantitatively better than Stimulus State 

Model 
The data presented thus far show that the pattern of pupil responses was qualitatively in line 

with the Belief State Model but not with the Stimulus State Model. To this end, we used 
predictions from model simulations based on the group data. However, individuals differ widely 

in terms of the internal noise, which dissociates between the models. We next tested whether 
the Belief State Model provides a quantitatively superior match to the measured pupil data 

than the Stimulus State Model when individual estimates of internal noise are used to generate 
model predictions. To this end, we simulated both models using individual estimates of internal 

noise (Supplementary Fig. S4a and Methods). This yielded model predictions for each 
individual for the Accuracy x Difficulty conditions, which were qualitatively in line with 

predictions based on the group, but with effects that varied in their magnitude between 

individuals depending on their estimated internal noise (Supplementary Fig. S4b).  
 We predicted that those individual patterns predicted by the Belief State Model should 

be more similar to the measured individual pupil responses than the individual patterns 
predicted by the Stimulus State Model. We tested this prediction by correlating predictions of 

both models with the corresponding pupil responses, separately for each individual. An 
example for a single subject is shown in Figure 5a, for both trial intervals. For both intervals, 

group-level correlations (Figure 5b) were significant (i.e. pupil responses similar) for the Belief 
State Model (p < 0.05), but not the Stimulus State Model (p > 0.05). Further, for the pre-

feedback interval, the Belief State Model correlations were significantly stronger than the 

Stimulus State Model (p < 0.05). For the post-feedback interval, there was a trend towards a 
stronger correlation for the Belief State Model than the Stimulus State Model (p = 0.074).  
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 To perform a more fine-grained evaluation of the correspondence between model-

predicted patterns and pupil responses, we used the motion energy information extracted from 
each trial (see previous section and Methods) rather than the categorical difficulty conditions 

(Easy, Hard) to generate individual model predictions.. Because errors, not correct trials, 
qualitatively dissociate the predictions from Belief State and Stimulus State Models (compare 

Figure 2b,c with Figure 2e,f), we restricted this control analysis to error trials (Figure 5c,d). 
Again, predictions of both models were correlated to the corresponding pupil responses (6 

bins of model parameters), separately for each individual. An example for a single subject is 
shown in Figure 5c.  

For both intervals, correlations were positive (i.e. pupil responses similar) for the Belief 
State model predictions and negative (i.e. pupil responses dissimilar) for the Stimulus State 

model. Critically, the Belief State Model correlations were significantly larger than the Stimulus 

State Model in the pre-feedback interval (p < 0.001), again with a similar trend for the post-
feedback interval (p = 0.074). The same held for a single-trial version of this correlation 

analysis, again focusing on error trials only (difference in correlation between models: p < 
0.001 for pre-feedback; p < 0.080 for post-feedback). 
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Figure 5. Model fits to pupil responses. (a) An example of the correlations (r) for a single subject. The four 
conditions of interest were defined by the Accuracy x Difficulty interaction. Easy and Hard conditions for the model 
parameters were averaged based on the coherence levels presented to each subject. (b) Group-level correlation 
coefficients (r) for the comparison of the model parameters and pupil responses, for the pre-feedback (Pre; -0.5-0 
s) and post-feedback (Post; 3-6 s) intervals. (c) An example of the correlations for a single subject using model 
parameters simulated with motion energy (error trials only). Pupil responses were averaged within equal-sized bins 
based on the model parameter for each interval (6 bins). Evidence strength is represented by mean motion energy 
within each bin (color bar). (d) Group-level correlation coefficients (r) for the comparison of the model parameters 
(using motion energy) and pupil responses, for the pre-feedback (Pre; -0.5-0 s) and post-feedback (Post; 3-6 s) 
intervals (error trials only). Error bars, standard error of the mean (N = 15). **p < 0.01, ***p < 0.001. 

 

Discussion 
It has long been known that the pupil dilates systematically during the performance of cognitive 

tasks17–24. The current study shows that task-evoked pupil dilation during a perceptual choice 

task indicates, at different phases of the trial, decision uncertainty and reward prediction error. 
Comparisons with qualitative model predictions showed that pupil responses during feedback 
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anticipation and after reward feedback were modulated by decision-makers’ (noise-corrupted) 

internal belief states that also governed their choices. This insight is consistent with a 
reinforcement learning model (POMDP) that incorporates graded belief states in the 

computation of the prediction error signals10,13. In sum, the brain’s arousal system is 
systematically recruited in line with high-level computational variables. 

 A number of previous studies have related non-luminance mediated pupil responses 
to decision-making, uncertainty, and performance monitoring14,15,34,37–41, but our current results 

move beyond their findings in important ways. First, with the exception of Urai et al., (2017)3, 
previous studies linking uncertainty to pupil dynamics have used tasks in which uncertainty 

originated from the observer’s environment14,15,37,39. By contrast, in our task, decision 
uncertainty largely depended on the observers’ internal noise, which dissociated the two 

alternative models of the computational variables under study (decision uncertainty and 

reward prediction error, Figure 2). Second, our work went beyond the results from Urai et al., 
(2017)3 in showing that post-feedback pupil dilation reflects belief-modulated prediction error 

signals during perceptual decision-making in the context of monetary reward. 
Previous work on central arousal systems and pupil-linked arousal dynamics has 

commonly used the dichotomy of (i) slow variations in baseline arousal state and (ii) rapid (so-
called ‘phasic’) evoked responses6,34,42,43. Our current results indicate that this dichotomy is 

oversimplified, by only referring to the extreme points on a natural continuum of arousal 
dynamics during active behavior. Our results show that uncertainty around the time of decision 

formation as well as the subsequent reward experience both boost pupil-linked arousal levels 
in a sustained fashion: Pupils remained dilated for much longer than what would be expected 

from an arousal transient (Figure 3, compare all time courses with IRF). Even in our 

comparably slow experimental design, these sustained dilations lasted until long after the next 
experimental event. This implies that the sustained evoked arousal component we 

characterized here contributes significantly to trial-to-trial variations in baseline pupil diameter, 
which have commonly been treated as ‘spontaneous’ fluctuations.  

 Our insights are in line with theoretical accounts of the function of neuromodulatory 
brainstem systems implicated in the regulation of arousal6,9. Recent measurements in rodents, 

monkeys, and humans have shown that rapid pupil dilations reflect responses of 
neuromodulatory nuclei25,28,44. Neuromodulatory systems are interesting candidates for 

broadcasting uncertainty signals in the brain because of their potential of coordinating 

changes in global brain state6,42 and enabling synaptic plasticity in its target networks45,46. 
While pupil responses evoked by decision tasks or micro-stimulation have commonly been 

associated with the noradrenergic locus coeruleus25,28,44,47,48, these studies also found 
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correlates in other brainstem systems25,28,44. In particular, task-evoked pupil responses during 

perceptual choice correlate with fMRI responses in dopaminergic nuclei, even after accounting 
for correlations with other brainstem nuclei (de Gee et al., (2017)25, their Figure 8H).  Several 

other lines of evidence also point to an association between dopaminergic activity and non-
luminance mediated pupil dilations. First, the locus coeruleus and dopaminergic midbrain 

nuclei are (directly and indirectly) interconnected49–51. Second, both receive top-down input 
from the same prefrontal cortical regions49, which might endow them with information about 

high-level computational variables such as belief states. Third, task-evoked fMRI responses 
of the locus coeruleus and substantia nigra are functionally coupled, even after accounting for 

correlations with other brainstem nuclei (de Gee et al., (2017)25, their Figure 8G). Fourth, both 
neuromodulatory systems are implicated in reward processing48,50. Fifth, rewards exhibit 

smaller effects on pupil dilation in individuals with Parkinson's disease than in age-matched 

controls, a difference that can be modulated by dopaminergic agonists52. Future invasive 
studies should establish this putative link between pupil diameter and the dopamine system. 

Recordings from midbrain dopamine neurons in monkey have also uncovered 
dynamics on multiple timescales53,54, in line with our current insights into pupil-linked 

uncertainty signaling. Further, the pattern of pupil dilations measured in the current study 
matched the functional characteristics of dopamine neurons remarkably closely (specifically, 

the pattern of the interaction between task difficulty and accuracy in pre- and post-feedback 
responses)10. However, the pupil responses followed the complement of the computational 

variables (i.e., 1-confidence and 1-prediction error) and the dopamine neurons identified by 
Lak et al., (2017)10. It is tempting to speculate that task-evoked pupil responses track, 

indirectly, the sign-inverted activity of such belief-state modulated dopaminergic system. 

Another alternative is that other brainstem systems driving pupil dilations25,28,44, exhibit the 
same belief-state modulated prediction error signals as dopamine neurons.  

 Our current work has some limitations, but also broader implications, which might 
inspire future work. First, provided that participants had learned the required (constant) 

decision boundary, the current task used did not require them to learn any environmental 
statistic. While prediction error signal such as the one studied here may be essential for 

perceptual learning55,56, the importance of the pupil-linked arousal signals for learning remains 
speculative in the context of our experiment. Future work should address their link to learning. 

In particular, while decision uncertainty can also be read out from behavioral markers such as 

RT3,32,33, no overt behavioral response is available to infer internal variables instantiated in 
response to feedback. Thus, our insight that the post-feedback pupil dilation reports a signal 
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that is known to drive learning in the face of state uncertainty13 paves the way for future studies 

using this autonomous marker for tracking such learning signals in the brain.  
Another important direction for future research is the relationship between pupil-linked 

uncertainty signals and the sense of confidence as reported by the observer38. The Belief 
State Model we used here makes predictions about a computational variable, statistical 

decision confidence11, while being agnostic about the mapping to the sense of confidence 
experienced or reported by the observer. Human confidence reports closely track statistical 

decision confidence in some experiments 33, but suffer from miscalibration in others, exhibiting 
over- or underconfidence57, insensitivity to the reliability of the evidence58, or biasing by 

affective value59.  
 In sum, we have established that internal belief states during perceptual decision-

making, as inferred from a statistical model, are reflected in task-evoked pupil responses. This 

peripheral marker of central arousal can be of great use to behavioral and cognitive scientists 
interested in the dynamics of decision-making and reward processing in the face of 

uncertainty.     

 

Methods 
An independent analysis of these data for the predictive power of pupil dilation locked to motor 

response, for perceptual sensitivity and decision criterion has been published previously25. 
The analyses presented in the current paper are conceptually and methodologically distinct, 

in that they focus on the relationship between Belief State Model predictions and pupil dilation, 
in particular locked to presentation of reward feedback. 

 

Participants 
Fifteen healthy subjects with normal or corrected-to-normal vision participated in the study (6 

women, aged 27 ± 4 years, range 23-37). The experiment was approved by the Ethical 
Committee of the Department of Psychology at the University of Amsterdam. All subjects gave 

written informed consent. All experiments were performed in accordance with the ethical 
guidelines and regulations. Two subjects were authors. Subjects were financially 

compensated with 10 Euros per hour in the behavioral lab and 15 Euros per hour for MRI 

scanning. In addition to this standard compensation, subjects earned money based on their 
task performance: 0-10 Euros linearly spaced from 50-100% accuracy per experimental 

session (i.e. 50% correct = 0 Euros, 75% = 5 Euros, 100% = 10 Euros). At the end of each 
block of trials, subjects were informed about their average performance accuracy and 
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corresponding monetary award. Earnings were averaged across all blocks at the end of each 

session.  
 

Behavioral task and procedure 
Subjects performed a two-alternative forced choice (2AFC) motion discrimination task while 

pupil dilation was measured (Figure 1). Motion coherence varied so that observers performed 
at 70% correct in 2/3 of trials (‘hard’) and at 85% correct in 1/3 of trials (‘easy’). After a variable 

delay (3.5-11.5 s) following the choice on each trial, we presented feedback that was coupled 
to a monetary reward (see ‘Participants’).  

Each subject participated in one training session and four main experimental sessions 
(in the MRI scanner). During the training session, subjects’ individual threshold coherence 

levels were determined using a psychometric function fit with 7 levels, 100 trials per level, 0-

80% coherence. The training session took 1.5 hours and each experimental session lasted 2 
hours. During the experimental sessions, stimuli were presented on a 31.55” MRI compatible 

LCD display with a spatial resolution of 1920 × 1080 pixels and a refresh rate of 120 Hz. 
 The individual coherence levels were validated at the beginning of each experimental 

session in practice blocks (during anatomical scans) by checking that the subject’s average 
accuracy across a block corresponded to 75% correct. If subjects’ average accuracy of a block 

exceeded 75%, the difficulty of the task was increased in the following block by slightly 
decreasing the motion coherence based on individual performance thresholds (in steps of 1% 

in accuracy, equally for both Hard and Easy conditions). During experimental blocks, greater 
motion coherence (i.e. stronger evidence strength) resulted in higher accuracy as well as 

faster responses. Subjects’ accuracy was higher on Easy trials (M = 88.06% correct, SD = 

4.26) compared to Hard trials (M = 71.15% correct, SD = 3.64), p < 0.001. Subjects were 
faster to respond on Easy trials (M = 1.13 s, SD = 0.13) compared to Hard trials (M = 1.22 s, 

SD = 0.14), p < 0.001.  
 Task instructions were to indicate the direction of coherent dot motion (upward or 

downward) with the corresponding button press and to continuously maintain fixation in a 
central region during each task block. Subjects were furthermore instructed to withhold 

responses until the offset of the coherent motion stimulus (indicated by a visual cue). The 
mapping between perceptual choice and button press (e.g., up/down to right/left hand button 

press) was reversed within subjects after the second session (out of four) and was 

counterbalanced between subjects. Subjects used the index fingers of both hands to respond.  
 Each trial consisted of five phases during which random motion (0% coherence) was 

presented, with the exception of the stimulus interval: (i) the pupil baseline period (0.5-7 s); (ii) 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2018. ; https://doi.org/10.1101/275776doi: bioRxiv preprint 

https://doi.org/10.1101/275776
http://creativecommons.org/licenses/by/4.0/


  Revised July 2018 

 19 

the stimulus interval consisting of random and coherent motion for a fixed duration of 0.75 s; 

(iii) the response window (maximum duration was 2.25 s); (iv) the delay period preceding 
feedback (3.5-11.5 s, uniformly distributed across 5 levels); (v) the feedback and the inter-trial 

interval (ITI; 3.5-11.5 s, uniformly distributed across 5 levels). Stimulus onset coincided with a 
visual and auditory cue. The auditory cue was presented for 0.25 s (white noise or pure tone 

at 880 Hz, 50-50% of trials, randomly intermixed). The visual cue was a change in the region 
of fixation from an open to a closed rectangle. The return of the fixation region to an open 

rectangle indicated to subjects to give their response (the surface areas in pixels of the open 
and closed rectangles were held equal in order to assure no change in overall luminance). 

Feedback was presented visually (green/red for correct/error) for 50 frames (0.42 s at 120 
Hz). If subjects did not respond or were too fast/slow in responding, a yellow rectangle was 

presented as feedback on that trial.  

 Each block of the task began and ended with a 12-s baseline period, consisting of a 
fixation region (no dots). Each block of the task had 25 trials and lasted approximately 8 

minutes. Subjects performed between 23 and 24 blocks yielding a total of 575–600 trials per 
subject. One subject performed a total of 18 blocks (distributed over three sessions), yielding 

a total of 425 trials. Data from one session of two subjects (12 blocks in total) and 2 blocks of 
a third subject were excluded from the analyses because of poor eye-tracker data quality or 

technical error. 
   

Visual stimuli 
Dot motion stimuli were presented within a central annulus that was not visible to the subjects 

(grey background, outer diameter 16.8°, inner diameter of 2.4°). The fixation region was in the 

center of the annulus and consisted of a black rectangle (0.45° length). Signal dots moved at 
7.5°/s in one of two directions (90° or 270°). Noise dots were randomly assigned (uniformly 

distributed) to locations within the annulus on each frame, preventing them from being 
trackable. Each frame consisted of 524 white dots (0.15° in diameter) within one visual 

hemifield (left or right; The hemifield remained constant during a block of trials and was 
counterbalanced between blocks. This manipulation was specific for the MRI experiment; the 

two hemifields were averaged in the current analysis). The proportion of ‘signal’ as compared 
with ‘noise’ dots defined motion coherence levels. Signal dots were randomly selected on each 

frame, lasted 10 frames, and were thereafter re-plotted in random locations (reappearing on 

the opposite side when their motion extended outside of the annulus). To prevent tracking of 
individual dots, independent motion sequences (n = 3) were interleaved60. 
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Eye-tracking data acquisition and preprocessing 

Pupil diameter was measured using an EyeLink 1000 Long Range Mount (SR Research, 
Osgoode, Ontario, Canada). Either the left or right pupil was tracked (via the mirror attached 

to the head coil) at 1000 Hz sample rate with an average spatial resolution of 15 to 30 min 
arc. The MRI681 compatible (non-ferromagnetic) eye tracker was placed outside the scanner 

bore. Eye position was calibrated once at the start of each scanning session.  
 Eye blinks and saccades were detected using the manufacturer’s standard algorithms 

(default settings). Further preprocessing steps were carried out using custom-made Python 
software, which consisted of (i) linear interpolation around blinks (time window from 0.1 s 

before until 0.1 s after each blink), (ii) band-pass filtering (third-order Butterworth, passband: 
0.01–6 Hz), (iii) removing responses to blink and saccade events using multiple linear 

regression (responses estimated by deconvolution)61, and (iv) converting to percent signal 

change with respect to the mean of the pupil time series per block of trials. 
 

Quantifying pre- and post-feedback pupil responses  
Pupil dilation is affected by a range of non-cognitive factors51, whose impact needs to be 

eliminated before inferring the relation between central arousal and computational variables 
of interest. We excluded the impact of a number of non-cognitive factors on the pupil 

responses: (i) blinks and eye movements, which were eliminated from the analysis (see 
above); (ii), luminance, which was held constant throughout the trial, with the exception of the 

visual feedback signals, which we controlled for in a separate control experiment: Supp. Fig. 
S2); (iii) motor responses62; and (iv) trial-by-trial variations in decision time that may confound 

pupil response amplitudes25,34 due to the temporal accumulation properties of the peripheral 

pupil apparatus63,64. With the aim of excluding effects related to above mentioned points (iii) 
and (iv), we investigated pupil responses locked to the choice reported by the observer. 

Additionally, only trials with the three longest delay intervals between events (7.5, 9.5 and 11.5 
s; 3/5 of all trials) were used in the main analysis of pupil responses. Specifically, for the pre-

feedback interval, the delay period was between the choice and feedback. For the post-
feedback interval, the delay period was the inter-trial interval. Finally, we performed a control 

analysis in which RTs are removed from pupil responses via linear regression (see Figure 4).  
 For each trial of the motion discrimination task, two events of interest were inspected: 

(a) pupil responses locked to the observers’ reported choice (button press) and (b) pupil 

responses locked to the onset of the feedback. On each trial, the mean baseline pupil diameter 
(the preceding 0.5 s) with respect to the motion stimulus onset and feedback was subtracted 

from the evoked response for each event of interest on each trial. We extracted the mean 
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pupil responses within the sustained time window (3-6 s), defined by the period during which 

the independently measured pupil IRF returned to baseline (at the group level, Figure 3a). The 
uncertainty signal was expected to be largest in the time window just preceding feedback 

based on Urai et al. (2017)3, reflecting the fact that the ‘reward anticipation’ state is highest 
the longer the observer waits for feedback. Therefore, we additionally analyzed pre-feedback 

pupil responses in the 0.5 s preceding feedback.  
 

Model predictions 
In signal detection theory, on each trial a decision variable (𝑑𝑣&) was drawn from a normal 

distribution 𝑁(𝜇, 𝜎), where 𝜇 was the sensory evidence on the current trial and 𝜎 was the level 
of internal noise. In our case, we took 𝜇 to range from -0.5 to 0.5, corresponding to the 

extremes of the motion coherence presented in the main experiment (where 0 = 100% random 

motion and 1 = 100% coherent motion). The internal noise, 𝜎, was estimated by fitting a probit 
psychometric function onto the combined data across all subjects (slope 𝛽 = 7.5). The 

standard deviation, 𝜎, of the 𝑑𝑣 distribution is 0
1
= 	0.133. The decision bound, 𝑐, was set to 0, 

indicating no choice bias for any observer.  
 For each level of evidence strength, 𝜇 = [-0.5, 0.5] in steps of 0.01, we simulated a 

normal distribution of 𝑑𝑣 with 𝜎 = 0.133 with 10,000 trials. The choice on each trial 
corresponded to the sign of 𝑑𝑣&. A choice was correct when the sign of 𝑑𝑣& was equal to the 

sign of 𝜇&. Errors occurred due to the presence of noise in the 𝑑𝑣, which governed choice in 
both of the two models discussed as follows. 

 We simulated two models, Belief State Model and Stimulus State Model, which differed 

only in the input into the function used to compute confidence: whether the confidence is a 
function of 𝑑𝑣& or 𝜇&. Confidence was defined as 

Belief	State	Confidence = 0
C
	×	∑ 𝑓(|𝑑𝑣& − 𝑐|)C

&I0    (1) 

Stimulus	State	Confidence = 0
C
	×	∑ 𝑓(|𝜇& − 𝑐|)C

&I0     (2) 

where n was the number of trials per condition, for which the predictions were generated (see 

below), 𝑓 was the cumulative distribution function of the normal distribution, transforming the 

distance |𝑑𝑣 − 𝑐| or |𝜇 − 𝑐| into the probability of a correct response, for the Belief State or 
Stimulus State Model, respectively 

𝑓(𝑥) = 	 0
N
[1 + erf	( R

S√N
) ]      (3) 

Because we applied equations 1 and 2  separately to each combination of Difficulty (i.e. 

coherence level) and Accuracy (Error and Correct) conditions, 𝑛  depended on the variable 
number of trials obtained in each condition (with the smallest 𝑛 for Easy Error) in our 
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simulations. 

Decision uncertainty was the complement of confidence 
Uncertainty = 1	 − 	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒      (4) 

And the single- prediction error was defined as 
Prediction	error = 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 − 	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒    (5) 

where 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 was 0 or 1.  
Pre-feedback pupil responses have previously been found to reflect decision 

uncertainty3; we therefore expected the post-feedback pupil responses to similarly follow the 
complement of the prediction error (i.e. 1-prediction error). For each trial, we computed the 

binary choice, the level of decision uncertainty, the accuracy of the choice and the prediction 
error. For plotting, we collapsed the coherence levels across the signs of 𝜇, as these are 

symmetric for the up and down motion directions. 

 Custom Python code used to generate the model predictions can be found here: 
https://github.com/colizoli/pupil_belief_states. 

 
Motion energy 

To extract estimates of fluctuating sensory evidence, we applied motion energy filtering to the 
single-trial dot motion stimuli (using the filters described in Urai and Wimmer, 201636). 

Summing the 3D motion energy values over space and time gave us a single-trial estimate of 
the external sensory evidence presented to the subject (positive for upwards, negative for 

downwards motion). We used the absolute value of this signed motion energy signal as our 
continuous measure of sensory evidence strength in statistical analyses. for visualization 

(Figure X), we divided this absolute motion energy metric into 4 equally-sized bins within every 

observer.   
 

Statistical analysis 
Behavioral variables and pupil responses were averaged for each condition of interest per 

subject (N = 15). Statistical analysis of mean differences in pupil dilation of evoked responses 
was done using cluster-based permutation methods65. The average responses in the 

sustained time window were evaluated using a two-way ANOVA with factors: difficulty (2 
levels: Hard vs. Easy) and accuracy (2 levels: Correct vs. Error). All post-hoc and two-way 

comparisons were based on non-parametric permutation tests (two-tailed). 

 
Control experiment 1:  Individual pupil impulse response functions 
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In order to define a sustained component of pupil responses evoked by the events of interest 

during the main experiment, we independently measured subjects’ pupil responses evoked by 
simply pushing a button upon hearing a salient cue. This enabled a principled definition of the 

time window of interest in which to average pupil responses based on independent data. 
Subjects performed one block of the pupil impulse response task at the start of each 

experimental session (while anatomical scans were being acquired). Pupil responses 
following an auditory cue were measured for each subject63. Pupils were tracked while 

subjects maintained fixation at a central region consisting of a black open rectangle (0.45° 
length) against a grey screen. No visual stimuli changed, ensuring constant illumination within 

a block. An auditory white noise stimulus (0.25 s) was presented at random intervals between 
2 and 6 s (drawn from a uniform distribution). Participants were instructed to press a button 

with their right index finger as fast as possible after each auditory stimulus. One block 

consisted of 25 trials and lasted 2 min. Two subjects performed three blocks, yielding a total 
of 75-100 trials per subject. Trials without a response were excluded from the analysis. Each 

subject’s impulse response function (IRF) was estimated using deconvolution (with respect to 
the auditory cue) in order to remove effects of overlapping events due to the short delay 

interval between subsequent trials61.  
 

Control experiment 2: Pupil responses during passive viewing of feedback signals 
Pupil responses evoked by the green and red fixation regions used in the main experiment 

were measured in a separate control experiment (see Supplementary Fig. S2; N = 15, 5 

women, aged 28.5 ± 4 years, range 23-34). Three subjects were authors, two of which 

participated in the main 2AFC task. No other subjects from this control experiment participated 

in the main 2AFC task. Pupils were tracked while subjects maintained fixation at a central 
region of the screen. Stimuli were identical to the main 2AFC task; dot motion consisted of 

only random motion (0% coherence). A trial consisted of two phases: (i) the baseline period 
preceding the onset of a color change (1-3 s, uniform distribution), and (ii) passive viewing of 

the stimuli used for feedback in the main experiment: during which the fixation region changed 
to either red or green (50-50% of trials, randomized) for 50 frames (0.42 s at 120 Hz). This 

was followed by an ITI (3-6 s, uniformly distributed). Participants were instructed that they did 

not need to respond, only to maintain fixation. A block consisted of 25 trials and lasted 3 min. 
Subjects performed eight blocks of this task in the behavioral lab, yielding 200 trials per 

subject.  
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Supplementary Figure S1. RT scales with decision uncertainty.  
Mean reaction times (RT) as a function of task difficulty and accuracy. Task difficulty and 

accuracy interacted. Error bars represent the standard error of the mean (N = 15). ***p < 0.001 
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Supplementary Figure S2. Pupil responses during passive viewing of feedback signals. 

In a control experiment (N = 15, 5 women, aged 28.5±4 years, range 23-34), we investigated 
the time course of potential differences in pupil responses evoked by red as compared with 

green light, regardless of whether these colors correspond to reward feedback during the 
perceptual choice task. Three subjects were authors, two of which participated in the main 

experiment. Stimuli were identical to the main 2AFC task; dot motion consisted of only random 
motion (0% coherence). A trial consisted of a baseline period preceding the onset of a color 

change (1-3 s, uniformly distributed) the red or green dot at fixation, and ITI (3-6 s, uniformly 

distributed). Participants passively viewed the stimuli while maintaining fixation. Pupil 
responses were averaged for each condition of interest per subject (N = 15, 200 trials per 

subject). The light-mediated pupil constrictions evoked by visual feedback cues during main 
task (grey) and in passive viewing control experiment (red, green). The grey bar indicates a 

difference between red- and green-evoked responses, p < 0.05 (cluster-based permutation 
test, see main text). Grey shaded area, ‘sustained’ time window during which pupil dilation 

was averaged, defined by the period during which the pupil impulse response function 
returned to baseline and the shortest delay between events (3-6 s). The results show that (i) 

green and red light both evoked pupil constrictions, and (ii) green light produced slightly larger 
pupil constriction than red light, in an early time window (0.25-2.25 s). The difference in correct 

vs. error trials in pupil constriction after feedback during the main experiment continues after 

this early time window (see Figure 3c). Furthermore, any differences obtained within error and 
correct conditions after feedback during the main experiment cannot be explained by 

differences between the color-evoked responses, as the stimulus color was the same between 
these comparisons.  
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Supplementary Figure S3. Replication of Figure 3 with all trials. The same pattern of pupil 
responses was obtained when all trials, including those in which the interval between response 

and feedback was less than 3 s, were included in the analysis (a-f). For the pupil responses 
in the -0.5 s window preceding feedback (e), a significant interaction between difficulty and 

accuracy was obtained in this later time window (F(1,14) = 4.95, p = 0.043; post hoc 

comparisons: Hard Error vs. Hard Correct, p = 0.072; Easy Error vs. Easy Correct, p = 0.004; 
Hard Error vs. Easy Error, p = 0.074; Hard Correct vs. Easy Correct, p = 0.061). During the 

post-feedback interval, a significant interaction between difficulty and accuracy was obtained 
(f), F(1,14) = 7.89, p = 0.014; Hard Error vs. Hard Correct, p = 0.001; Easy Error vs. Easy 

Correct, p = 0.572; Hard Error vs. Easy Error, p = 0.066; Hard Correct vs. Easy Correct, p = 
0.118).  
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Supplementary Figure S4. Individual psychometric functions and model predictions. 

Based on the individual estimates of internal noise in the data (i.e. sigma) (a), subject-specific 
model predictions were generated for the Belief State and Stimulus State models (b). 

Predictions for the interaction term defined as (Easy Error - Easy Correct) - (Hard Error - Hard 
Correct) based on subject-specific motion coherence levels are shown. 
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Supplementary Figure S5. Feedback-locked responses from Urai et al. (2017). Re-
analysis of the data from our previously published study (available at 

https://doi.org/10.6084/m9.figshare.4300043). This study used a similar visual perceptual 
choice task, however with a number of important differences specified in the following: The 

study used a two-interval forced choice motion coherence discrimination task; multiple levels 

of task difficulty were intermixed, here sorted into two categories (median split) yielding Hard 
and Easy conditions for comparison with the present data; delay intervals between decision 

and feedback, and the inter-trial-intervals were shorter than in the current study; feedback 
(Correct or Error) was presented by two different tones; feedback was not linked to any reward 

(participants’ financial remuneration was not contingent on performance). (a) Evoked pupil 
responses for Correct (green) and Error (red) trials locked to trial-wise (auditory) feedback. 

The black bar indicates correct vs. error effect, p < 0.05 (cluster-based permutation test). 
Because feedback was not presented visually, there was no post-feedback pupil constriction, 

but dilation for all trial types. Error feedback elicited stronger dilations than correct feedback, 

as in the current data (compare with Figure 3c). (b) Pupil responses as a function of task 
difficulty and accuracy locked to feedback. The scaling with evidence strength was similar to 

pre-feedback decision uncertainty, but not to post-feedback prediction error, with smaller 
dilations for Correct Easy than Correct Hard responses (compare to Figure 2c). (c) The 

interaction term for task difficulty with two levels (Easy Error - Easy Correct) - (Hard Error - 
Hard Correct) for feedback-locked responses. The purple bar indicates feedback-locked 

response tested against 0, p < 0.05 (cluster-based permutation test). For all feedback-locked 
responses, the mean pupil diameter across the pre-feedback interval from -0.5 s to 0 s was 

subtracted from the response time courses at the single-trial level. Each condition of interest 
was averaged across subjects (N = 27).  
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