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Abstract

The importance of a mesoscopic description level of the brain has now been well
established. Rate based models are widely used, but have limitations. Recently, several
extremely efficient population-level methods have been proposed that go beyond the
characterization of a population in terms of a single variable. Here, we present a
method for simulating neural populations based on two dimensional (2D) point spiking
neuron models that defines the state of the population in terms of a density function
over the neural state space. Our method differs in that we do not make the diffusion
approximation, nor do we reduce the state space to a single dimension (1D). We do not
hard code the neural model, but read in a grid describing its state space in the relevant
simulation region. Novel models can be studied without even recompiling the code. The
method is highly modular: variations of the deterministic neural dynamics and the
stochastic process can be investigated independently. Currently, there is a trend to
reduce complex high dimensional neuron models to 2D ones as they offer a rich
dynamical repertoire that is not available in 1D, such as limit cycles. We will
demonstrate that our method is ideally suited to investigate noise in such systems,
replicating results obtained in the diffusion limit and generalizing them to a regime of
large jumps. The joint probability density function is much more informative than 1D
marginals, and we will argue that the study of 2D systems subject to noise is important
complementary to 1D systems.

Author Summary

A group of slow, noisy and unreliable cells collectively implement our mental faculties,
and how they do this is still one of the big scientific questions of our time. Mechanistic
explanations of our cognitive skills, be it locomotion, object handling, language
comprehension or thinking in general - whatever that may be - is still far off. A few
years ago the following question was posed: Imagine that aliens would provide us with a
brain-sized clump of matter, with complete freedom to sculpt realistic neuronal
networks with arbitrary precision. Would we be able to build a brain? The answer
appears to be no, because this technology is actually materializing, not in the form of
an alien kick-start, but through steady progress in computing power, simulation
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methods and the emergence of databases on connectivity, neural cell types, complete
with gene expression, etc. A number of groups have created brain-scale simulations,
others like the Blue Brain project may not have simulated a full brain, but they
included almost every single detail known about the neurons they modelled. And yet,
we do not know how we reach for a glass of milk.

Mechanistic, large-scale models require simulations that bridge multiple scales. Here 1

we present a method that allows the study of two dimensional dynamical systems 2

subject to noise, with very little restrictions on the dynamical system or the nature of 3

the noise process. Given that high dimensional realistic models of neurons have been 4

reduced successfully to two dimensional dynamical systems, while retaining all essential 5

dynamical features, we expect that this method will contribute to our understanding of 6

the dynamics of larger brain networks without requiring the level of detail that make 7

brute force large-scale simulations so unwieldy. 8

Introduction 9

The population or mesoscopic level is now recognised as a very important description 10

level for brain dynamics. Traditionally rate based models [1] have been used: models 11

that characterize the state of a population by a single variable. There are inherent 12

limitations to this approach, for example a poor replication of transient dynamics that 13

is observed in simulations of spiking neurons, and various groups have proposed a 14

population density approach. Density methods start from individual point model 15

neurons, consider their state space, and define a density function over this space. The 16

density function characterizes how individual neurons of a population are distributed 17

over state space These methods have been used successfully for one dimensional point 18

model neurons, i.e. models characterized by a single state variable, usually membrane 19

potential. Such models, e.g. based on leaky- (LIF) or quadratic-integrate-and-fire (QIF), 20

exponential-integrate-and-fire neurons, have a long-standing tradition in 21

neuroscience [2–6]. Related approaches consider densities of quantities such as the time 22

since last spike [7, 8], but here too a single variable is considered to be too coarse 23

grained to represent the state of a population. 24

Recently, increased computing power and more sophisticated algorithms, 25

e.g. [5, 9–12], have made the numerical solution of time dependent density equations 26

become tractable for one dimensional neural models. In parallel, dimensional reductions 27

of the density have been developed, usually by expressing the density in terms of a 28

limited set of basis functions. By studying the evolution as a time-dependent weighting 29

of this basis the dimensionality is reduced, often resulting in sets of first order non-linear 30

differential equations, which sometimes are interpreted as ‘rate based’ models [13–15]. 31

The one dimensional density is very tractable: membrane potential distributions and 32

firing rates have been shown to match spiking neuron simulations accurately, 33

particularly in the limit of infinitely large populations, at much lower computational 34

cost than direct spiking simulations: Cain et al. [16] report a speedup of two orders of 35

magnitude compared to a direct (Monte Carlo) simulation. The problem of such one 36

dimensional models is that they leave out details that may affect the population, such 37

as synaptic dynamics and adaptation. Mathematically, the inclusion of variables other 38

than just the membrane potential is no problem, but this increases the dimensionality of 39

the state space, which negates most - but not all - computational advantages that 40

density functions have over Monte Carlo simulation. This problem has led to 41

considerable efforts to produce effective one dimensional methods that allow the 42

inclusion of more realistic features of neural dynamics. Cain et al. have included the 43

effects of conductances by making synaptic effects potential dependent in an otherwise 44

standard one dimensional paradigm. Schwalger et al. [17] consider the distribution over 45
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the last spike times of neurons. Under a quasi-renewal approximation that the 46

probability of a neuron firing is only dependent on the last spike time and recent 47

population activity, they are able to model the evolution of the last spike time 48

distribution and the population activity resulting in a system of one dimensional 49

distributions. Both groups have modeled a large-scale spiking neuron model of a cortical 50

column, achieving impressive agreement between Monte Carlo and density methods. 51

Another attempt to reduce the dimensionality of the problem are moment-closure 52

methods [18], which we will not consider here. Recently, Augustin et al have presented 53

a method to include adaptation into a one-dimensional density approach [15]. 54

There have been a number of studies of two dimensional densities [19–21]. They 55

have made clear that analyzing the evolution of the joint probability density provides 56

valuable insight in population dynamics, but they are not generic: it is not explicit that 57

the method can be extended to other neural models without recoding the algorithm. 58

Here, we present a generic method for simulating two dimensional densities. Unlike 59

the vast majority of studies so far, it does not start from a Fokker-Planck assumption 60

but starts from the master equation of a point process (usually, but not necessarily) 61

Poisson, and models the joint density distribution without dimensional reduction. We 62

believe the method is important given the trend in theoretical neuroscience to reduce 63

complex realistic biophysical models to effective two dimensional model neurons. 64

Adaptive-exponential-integrate-and-fire (AdExp), Fitzhugh-Nagumo and Izhikevich 65

neurons are examples of two dimensional model neurons that have been introduced as 66

realistic reductions of more complex conductance based models. It is important to study 67

these systems when subjected to noise. 68

The method is extremely flexible: upon the creation of a novel neural model (2D) we 69

will be able to simulate a population subjected to synaptic input without writing a 70

single line of new code. We require the user to present a visualization of the model in 71

the form of the streamlines of its vector field, presented in a certain file format. Since 72

these files can be exchanged, model exchange does not require recoding. As long as this 73

vector field behaves reasonably - the qualification of what constitutes reasonable is a 74

main topic of this paper - the method will be able to take it as input, and can be 75

guaranteed to deliver sensible simulation results. The method is highly visual: it starts 76

off with a user or stock provided visualization of a neural model, and uses 77

computational geometry to calculate the transition matrices involved in modeling 78

synaptic input, which is represented as a stochastic process. We will argue that with a 79

visualization in hand one can often predict how noise will drive the system, and run a 80

simulation to confirm these predictions. We will also show that the visualization gives a 81

good overview of possible shapes of dynamics. 82

The method cannot compete in speed with effective one dimensional density 83

methods, but holds up well compared to direct spiking neuron simulations. Since very 84

few assumptions are used, it can be used to examine the influence of approximations 85

made in other methods. For example, because no diffusion approximation is made, we 86

are able to examine the influence of strong synapses, which can lead to a marked 87

deviation from diffusion results [11,12]. We can also model populations that are in 88

partial synchrony. 89

This work captures most one dimensional population density techniques, as they are 90

a special case of two dimensional models, in particular the method by Cain et al., and 91

we also replicate results obtained in the diffusion limit as numerical solutions of 92

Fokker-Planck equations with high precision. Although we have not tried this, theory 93

suggests that the method should work just as well when escape noise is used [7]. With 94

the ability to exchange neural model files, without having to recode, it is easy to check 95

how different neural models generate dynamics in similar circuits. A software 96

implementation of this method is available at http://miind.sf.net with a mirror 97
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repository on github https://github.com/dekamps/miind. 98

Since this is a methods paper, the Material and Methods section contains the 99

main result, and we will present this first so that the reader may form an understanding 100

of how the simulation results are produced. In the results section, we will show that our 101

method works for a number of very different neural models. We will also show that 102

strong transients, which occur in some models as a consequence of rapidly changing 103

input, but not in others, can be understood in geometrical terms when considering the 104

state space of the neural model. 105

Materials and Methods 106

We will consider point model neurons with a two dimensional state space. In general 107

such models are described by a vector field ~F , which is defined on an open subset of R2. 108

The equations of motion of an individual neuron are given by: 109

τ
d~v

dt
= ~F (~v) (1)

where τ is the membrane time constant of the neuron. We will adapt the convention 110

that the first coordinate of ~v always represents a neuron’s membrane potential v and will 111

refer to the second coordinate of ~v as w, as is conventional for the adaptation variable in 112

the AdExp model and the recovery variable in the Fitzhugh-Nagumo model (although 113

not in the conductance-based model). Usually boundary conditions are imposed. When 114

a threshold potential Vth is present, part of ∂M , the edge of M , overlaps with V = Vth. 115

This part of ∂M is called the threshold. When a neuron state approaches the threshold 116

from below, the state is reset, sometimes after a refractive time interval τref during 117

which its state is effectively undefined. The reset results in coordinate v being set to a 118

reset potential Vreset, whilst the second coordinate remains unaffected if no refractive 119

interval or period is considered. If there is a refractive period, there are variations: 120

sometimes the second coordinate is kept constant, sometimes further evolution 121

according to Eq. (1) for a period of τref is considered and the reset value of the second 122

coordinate is taken to be the resulting value of w(tspike + τref ), where tspike is the time 123

when the neuron hits threshold. The neuron itself emits a spike upon hitting the 124

threshold. This description fits many neuron models: e.g. adaptive-integrate-and-fire; 125

conductance-based leaky-integrate-and-fire; Izhikevich [44], and many others. 126

We are interested in populations of neurons. We consider a population to be 127

homogeneous: all neurons have the same parameters, and statistically see the same 128

input: they are subject to input spike trains generated from the same distribution. 129

Under those considerations one can define a density, ρ(~v, t), over state space for a 130

population that is sufficiently large. ρ(~v)d~v is defined as the fraction of neurons in the 131

population whose state vector is in d~v. For spike trains generated by a Markov process, 132

the evolution equation of the density obeys the differential Chapman-Kolmogorov 133

equation: 134

∂ρ

∂t
+

∂

∂~v
· (
~Fρ

τ
) =

∫
M

d~v′
{
W (~v | ~v′)ρ(~v′)−W (~v′ | ~v)ρ(~v)

}
, (2)

where ~F and τ are from the neuron model as stated in Eq. (1). 135

Input spikes will cause instantaneous responses in the state space of neurons. For
delta synapses, for example, an input spike will cause a transition from membrane
potential V to membrane potential V + h, where h is the synaptic efficacy, which may
be drawn from a probability distribution p(h). In current based models the jump may
be in the input current, and in conductance based models, studied below, the jump is in
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conductance, rather than membrane potential. Nonetheless, in all of these cases the
input spikes cause instantaneous transitions from one point in state space to another.
The right-hand side of Eq. 2 expresses that the loss of neurons in one part of state space
is balanced by their reappearance in another after the jump. As a concrete example,
consider input spikes generated by a Poisson point process with delta synapses:

W (v′ | v) = νδ(v′ − v − h) + (1− ν)δ(v − v′),

where ν is the rate of the Poisson process and h is the synaptic efficacy, which for 136

simplicity we will consider here as a single fixed value. Eq. 2 reduces to: 137

∂ρ

∂t
+

∂

∂~v
· (
~Fρ

τ
) = ν(ρ(v − h, v1, · · · , vN−1)− ρ(v, v1, · · · vN−1)), , (3)

where the vi are the components of ~v. 138

At this stage, often a Taylor expansion is made for the right-hand side of the 139

equation up to second order, which leads to a Fokker-Planck equation. We will not 140

pursue this approach, instead we will point out, as observed by de Kamps [10,12] and 141

Iyer et al. [11] that the method of characteristics can be used to bring Eq. 3 into a 142

different form. Consider a line segment l in state space, and pick a point x ∈ l, x ≡ ~v0 143

at t = 0. The system of ordinary differential equations Eq. 1 defines a curve that 144

describes the evolution of point ~v0 through state space. This curve is an integral curve 145

of the vector field ~F (~v) and can be found by integration. Writing this curve as ~v(t, ~v0), 146

we can introduce a new coordinate system: 147

v → v′ = ~v(t, ~v0) (4)

t→ t′ = t

In this new coordinate system Eq. 2 becomes: 148

dρ(~v′, t)

dt
= ν(ρ(v′ − h′, v′1, · · · , v′N−1)− ρ(v′, v′1, · · · v′N−1), (5)

which has the form of a Poisson master equation. This implies that rather than solving 149

the partial integro-differential equation Eq. 2, we have to solve the system of ordinary 150

differential equations Eq. 5. This system describes mass transport from bin to bin and 151

no longer has a dependency on the gradient of the density profile: the drift term in Eq. 152

2 has been transformed away. Equation 5 describes mass transport from one position to 153

another. The distance between these positions is now immaterial and this means that 154

arbitrary large synaptic efficacies can be handled. 155

The observation that for a system that co-moves with the neural dynamics all mass 156

transport is determined by the stochastic process is important. It suggests that the 157

right-hand side of Eq. 5 - representing the master equation of a Poisson process - can be 158

replaced by more general forms without affecting the left-hand side of the equation that 159

allows use of the method of characteristics. Indeed, recently we have considered a 160

generalization to spike trains generated by non-Markov processes [23]. This generalizes 161

the right-hand side of Eq. 2, but leaves the left-hand side unchanged, and in [23] we 162

show explicitly that for one dimensional densities the method discussed here extends to 163

non-Markov renewal processes. The generalization of Eq. 2 requires a convolution over 164

the recent history of the density, using a kernel whose shape is dependent on the 165

renewal process. 166

Consider a two dimensional state space with coordinates v and w. The coordinate 167

transformation just described defines a mapping from point x on a line segment of 168

initial points to a point in state space: 169

M : (x, t)→ (v, w) (6)
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Fig 1. A: Vector field for a conductance based model, along with a few integral curves.
At very low conductance, there is a drive towards equilibrium regardless of the initial
point. At higher conductance values the drive is dominated by a trend towards the
equilibrium potential of the excitatory synapse (0 mV). The blue integral curves
demonstrate this. The red integral curve represents a neuron that hits the threshold
potential (-55 mV), and subsequently undergoes a reset to the reset potential (-65 mV).
This neuron will emit a spike. After reset, it will not hit threshold again and eventually
asymptotes to equilibrium potential (-60 mV). B An example grid for the conductance
based model. The grid is built from strips. Strip numbers are arbitrary, as long as they
are unique, but it is convenient to number them in order of creation. By construction,
cell numbers within a strip are ordered by the dynamics: neurons that are in cell
number j of strip i at time t are in cell number j + 1 mod nj of strip j at time t+ ∆t,
where nj is the number of cells in that strip.

This has two implications: first, the evolution of the initial line segment l over a given 170

fixed period of time defines a region of state space. The state space relevant to a 171

simulation may have to be built from several such regions. Second, the mapping is 172

time-dependent: Eq. 4 must be solved in a coordinate system that itself is subject to 173

dynamics: that of the deterministic neuron. This suggests a solution consisting of two 174

interleaved steps: one accounting for deterministic movement of neurons, and one where 175

Eq. 5 is solved numerically. We will now describe this process in detail. 176
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State Space Models of Neuronal Populations 177

As an example, we consider a conductance based model with first order synaptic
kinetics following [20]. It is given by:

τ
dV

dt
= −gl(V − EL)− ge(t)(V − Ee) (7)

τe
dge
dt

= −ge + Isyn(t) (8)

Numerical values are taken from [20], and given in Table 1. Isyn(t) represents the 178

influence of incoming spikes on the neurons. A conventional representation of such a 179

model is given by a vector field, see Fig. 1. 180

• A number of initial points are taken:

I = {V = Vmin; i = 0, · · ·ng, g = i∆g | (V, g)} ,

for given fixed Vmin, ng,∆g 181

Consider a two dimensional dynamical system defined by a vector field. A point in
state space will be represented by a two dimensional vector ~v. A grid is constructed
from strips. As mentioned previously, usually one dimension is a membrane potential,
and we will denote coordinates in this dimension by a small letter v. The second
dimension can be used to represent parameters such as adaptation, conductance, and
will be represented by w. A strip is constructed by choosing two neighbouring points in
state space, e.g. ~v0(t = 0), ~v1(t = 0), and integrating the vector field for a time T that is
assumed to be an integer multiple of a period of time ∆t, which we assume to be a
defining characteristic of the grid. Let T = n∆t, then two discretized neighbouring
characteristics

S = {~v0(t = 0), · · · , ~v0(t = n∆t); ~v1(t = 0), · · · , ~v1(t = n∆t)}

define a strip. Within a strip, the set of points

Ci = {~v0(t = i∆t), ~v0(t = (i+ 1)∆t), ~v1(t = (i+ 1)∆t), ~v1(t = i∆t)}

defines a cell, which is quadrilateral in shape. The quadrilateral should be simple, but 182

not necessarily convex (Fig. 2 A). We reject cells with less than a certain area. As we 183

will see in concrete examples, boundaries in state space are approached through areas of 184

vanishing measure. The area cut tends to remove complex cells, and we will reject them 185

in general. An example of a grid generated by this procedure is given in Fig. 3. 186

Strip numbers are arbitrary, as long as they are unique, but it is convenient to 187

number them in order of creation. In the remainder of the paper, we will assume that 188

strip numbers created by the integration procedure start at 1, and are consecutive, so 189

that the numbers i ∈ {1, · · · , Nstrip} with Nstrip the number of strips, each identify a 190

unique strip. Strip no. 0 is reserved for stationary points. There may be 0 or more cells 191

in strip 0. The number of cells in strip i denoted by ncell(i). We refer to the tuple (i, j), 192

with i the strip number and j the cell number, as the coordinates of the bin in the grid. 193

Ncells is the total number of cells in the grid. 194

For all strips i (i > 0 by construction), cell numbers within a strip are ordered by 195

the dynamics: neurons that are in cell number j of strip i at time t are in cell number 196

j + 1 mod nj of strip j at time t+ ∆t, where nj is the number of cells in that strip. 197

Neurons that are in a cell in strip no. 0 are assumed to be stationary and do not 198

move through the strip. Examples of cells in this strip are reversal bins. The handling 199

of stationary bins will be discussed below. 200
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Fig 2. A: As a result of the integration procedure simple quadrilaterals (left, middle)
should emerge, which are usually convex (left), except near stationary points or limit
cycles where concave quadrilaterals (middle) can be formed. Complex, i.e.
self-intersecting, quadrilaterals can occur around strong non linearities, for example the
crossing of nullclines. These definitions hold for any polygon. B: The problem of
defining the Master equation: we can easily calculate how much mass per unit time
leaves a given bin (i, j). This mass will reappear at a position h away from the original
bin, where h is the synaptic efficacy. In the figure bin (13,7) is translated along vector
(0, 0.1). This corresponds to neurons that have received an input spike, and therefore
are experiencing a jump in conductance. Most neurons that are in bin (13,7), will end
up in bin (13, 5) and (14,4), with some in bin (13,6) and (14,6). So
C(0.,0.1)(13, 7) = {(13, 5), (14, 5), (13, 6), (14, 6)}. C: Some events will end up outside of
the grid after translation. D: Fiducial quadrilaterals can be used to test where they
have gone missing, and where is the best place to reassign them to the grid.

Representing a Density Profile 201

A simulation progresses in multiple steps of ∆t, so the current simulation time tsim is
specified by an integer k, defined by:

tsim = k∆t, k = 0, 1, 2, · · ·

The density profile can be represented in an array M of length Ncells. Each element of 202

this array is associated with the grid as follows. Let ccell(0) ≡ 0 and for 0 < i ≤ Nstrip 203

let ccell(i) ≡ ccell(i− 1) + ncell(i− 1), so ccell(i) represents the total number of cells in 204

all strips up to strip i. Now define the index function I: 205{
i = 0 I(i, j, k) = j
i > 0 I(i, j, k) = ccell(i− 1) + (j − k) mod ncell(j)

(9)

This is a time dependent mapping: its effect is a forward motion of probability mass 206

with each forward time step. We will refer to the updating of the mapping by 207

incrementing k as a mass rotation as probability mass that reaches the end of a strip, 208
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Fig 3. Probability mass is maintained in a mass array. In general, mass does not move,
except when the mass has moved beyond the end of a strip. The relationship between
the mass array and the mesh is updated with each time step, resulting in the apparent
motion of probability mass through the mesh (top left and top right). At the end of
each simulation step, probability mass is removed from each first bin of the strip, and
added to a special quadrilateral (bottom): the reversal bin. Mass does not move from
here, and only synaptic input can cause mass to leave this bin.

will reappear at the beginning of the strip at the next time step. This effect is almost 209

always undesirable as it would effect a jump wise displacement of probability mass. In 210

most models this can be prevented by removing the probability mass from the 211

beginning of each strip and setting the content of this bin to 0, and adding the removed 212

mass to a another bin. A typical example arises in the case of integrate-and-fire models. 213

Here, there is usually a reversal point. Such a point can be emulated by creating a small 214

quadrilateral, and making this cell number 0 in strip number 0. 215

The procedure of mapping probability mass from the beginning of a strip to special 216

bins in state space is called a reversal mapping. It consists of a list of coordinate pairs. 217

The first coordinate labels the bin where probability will be removed, the second 218

coordinate labels the bin where the probability will reappear. The concept of reversal 219

mapping extends to other neural models - we will consider 220

adaptive-exponential-integrate-and-fire (AdExp), Fitzhugh-Nagumo, and 221

quadratic-integrate-and-fire neurons. All of these models need a prescription for what 222

happens with the probability mass after reaching the end of a strip, and we will refer to 223

this as the reversal mapping, even if the model does not really have a reversal bin, to 224

contrast it from the threshold mapping. Although handling a threshold is similar, 225

interaction with synaptic input means that the mapping requires extra precautions. We 226

will discuss this in the section below. 227

The whole process of advancing probability through a grid by means of updating a 228

relationship with a grid is illustrated in Fig. 2. Up to this point we have only referred to 229
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probability mass. If a density representation is desired, one can calculate the density by: 230

ρ(i, j) =
M(i, j, k)

A(i, j)
, (10)

where A(i, j) is the area of quadrilateral (i, j), and M(i, j, k) is the probability mass 231

present in the quadrilateral (i, j) at simulation time k∆t.We note that this procedure 232

implements a complete numerical solution for the advective part of Eq. 2. 233

Handling Synaptic Input 234

We will assume that individual neurons will receive Poisson spike trains with a known 235

rate for a known synaptic distribution of the post synaptic population. Without loss of 236

generality we will limit the exposition to a single fixed synaptic efficacy; continuous 237

distributions can be sampled by generating several matrices, one for each synaptic 238

efficacy, and adding them together. Adding the individual matrices, which are band 239

matrices, and very sparse, results in another band matrix, still sparse, albeit with a 240

slightly broader band. Overall run times are hardly affected unless really broad synaptic 241

distributions are sampled. 242

A connection between two populations will be defined by the tuple (Ncon, h, τdelay). 243

Here Ncon is the number of connections from presynaptic neurons onto a representative 244

neuron in the receiving population, τdelay the delay in the transmission of presynaptic 245

spikes and h the synaptic efficacy. The firing ν rate is either given, or inferred from the 246

state of the presynaptic population, but in both cases assumed to be known. For the 247

population these assumptions lead to a Master equation: 248∫
V

d~v
dρ(~v, t)

dt
= ν

{∫
Vh

d~v′ρ(~v′, t)−
∫
V

d~vρ(~v)

}
, (11)

where V is an area of state space and Vh the same area, translated by an amount h in 249

dimension i. It is dependent on the neuronal model in which variable the jump takes 250

place. In AdExp the jump is in membrane potential, in conductance based models it is 251

in the conductance variable. Here, we will discuss the problem using conductance based 252

neurons as an example, but the methodology applies to any model. 253

Eq. (11) determines the right hand side of Eq. (2), and the stage is set for numerical 254

solution. The left hand side of Eq. (2) describes the advective part, and is purely 255

determined by the neuron model, which ultimately determines the grid. We already 256

have described the movement of probability mass due to advection during a time step 257

∆t, and need to complete this by implementing a numerical solution for Eq. (11). 258

Eq. (11) describes the transfer of probability mass from one region of state space to 259

another. We will assume that the grid we use for the model of advection is sufficiently 260

fine, so that the density within a single bin can be considered to be constant, and 261

choose area V in Eq. (11) to coincide with our grid bins. We approximate (11) by: 262

dM(i, j, k)

dt
= ν

 ∑
(p,q)∈Ch(i,j)

αp,qM(p, q, k)−M(i, j, k)

 (12)

The bin (i, j) translated by a distance h will cover a number of other bins of the grid. 263

Let (p, q) be a bin partly covered by the translated bin (i, j) and let αp,q be the fraction 264

of the surface area of the translated bin that covers bin (p, q). (By construction 265

0 < αp,q ≤ 1.) The set Ch(i, j) is defined as the set of tuples (p, q), for all such bins, i.e. 266

those bins that are covered by translated bin (i, j) (and no others). We will refer to 267

Ch(i, j) as the displacement set. Usually, the displacement is in one dimension only, 268
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where this is not the case we will write C~h(i, j). The problem of determining Ch(i, j) is 269

one of computational geometry that can be solved before simulation starts. It is 270

illustrated in Fig. 2 B, where the grid of the conductance based model is shown. 271

This problem is easily stated but hard to solve efficiently. Conceptually, a Monte 272

Carlo approach is simplest, and since the computation can be done offline - before 273

simulation starts - this approach is preferable. It is straightforward for a given bin of 274

the grid (i, j) to generate random points that are contained within its quadrilateral. 275

Assume these points are translated by a vector ~h. It is now a matter of determining in 276

which bin a translated point falls. In order to achieve this the grid is stored as a list of 277

cells. Each cell, being a quadrilateral, is represented by a list of four coordinates. 278

During construction of the grid, vertices of a cell are stored in counter clockwise order. 279

When a quadrilateral is convex, and the vertices are stored in counter clockwise
order, the × operator defined by:

×
(
v1
v2

)
≡
(
−v2
v1

)
results in an “inward” pointing normal ~n. If the position vector of a point has a positive 280

scalar product with the ’inward’ normal of all four line segments that define the 281

quadrilateral the point is inside, otherwise it is outside. These half line tests are cheap 282

and easy to implement. If the quadrilateral is not convex, but simple, it can be split 283

into two triangles which are convex. 284

We perform linear search to find a grid cell that contains the translated point, or to 285

conclude there is no such cell. Better efficiency can be obtained with k-d trees, but we 286

have found the generation of translation matrices not to be a bottleneck in our 287

workflow, and linear search allows straightforward brute force parallelization. At most 288

one cell will contain the translated point. For now, we will assume that the translated 289

point will be inside a given bin (p, q). Later, for concrete neuron models we will discuss 290

specific ways of handling transitions falling outside the grid. If bin (p, q) is not 291

represented in C~h(i, j), an entry for it will be added to it. The process is then repeated, 292

in total Npoint times. For each cell (p, q) represented in C~h(i, j) a count n(p,q) is 293

maintained and αp,q is estimated by: 294

αp,q =
n(p,q)

Npoint
(13)

Equation 12 is of the form
dM
dt

= T ·M,

where T is called the transition matrix. The displacement set determines the transition 295

matrix. 296

Here, we have described a Monte Carlo strategy that uses serial search to determine 297

the set C~h(i, j) and consequently the constants αp,q for bins (p, q) in that set. With 298

these constants determined, it is a straightforward matter to solve Eq. 12 numerically. 299

The main algorithm now consists of three steps: updating the index relationship Eq. 300

9, which constitutes the movement of probability mass through the grid during a time 301

interval ∆t; implementing the reversal mapping; solving Eq. 12 during ∆t. The order of 302

these steps matters. Implementing the reversal bin after the master equation may lead 303

to removing probability mass from the beginning of the strip that should have been 304

mapped to a reversal bin. 305

Handling a Threshold 306

Many neuron models incorporate a threshold of some sort. For example, in the original 307

conductance based model by [20], a threshold of -55 mV is applied. This corresponds to 308
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a vertical boundary in the (V, g) plane (see Fig. 1). Neurons that hit this threshold 309

from lower potentials generate a spike and are taken out of the system. After a period 310

τref , they are reintroduced at (Vreset, g(tspike + τref )), where tspike is the time when 311

the neuron hits the threshold, and g(tspike) is the conductance value the neuron had at 312

the time of hitting the threshold. In this model, following [20], it is assumed that the 313

conductance variable continues to evolve according to Eq. 8, without being affected by 314

the spike. 315

We handle this as follows. For each strip it is determined which cells contain the 316

threshold boundary, i.e. at least one vertex lies below the threshold potential and at 317

least one lies on or above the threshold potential. The set of all such cells is called the 318

threshold set. In a similar way a reset set is constructed, the set of cells that contain the 319

reset potential. In the simplest case, for each cell in the threshold set the cell in the 320

reset set is identified that is closest in w to that of a threshold cell. The threshold cell is 321

then mapped to the corresponding reset cell and the set of all such mappings is called 322

the reset mapping. 323

Sometimes, the value of w is adapted after a neuron spikes. In the AdExp model, for 324

example, w → w + b after a spike. In this case, we translate each cell in the reset set in 325

direction (0, w), and calculate its displacement set, just as we did for the transition 326

matrix. The reset mapping is then not implemented between the threshold cell and the 327

original reset cell, but to the displacement set of that reset cell. We do this for all 328

threshold cells and thus arrive at a slightly more complex reset mapping. 329

Due to the irregularity of the grid, it may happen that some transitions of the Master 330

equation are into cells that are above the threshold potential. This will lead to stray 331

probability above threshold, if not corrected. We correct for this during the generation 332

of the transition matrix. If during event generation a point ends up above threshold 333

after translation, we look for the closest threshold cell for this point. The event is then 334

attributed to that threshold cell, and not the stray cell above threshold. In this way 335

transitions from below or on threshold to cells above threshold are explicitly ruled out. 336

The reset mapping must be carried out immediately after the solution of the master 337

equation, before the next update of the index function. 338

Gaps in State Space 339

All grids are finite. For that reason alone the Monte Carlo procedure described above 340

will result in translated points that cannot be attributed to any cell. Those events are 341

lost and will lead to unbalanced transitions: mass will flow out of bins near the edge, 342

but will not reappear anywhere else in the system and there is a possibility that mass 343

evaporates from the system. This problem does not occur just at the edges, but also in 344

the vicinity of stationary points. We will see that some dynamical systems display 345

strong non linearities that will make it impossible to cover state space densely. The 346

ability to deal with such gaps in state space is the most important technical challenge 347

for this method. 348

In Fig. 2 we show how to handle these gaps. Figure 2 B shows that a cell which is 349

translated by 5 mV can fall across a small cleft not part of the grid. We cover this gap 350

by a quadrilateral (in green): a fiducial cell. An event that is not within the grid, but 351

inside this quadrilateral needs to assigned to a mesh cell, otherwise the transition 352

matrix will not conserve probability mass. It is straightforward to maintain a list of grid 353

cells that have at least one vertex in the fiducial bin. We assign the event to the grid 354

cell that is closest along the projection in the jump direction. 355

Figure 2 D shows the total number of events lost in the generation of transition 356

matrix corresponding to a jump of 5 mV, thereby revealing gaps in state space. The 357

orange quadrilaterals are the fiducial bins. After reassignments all events fall inside the 358

grid and probability will be balanced. 359
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Marginal Distributions 360

It is straightforward to calculate marginal distributions. Again, we use Monte Carlo 361

simulation to generate points inside a given quadrilateral (p, q). We then histogram 362

these points in v and w. For each bin i in the v histogram, we can now estimate a 363

matrix element α(p,q),i by dividing the number of points in bin i by the total number of 364

points that were generated. For a given distribution, one can now multiply the total 365

mass in bin (p, q) by α(p,q),i to find how much of this mass should be allocated to bin i. 366

If one does this for every cell (p, q) in the grid, one will find the distribution of mass 367

over the marginal histogram, and can calculate the marginal density from this. 368

Results/Discussion 369

We present a succession of population simulations of four neuronal models. A neuron 370

with a single excitatory conductance has a simple state space, and its simulation 371

provides few problems. It is a familiar model and therefore a good one to introduce and 372

demonstrate the formalism. We then move to one dimensional results and replicate 373

some familiar results for LIF and QIF neurons: density profiles, transient firing rates 374

and gain curves. This allows us to quantitatively examine some of the strengths and 375

weaknesses of the method. We then discuss two models that show a progression of 376

difficulty in covering state space: AdExp and Fitzhugh-Nagumo. Although a methods 377

paper, we feel that nonetheless we can infer a number of general principles that run as a 378

common thread through our use cases, and we present them here. 379

• We obtain a general method for simulating populations of spiking point model 380

neurons with a one or two dimensional state space, subject to Poisson spike trains. 381

When restricted to one dimension, the method is equivalent to that published by 382

de Kamps (2013) and Iyer et al. (2013) and is very efficient, as the work of Cain 383

et al. demonstrates. The method is able to replicate earlier work on 2D models, 384

but is more general, as first, it is able to accept novel models in the form of a grid 385

file and therefore does not require source code changes when a new model is 386

considered, and second, does not rely on the diffusion approximation, but allows a 387

variety of stochastic processes to be considered. The method is most efficient for 388

synaptic efficacies and firing rates commensurate with what is found in the brain, 389

but can be pushed to reproduce diffusion results, although dedicated numerical 390

strategies for solving the ensuing 2D Fokker-Planck equations will be more 391

efficient. Nonetheless, the possibility to study the diffusion limit as a special case 392

is a useful property of the method. 393

• The method is insensitive to the gradient density, and will accurately model delta 394

synapses and handle discontinuities of the density profile, and is able to model 395

populations that are in partial synchrony, allowing the modelling of the 396

decorrelation process itself. 397

• The neural model will be presented in a file representation of a state space 398

diagram. For some models it is hard to cover state space completely due to 399

singularities, for example when approaching nullclines. Such parts of state space 400

are effectively forbidden for endogenous deterministic neural dynamics, but noise 401

may place events there, moving neurons outside state space. We find there are 402

two cases where this happens: first, on the approach of one of the nullclines the 403

system approaches a stable equilibrium or a limit cycle. The system does not 404

contain enough information in one of the two dimensions and the grid cannot be 405

meaningfully continued. We find that the motion of probability mass inside such a 406
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region can be inferred from the dynamics around it. A limit cycle, for example 407

can be inferred from the grid closing onto it, even when we cannot extrapolate the 408

grid directly to the limit cycle. In a similar way we can capture the motion of 409

mass towards a stable equilibrium: when motion has stopped in one direction, but 410

still continues in the other, we find that placing neurons that are deposited into 411

accessible regions by synaptic input in nearby parts of state space accurately 412

captures the overall motion of mass around these regions. Similar considerations 413

apply around unstable regions of state space, and because we can time invert the 414

dynamical system when constructing the grid, we find that these problems can be 415

handled in much the same way. 416

• Transient responses can be understood in geometrical terms. If a boundary, either 417

a reflecting or an absorbing one, is present in state space, the population will 418

exhibit a strong oscillatory response (“ringing”) when the input is strong enough 419

to push neurons towards the boundary and noise is too weak to disperse neurons 420

before reaching it. The converse is also true: if despite the presence of a boundary, 421

state space allows neurons a way around it, strong transients will be absent. Rate 422

based models based on first order differential equations on using a gain function 423

will model these transients incorrectly, or not at all. 424

• The method can describe the version of Tsodyks-Makram synapses used by 425

Vasilaki and Giugliano [22] in a model of network formation. 426

• By far the most challenging grid to make was that of a Fitzhugh-Nagumo neuron, 427

because the approach to the limit cycle in part also implies an approach to the 428

nullcines of the system, leading to a loss of information in one dimension. Where 429

the nullclines cross this problem is exacerbated. We find that we have to imply 430

the limit cycle: we define the grid in the approach to the limit cycle and infer the 431

deterministic dynamics in an area around the limit cycle from the surrounding 432

grid cells. 433

Conductance Based Neurons 434

We consider neurons with a single excitatory synapse as given by Eq. (8). In Fig. 4 we 435

present first the simulation of a jump response: a group of neurons is at rest at time 436

t = 0 and all neurons are at (V = −65 mV, g = 0). From t = 0 onward the neurons will 437

receive Poisson distributed input spike trains with a rate of 1000 Hz. A neuron that 438

receives an input spike will undergo an instantaneous state transition and move up in 439

conductance space. Until it receives a further input spike it will start to move through 440

state space under its endogenous neural dynamics: the neuron will depolarize and 441

simultaneously reduce its conductance. The process was described in Sec. Materials 442

and Methods: State Space Models of Neuronal Populations. 443

The density is represented as a heat plot: the maximum density is white, lower 444

density areas are shown as cooler colours from white through yellow to red. The color 445

scale is logarithmic, so red areas represent very low probability. Figure 4 A) shows the 446

evolution of the density of a population that was at equilibrium at t = 0 at four points 447

in time t = 1, 5, 15 and 28 ms by which time steady state has been reached. We see 448

probability mass moving mainly upwards under the influence of incoming spike trains. 449

We will see that the mass ‘rotates’ in the direction of the threshold; and finally a steady 450

state is realized: a state where the density profile has become stationary. We also have 451

simulated a group of 10000 neurons and modeled incoming Poisson spike trains for each 452

one. We keep track of their position in (V, g) space and represent their state at a given 453

time as points in state space. The cloud of points clearly tracks the white areas of the 454

density. The shot noise structure is clearly visible in the band structure early in the 455
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Fig 4. A: The evolution of the joint probability density function at four different points
in time (1, 5, 15, 28 ms) in (V, g) space (V membrane potential, g conductance) for
synaptic efficacy J = 0.05, Poisson generated input spike train with rate ν = 1000
spikes per second. B: The resulting population firing rate, calculated from the fraction
of mass crossing threshold per unit time as a solid black line. Spiking neuron simulation
results shown by red markers. Onset and resulting firing rates are in agreement
throughout. Unlike one dimensional neural models, conductance based models produce
almost no overshoot.

simulation where neurons are present at multiples of the synaptic efficacy, reflecting 456

that some neurons have sustained multiple hits by incoming spike trains. 457

As neurons are moving through threshold, they themselves emit a spike and 458

contribute to the response firing rate of the population, defined as the fraction of the 459

population that spikes per time interval, divided by that time interval. We can therefore 460

calculate the response firing rate from the amount of mass moving through threshold 461

per unit time. We show the jump response of the population as a plot of populating 462

firing rate as a function of time in Fig. 4 B. The firing rate calculated from the density 463

matches that calculated from the Monte Carlo simulation very well. Interestingly, there 464

is almost no overshoot in the firing rate, as also noted by Richardson (2004), who 465

studied this system using Fokker-Planck equations. Although we study shot noise, in 466

the absence of a fundamental scale in the g direction, the central limit theorem ensures 467

that the marginal distribution in g is Gaussian within a few milliseconds. It is clear that 468

the population disperse in the g direction and drifts towards the threshold relatively 469
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Fig 5. A: The density at t = 15 ms. Events are reflected against a reflecting
conductance boundary. B: Gain curves for different input rates and synaptic efficacies.
The maximum conductance clearly affects the shape of the gain curves, although at
input rate 3 kHz for J = 1 mV the effect is moderate. C: The transient looks very
different in the case where a maximum conductance is present: the “ringing effect” is
much stronger. The cause can be seen in A: neurons have not had time to disperse
before they are forced across threshold; clear groupings can be seen at the maximum
conductance.

slowly. The absence of a barrier allows the dispersal of the population before it hits 470

threshold, greatly reducing any overshoot in the firing rate, which is quite unlike one 471

dimensional neural models, as we shall see in Sec. Results: One Dimension. 472

Let us contrast this with a simulation where we introduce a maximum conductance 473

gmax = 0.8, which for simplicity we assume to be voltage independent. This then 474

introduces a reflecting boundary at g = gmax, and therefore introduces a scale by which 475

an efficacy can judged to be small or large. As expected, probability mass is squashed 476

against this boundary (Fig. 5 A) and has nowhere to go but laterally, in the direction of 477

the threshold. Interestingly, the mass has not dispersed and clear groupings of mass 478

huddled against the boundary can be observed. The traversal of the threshold by these 479

groupings produces clear oscillations in the firing rate: a “ringing” effect. The firing 480

rate jump response reflects the effect of the presence of a maximum conductance in 481

state space. 482

We run two simulations: one with and one without maximum conductance, but 483

otherwise identical, and repeat this experiment for two different synaptic efficacies: 484

J = 1 and 3 mV. Both simulations use an input rate of 3 kHz. In the case of no 485

maximum conductance, probability mass can disperse in the g direction and mostly 486
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does so before arriving at the threshold. In Fig. 5 one sees that the introduction of a 487

maximum conductance leads to a reduced response firing rate for high inputs. This can 488

be interpreted as the population unable to respond to an increase of input once the 489

majority of its ion channels are already open. Fig. 5 shows that the firing rates of 490

Monte Carlo simulations and our method agree over the entire range of input. 491

Even when the effects on the response firing rate are moderate, the transient 492

dynamics can be radically different. For an efficacy J = 1 mV and and input rate 493

νin = 3 KHz, the firing rates for maximum conductance, compared to no maximum 494

come out as 175 Hz vs 195 Hz. In Fig. 5 C we show the response firing rate as a 495

function of time. The result for the unrestrained conductance is given by the red line, 496

which despite the high output firing rate still almost produces no overshoot. When we 497

restrict the maximum conductance we see a somewhat reduced firing rate but a 498

pronounced transient response (“ringing”) which persists much longer than for an 499

unrestrained conductance. It is striking to see that the reintroduction of a barrier in 500

state space results in pronounced transients. In both cases, the calculated firing rates 501

agree well with Monte Carlo simulation. We attribute this ringing to a geometrical 502

effect: the introduction of a barrier in the direction of where the stochastic process is 503

pushing neurons. 504

One Dimension: Leaky- and Quadratic-Integrate-and-Fire 505

Neurons and Size Effects on the Transition Matrix 506

Although these model neurons are characterized by a single dimension - the membrane 507

potential - they can be viewed as a two dimensional model that is realized in a single 508

strip, and where transitions take place between one bin in potential space to another. 509

This is completely equivalent - in implementation and concept - to the geometric 510

binning method introduced independently by de Kamps [12] and Iyer et al. [11], with 511

one exception: the generation of transition matrices by Monte Carlo. In one dimension 512

it is not necessary to use Monte Carlo generation: the transition matrix elements can be 513

calculated to an arbitrary precision because in one dimension the geometrical problem 514

outlined in Sec. Materials and Methods: Handling Synaptic Input is much 515

simpler and can be solved by linear search. It is clear that unlike the 2D case, it is 516

straightforward to find the exact areas covered by translated bins, and hence no Monte 517

Carlo generation process is required. 518

Nevertheless, it is interesting to use this method. The transition matrix generation 519

for the 2D case is relatively expensive, and as precision scales with the square root of 520

the number of events it is interesting to see how few we can use in practice without 521

distorting our results. The answer is: surprisingly few. As benchmark we set up a 522

population of LIF neurons with membrane constant τ = 50 ms, following [5], and 523

assume that each neuron receives Poisson distributed spike trains with a rate ν = 800 524

Hz. We assume delta synapses, i.e. an instantaneous jump in the postsynaptic potential 525

by a magnitude h = 0.03, with the membrane potential V ∈ [−1, 1), i.e. we use a 526

rescaled threshold potential V = 1. The grid is generated with a time step ∆t = 0.1 ms, 527

and is shown in Fig. 6 B. 528

The simulation results are shown in Fig. 7 and replicates earlier work [5, 12]. The 529

use of a finite number of points in the Monte Carlo process used for the generation of 530

transition matrices generates random fluctuations with respect to the true values. The 531

effect of these fluctuations is clearly visible in the shape of the density profile, and only 532

for Npoint = 10000 the profile is as smooth as in earlier results where we calculated the 533

transition matrix analytically. How bad is this? To put these fluctuations into 534

perspective, we used a direct simulation of 10000 spiking neurons and histogrammed 535

their membrane potential at a simulation time well after t = 0.3 s, so that they can be 536
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Fig 6. A: Characteristics for leaky- (left) and quadratic-integrate-and-fire (right)
neurons. B: The resulting grids for both neuron types. C: Typical steady state densities,
strongly influenced by the shape of the grid, and ultimately the neural dynamics. D: a
typical jump response of the firing rate. For comparable output frequencies, QIF
neurons “ring” for longer, which we attribute to a closer grouping of probability mass.

assumed to sample the steady state distribution. In the figure, they have been indicated 537

by red markers. Comparing the results we see that the fluctuations for Npoint = 10 are 538

comparable to those of a Monte Carlo simulation using a sizeable population of 10000 539

neurons. Moreover, in the population firing rates the finite size effects are almost 540

invisible. This is somewhat surprising, but a consideration of the underlying process 541

that generates the firing rate explains this. Neurons are introduced at equilibrium and 542

will undergo several jumps before they reach threshold. The finite size effects of the 543

Monte Carlo process induce variations in those jumps in different regions of state space, 544

but these fluctuations are unbiased and will average out over a number of jumps. So 545

neurons will experience variability in the time they reach threshold, but this variability 546

does not come in the main from fluctuations in the transition matrix elements. It 547

should be emphasized that the transition matrices are a quenched source of randomness, 548

because transition matrices are fixed before the simulation starts. So although 549

ultimately caused by finite size effects, their contribution is different compared to the 550

unquenched finite size effects that can be seen in the population of 10000 neurons. 551

It is instructive to look at some examples because it highlights strengths and 552

weaknesses of the method in terms of familiar results. In Fig. 6 A, the characteristics of 553

both neural models are given. In Fig. 6 B the state space of LIF (left) and QIF neurons 554

(right) are shown, at lower resolution than used in simulation to elucidate the dynamics. 555

Rather than with numbers which would be unreadable at this scale, we indicate the 556

direction in which cell numbers increase, and therefore the direction in which neural 557

mass will move, by arrows. One can see that the LIF neuron is comprised of two strips, 558

and the QIF neuron of three, where the arrows indicate in which direction the cell 559
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Fig 7. A: The steady state density as a function of membrane potential. B: The firing
rate as a function of time, for transition matrices that were generated for different
values of Npoint, the number of events used in the Monte Carlo generation of transition
matrices.

numbers are increasing. In the LIF grid, there is one stationary bin, in the QIF there 560

are two. They are represented as separate stationary cells, covering the space between 561

the strips, indicated by the blue downward pointing arrows. 562

In Fig. 6 C we consider the steady state of LIF (left) and QIF neurons (right) after 563

being subjected to a jump response of Poisson distributed spike trains starting at t = 0 564

(LIF: νin = 800 spikes/s J = 0.03 (normalized w.r.t. threshold; QIF: J = 0.05)). The 565

shape of the characteristics and therefore of the grid clearly reflect their influence on the 566

steady state density distribution. The output firing rate (Fig. 6 D) shows the clear 567

“ringing” in the transient firing rate that is mostly absent in conductance based neurons. 568

Again, this can be interpreted geometrically: the stochastic process pushes neurons in 569

the direction of a threshold, but they reach it without having had the opportunity to 570

disperse. Decorrelation only happens after most neurons have gone through threshold at 571

least once. It is also interesting to see that for comparable firing rates the ringing is 572

much stronger for QIF than for LIF neurons. We also interpret this as a geometrical 573

effect: the effective threshold for QIF neurons is V = 3 (normalized units), not 10, as 574

neurons with a membrane potential above 3 will spike. It is clear from Fig. 6 D that 575

compared to LIF neurons, QIF neuron bulk up close to the threshold and are 576

constrained more than their LIF counterparts, thereby making it harder to decorrelate 577

before passing threshold. 578

For reference, in Fig. 8 we show that the method accurately reproduces results from
the diffusion limit, as well as generalizes correctly beyond it. If one uses a single Poisson
spike train to emulate a Gaussian white noise input, employing the relationship:

µ = νinJτ (14)

σ2 = νinJ
2τ,
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Fig 8. A: Gain curve for quadratic-integrate-and-fire neurons. Population density
techniques handle deviations from the diffusion approximation correctly: when one tries
to emulate Gaussian white noise with a single Poisson spike train input, deviations are
expected at high values of σ as synaptic efficacies are forced to be large. The dashed
lines give the diffusion approximation, black markers the prediction by our method and
red bars Monte Carlo results, which agree with each other, but deviate from the
diffusion prediction. B: The frequency spectrum shows the expected 1

ω2 dependency for
high frequencies. C: the delta peak of a coherently firing group of neurons in correctly
represented; the decrease in partial synchrony of the population is modeled correctly
over long times.

one can use our method to predict the steady state firing rates as a function of J , the 579

synaptic efficacy and νin the rate of the Poisson process for given membrane constant τ . 580

Organizing the results in terms of µ and σ, as given by Eq. 14, one expects a close 581

correspondence for low σ, since Eq. 14 leads to small values of J compared to threshold. 582

One expects deviations at high σ, where J does not come out small. Fig. 8 shows that 583

this is indeed the case when firing rates are compared to analytic results obtained in the 584

diffusion approximation. Our method produces the correct deviations from the diffusion 585

approximation results, and agrees with Monte Carlo simulation. Elsewhere [12], we have 586

shown that diffusion results can be accurately modeled using two Poisson rates for high 587

σ. 588

In Fig. 8 B we replicate the gain spectrum for QIF neurons and show that the high 589
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frequency dependence falls off as 1
ω2 as predicted by Fourcaud-Trocmé et al. [24]. These 590

results reaffirm that our method accurately predicts results within and beyond the 591

diffusion limit, and that a substantial body of existing literature can be seen to be a 592

special case of our method. 593

Figure 8 C shows a population of QIF neurons that fire in synchrony at t = 0, 594

undergoing a slow decorrelation by low rate Poisson input spike trains. The neurons 595

have all been prepared in the same state, and therefore are at the same position in state 596

space. We use F (V ) = V 2 + 1, so these neurons are bursting, as the current parameter 597

is larger than 0, and there are no fixed points. Neurons that receive an input spike leave 598

the peak and travel on their own through state space. This results in a very complex 599

density profile, where the initial density peak is still visible after 1s. Such a peak would 600

have diffused away rapidly in a diffusion limit approximation. Monte Carlo events in 601

red markers show that the density profile is not a numerical artefact, but reflects the 602

complexity of the density profile. 603

Adaptive-Exponential-Integrate-and-Fire Neurons 604

We consider the AdExp model as presented by Brette and Gerstner [25], which
describes individual neurons by the following equations:

Cm
dV

dt
= −gl(V − El) + gle

(V −VT )

∆T + I (15)

τw
dw

dt
= a(V − El)− w

Upon spiking, the neuron is reset to potential Vreset and increases its adaptivity value: 605

w → w + b. Here Cm is the membrane capacity and gl the passive conductance. VT is 606

the value at which a neuron starts to spike; the spike dynamics is controlled by ∆T . The 607

numerical values of the parameters are summarized in Table 2 and are taken from [25]. 608

An overview of the state space is given in Fig. 9 A. At w = 0 the dynamics is as 609

expected, a drive towards the equilibrium potential that suddenly reverses into a spike 610

onset at higher values of V , essentially producing an exponential-integrate-and-fire 611

neuron. At high w two effects conspire to make the neuron less excitable: the 612

equilibrium potential is lower and the drive towards this equilibrium is stronger for a 613

given value of V . At low w values, the opposite happens: the equilibrium value is 614

higher, closer to threshold, and below equilibrium there is a stronger depolarizing trend 615

making the neuron more excitable. Interestingly, at hyperpolarization the system does 616

not only respond by driving the membrane potential back towards equilibrium potential, 617

but also downwards. 618

There are two critical points, the equilibrium point (El, 0) and a saddle point in the 619

top right. They are at the crossing of two nullclines: the w-nullcline is a straight line, 620

whereas the V -nullcline follows a strongly curved trajectory, which is close to the stable 621

manifold of the saddle point in a substantial part of state space. Below (to the right) 622

the stable manifold neurons spike, regardless of where they are initially, while above (to 623

the left) of the stable manifold neurons converge to the equilibrium, but how, and how 624

long this takes is strongly dependent on the initial conditions. This model is the first to 625

require a judicial treatment of the grid boundaries. 626

Let us examine the the equilibrium point first. The exponential build-up of cells 627

observed in one dimensional models occurs here as well, but here it is not a good idea to 628

introduce a fiducial cut and cover the remaining part of state space with a cell. The 629

inset of Fig. 9 B shows that equilibrium is reached much faster in the V direction, than 630

in the w direction. This is a direct consequence of the adaptation time constant τw 631

being an order of magnitude larger than the membrane time constant τ ≡ Cm/gl. For 632

high w, mass will move downwards along the diagonal, until low values of w are reached, 633
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Fig 9. A: Overview of state space for the adaptive-exponential-integrate-and-fire
neuron. B: a detail of a realistic mesh near the equilibrium potential. C-E: evolution of
the probability density at t = 0.01, 0.1, 0.4s. The input (switched on at t = 0) is a
Poisson distributed spike train of 3000 spikes/s, delta synapses with efficacy J = 1 mV.

as is demonstrated by the left inset of Fig. 9. A long, but very narrow region separates 634

different parts of the grid. What to do? First, we observe that the offending region is 635

essentially forbidden for neurons: for most neurons starting from a random position in 636

state space it would take a long time (of the order of 100 ms) to approach this no man’s 637

land. At the input firing rates we will be considering, neurons will experience an input 638

spike well before running off the strip, so essentially only noise can place neurons there. 639

If we forbid this, by allocating events that are translated into the cleft between the two 640

grid parts to the cells in the grid that are closest to it along the projection of the jump, 641

we guarantee that no probability mass will leak out of the grid. Mass that reaches the 642

end of the strips will be placed in a reversal bin, like the one dimensional case. Mass on 643

the left of the side of the cleft will move in the same direction as that on the right side 644

of the cleft. By using Euclidean distance projected along the jump direction, we 645

minimize the bias due to this procedure, although we may artificially introduce a small 646

extra source of variability. 647

On the right hand side, the stable manifold almost coincides with the V nullcline, 648

resulting in a very narrow region of dynamics in the vertical direction. Immediately 649
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outside neurons rapidly move away laterally. This part of the grid is created by 650

reversing the time direction, integrating towards the stable manifold. The grid strongly 651

deforms here: cell area decreases rapidly and even small numerical inaccuracies will lead 652

to cells that are degenerate. We use cell area as a stopping criterion. The last cells 653

before breaking off are extremely elongated. The spike region is also created by 654

reversing the time direction. Again, we conclude that the cleft is a forbidden area: a 655

small fluctuation in the state variable will cause a neuron to move away rapidly. Our 656

main concern, again, is neurons that are placed into this cleft by the noise process. 657

Again, we move neurons to the closest cell next to the cleft in the jump direction. This 658

is reasonable, since natural fluctuations would put them there soon anyway. Effectively 659

we have broadened the separatrix a little bit, but we still capture the upwards (for high 660

w - past the saddle point: downwards) movement close to the stable manifold. 661

In Fig. 9 C-E the evolution of a population in (V,w) space is shown at three 662

different points in time: t = 0.05, 0.1 and 0.4 s. Figure 9 C shows the input spikes 663

pushing the state towards threshold, and a small number of neurons have spiked. They 664

re-emerge at the reset potential, but with much higher w, due to spike adaptation. This 665

is determined by the b parameter of the AdExp model. Close to the reset potential the 666

banded shot noise structure, due to the use of a delta-peaked synaptic efficacy, is visible. 667

The steady state is reached after approximately 400 ms. The population stabilizes at 668

high w values, and the bulk of the population is clearly well below threshold, due to 669

stronger leak behavior at these values of w. In sub figure E there is a minute 670

deformation of the density, due to the limits of the grid, and density heaps up here, but 671

the fraction of probability mass affected is negligible. Monte Carlo events, indicated by 672

the dots, are not restricted to the grid and some fall outside the grid. 673

The firing rate response corresponding to the population experiencing an excitatory 674

input (Fig. 9 C-E) is given in Fig. 10 A. Again, agreement with Monte Carlo simulation 675

is excellent, we are able to study the relative contributions of current- and spike-based 676

adaptation to the firing rate. We can easily simulate neurons with current- but not 677

spike-based adaptation by not incorporating the jump in w after reset; while ignoring all 678

forms of adaptation can be done by simply using a 1D grid and ignoring values of w 6= 0. 679

The vast difference between adaptive neurons and non-adaptive neurons is also reflected 680

in the gain spectrum. Figure 10 B shows the gain spectrum of a (non-adaptive) 681

exponential-integrate-and-fire neuron and a neuron that has a constant rate of 682

adaptation due to the background rate upon which the small sinusoidal modulation has 683

been imposed. The difference between the adaptive and non-adaptive neuron is 684

considerable. Both neurons show a 1
ω dependence in the high frequency limit, as is 685

expected for exponential neurons [24]. (Fig. 10 A shows that the shape of the spike, 686

which is reflected in the large cells on the right of the grid is independent of w.) It is 687

clear that a meaningful time-independent gain function cannot be chosen, so that it is 688

not possible to develop linear response theory. 689

It is interesting to observe the marginal distributions - in Fig. 11 we show the 690

marginal distributions, together with the joint distribution. The distribution in V looks 691

remarkably like that of an LIF neuron, except near the threshold, where the spike 692

region, which is not present for LIF, flattens the density. The w distribution suggests a 693

much stronger overlap than the joint distribution, which shows a clear separation. It is 694

clear that, had the three density blobs been oriented more diagonally, the marginal w 695

distribution would have shown a single cluster. 696

Frequency-dependent Short-term Synaptic Dynamics 697

Vasilaki and Giugliano have studied the formation of network motifs [22], using both 698

microscopic spiking neural simulations and mean-field approximation. In their 699

mean-field simulations they considered both spike-timing dependent long-term plasticity, 700
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and frequency-dependent short-term dynamics, where they use a version of the 701

Tsodyks-Markram synapse [26]. The short-term dynamics is of interest because it 702

introduces something we have not considered before: the magnitude of the jump being 703

dependent on the position of where the jump originates. Following [22], if Gij defines 704

the amplitude of the postsynaptic contribution from presynaptic neuron j to 705

postsynaptic neuron i, then this is considered to be proportional to the amount of 706

resources used for neurontransmission uijrij and to their maximal availability Aij , so 707

Gij = Aijuijrij , (16)

where r relates to the recovery and u to the facilitation of synapses, and the time
constants τrec and τfacil are different for facilitating and depressing synapses. They
describe frequency-dependent short-term synaptic dynamics by:

drij
dt

= (1− rij)/τrec − uijrij
∞∑
kj

δ(t− tkj
) (17)

duij
dt

= −uij/τfacil + U(1− uij)
∞∑
kj

δ(t− tkj ) (18)

From now on, we will drop the indices ij and just refer to a single connection. In the 708

simulation below we will use τrec = 0.1 s and τfacil = 0.9 s and study a population of 709

facilitating synapses (Vasilaki and Giugliano used τrec = 0.9s, τfacil = 0.1 s for 710

depressing synapses.) U is a fixed constant, for facilitating (depressing) synapses 711

U = 0.1(0.8). Equation 17 expresses that an individual synapse is subject to 712

deterministic dynamics, and that upon the arrival of a spike at time tk both u and r 713

undergo a finite jump, whose magnitude is dependent on the current value of u and r. 714

Equation 2 describes this situation, when the following transition probabilities are 715

introduced: 716

W (r′, u′|r, u) = νδ(r′ − r + ur)δ(u′ − u− U(1− u)) + (1− ν)δ(r′ − r)δ(u′ − u) (19)

We have to modify the process of generating our transition matrices: now for each 717

quadrilateral cell (p, q), we determine the centroid (u(p,q), r(p,q)) and we determine the 718

covering set by defining 719

~h =

(
−u(p,q)r(p,q)
U(1− u(p,q))

)
(20)

and determining the cover set as before. The jump now becomes cell dependent. 720

It is easy to cover almost the entire state space. In Fig. 12 A we show the grid. In 721

Fig. 12 B, we show the sample path of three synapses, assuming that the presynaptic 722

firing rate ν = 5 Hz. In C-F we show the evolution of a population of synapses. The 723

influence of the step size which increases in the r (horizontal) direction with u and r, 724

but decreases in the u (vertical) direction with u. There is good agreement with Monte 725

Carlo simulation throughout. 726

With the joint distribution available, it is possible to use Eq. 16 and calculate the 727

distribution of Gij or its expectation value. 728
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Fig 12. Evolution of the state of a population of facilitating Tsodyks-Markram
synapses. A: Grid. B: Sample path of individual synapses. The state dependency of the
jump size is clearly visible. C-F: evolution of density over time.

Fitzhugh-Nagumo Neurons 729

We consider the well-known Fitzhugh-Nagumo neuron model [27], which is given by:

dV

dt
= V − V 3

3
−W + I (21)

dW

dt
= 0.08(V + 0.7− 0.8W )

It is an attractive neuron model as it captures many properties of the biologically 730

realistic Hodgkin-Huxley neuron, while being much more tractable - being reduced to 731

two dimensions aids greatly in analysis and visualization. The two variables are a 732

nondimensionalized voltage-like variable V and a recovery variable W . Also we note a 733

variable I representing a constant external current. 734

When I = 0, there is a stable equilibrium point at ≈ (−1.199,−0.624) corresponding 735

to a resting state. As I increases, the system undergoes a Hopf bifurcation to a stable 736

limit cycle around an unstable equilibrium. (Increasing I further leads to a stable fixed 737

point at positive V and W termed “excitation block”.) In this paper, we will consider 738

an intermediate value I = 0.5 in order to demonstrate how our method can be used on 739

systems with limit cycles. 740

We simulate white noise by providing the system with both inhibitory and excitatory 741

noisy input with a high rate and low synaptic efficacy, and successfully capture the 742

diffusion of probability in a neighbourhood around the limit cycle (Fig. 13 A-D for 743
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t = 5, 10, 50 and 1000 s, J = ±0.02, ν = 20 spikes/s). It is interesting to study a purely 744

excitatory input with large synapses (J = 0.1, ν = 2 Hz). This leads to a deformed limit 745

cycle, shifted towards higher V . This is expected as the net input now is I = 0.7. The 746

band is also broader, as one would expected as higher values of synaptic efficacy imply 747

larger variability. 748

V

w

A B

C D

E F

Fig 13. A-D: Evolution of the density at t = 5, 10, 50 s an steady state for a diffusive
input (J = ±0.02, ν = 20 spikes/s). E: excitatory input for a weak rate, but with large
synaptic efficacy (J = 0.1, ν = 2 spikes/s). F: inhibition captures most neurons at the
fixed point, a weak ghost cycle of neurons that escape by fluctuation is visible, but is
considerably displaced compared to the standard limit cycle.

Another case we consider is noisy inhibitory input (Fig. 13 F). As we would expect, 749

the system is effectively driven back below the bifurcation to a stable equilibrium, 750

although we still see some variance-driven probability follow a limit cycle that differs 751

considerable from the original limit cycle. We can understand this by converting the 752

noisy input into zero-mean noise and a steady inhibitory current, and looking at the 753

streamlines of the system with these parameters instead. As seen in Fig. 14 D, while all 754

the the trajectories converge to the fixed point, those starting on the right side of phase 755

space first increase w until they reach the right branch of the cubic nullcline, then follow 756

a path close to the limit cycle to return to the fixed point. It is interesting to see that 757

the method captures limit cycles that do not coincide with the limit cycle of the original 758

grid. 759

Rabinovitch and Rogachevskii [28] describe the two “vertical” sections of the path to 760

be transient attractors (T-attractors) separated by a diagonal transient repeller 761

(T-repeller) (alternatively, a separatrix [29]) close to the central branch of the cubic 762
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Fig 14. A: The numbered mesh provides a coarse overview of the dynamics of the
system, whereas we run our simulations using the much finer mesh. B: Different
trajectories in the Fitzhugh-Nagumo model (as shown by solid and dashed lines) can
merge before reaching the limit cycle. C: The region of the Fitzhugh-Nagumo model
tiled with stationary cells; limit cycle is shown for reference. D: Sample trajectories in
the Fitzhugh-Nagumo model in the parameter regime where the system tends to a fixed
point. E: Trajectories that begin close to each other have the potential to diverge
rapidly. F: Attempting to build cells from these trajectories can lead to “stretched” cells
that intersect other cells.
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nullcline. Trajectories close to each other but starting on different sides of the T-repeller 763

separate rapidly before eventually reaching the same steady state, which creates 764

considerable problems in creating the grid (see Fig. 14 E). The authors perform a 765

detailed analysis of the system by extending the notion of isochrones from limit cycles 766

to excitable systems. We note that their isochrones are similar in character to the lines 767

in our grid perpendicular to the streamlines of the system. 768

Next, we outline some of the numerical subtleties involved in generating the 769

computational grid for the Fitzhugh-Nagumo model. Following the procedure from Sec. 770

Materials and Methods, one can attempt to generate a grid by starting with a set of 771

initial conditions, and solving the differential equations of the system forwards in time 772

to obtain a set of trajectories (or integral curves). Each pair of trajectories then has a 773

strip between them and the individual cells are obtained by dividing the strip into 774

equal-time bins. However, in a system with a limit cycle, if we start with initial 775

conditions outside the limit cycle, we see that the trajectories generated from them 776

converge onto the limit cycle. Moreover, it is impossible to obtain trajectories inside the 777

limit cycle from outside the limit cycle, and vice versa. This means that we have to 778

handle the limit cycle, outside, and inside, as separate sections of the plane. 779

Since the limit cycle is a one-dimensional object with zero width, we have to 780

artificially define a small width around it. We then choose sets of initial conditions 781

outside and inside the limit cycle and integrate the trajectories until they reach a 782

certain small Euclidean distance from the limit cycle, and then define our limit cycle 783

strip as the space left. In this left over space we define quadrilaterals so as to fill up this 784

ring. This becomes a strip in its own right, representing the limit cycle. Earlier we 785

described the reversal mapping: mass reaching the end of a strip must be removed and 786

deposited in a cell representing a stable point. Here, we use a similar approach: mass 787

that arrives at the end of a strip must be removed and deposited on the limit cycle. We 788

find the cell on the limit cycle that is closest in Euclidean distance to the limit cycle. 789

Since the machinery to do this is already in place in the form of a reversal mapping, we 790

will also refer here to this process as a reversal mapping. The modeler presents this 791

reversal mapping in the same file format as used previously. 792

Initially we had attempted to define our limit cycle cells as having a fixed width, and 793

then obtain strips by integrating backwards in time from the corners of these cells. 794

Indeed, the coarse schematic grid in Fig. 14 has trajectories generated in this way for 795

the interior of the limit cycle. However, for the purposes of actual computation, this 796

method leads to degenerate cells. This is due to the fact that close to the limit cycle, 797

trajectories move almost parallel to it, in particular along the “horizontal” segments of 798

the limit cycle, where the fast v dynamics dominate. This leads to long, thin cells being 799

created, which become degenerate when approaching the limit cycle - adjacent 800

trajectories overlap to the degree of accuracy of the numerical integrator, leading to 801

self-intersecting cells or cells with zero area. 802

From the outside of the limit cycle, most of the state space can be covered by simply 803

choosing points on the edge of the region of interest and integrating forwards in time 804

until one reaches the limit cycle. However, care must be taken when trajectories 805

converge before arriving at the limit cycle, as shown in Fig. 14 B. This happens 806

particularly along the cubic nullcline. We handle this by checking for degenerate cells or 807

cells with area close to zero. These cells are then deleted from the grid, and instead a 808

reversal mapping is created from the previous cell onto the closest (in Euclidean terms) 809

cell. 810

The interior of the limit cycle proves to be even more challenging. Not only is there 811

an unstable fixed point, also there exist canard trajectories, which have been the subject 812

of considerable mathematical interest [28–31]. Loosely speaking, near the central 813

portion of the cubic nullcline, there are slow but unstable trajectories. This leads to two 814
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types of numerical issues - first, the slow dynamics cause a build-up of exponentially 815

many very small cells. We work around this by defining a minimum value of ‖~̇v‖ - 816

regions below this value are considered to be approximately stationary, since they will 817

have much slower dynamics than any noisy input we consider. The region we find is 818

shown in Fig. 14 C. 819

We use cubic splines to approximate the boundary of this region, and then use 820

points on this boundary as initial points for trajectories on the inside of the limit cycle 821

to generate strips. Due to the instabilities in this region of the system, trajectories can 822

be highly curved, and trajectories with initial conditions close to each other can diverge 823

quickly, leading to cells which may intersect with each other, as shown in Fig. 14 E. As 824

these areas with highly curved trajectories are still locally smooth, it may be possible to 825

increase the resolution of the grid until non-degenerate cells are obtained, as we do here. 826

However, it may not always be possible to do so due to computational constraints - in 827

that case it may be more practical to delete bad cells after the creation of the grid and 828

cover any gaps with fiducial bins. 829

To sum up, regions where trajectories merge - such as the limit cycle and nullclines 830

in this case - involve moving from the two dimensional plane onto one dimensional 831

trajectories, and pose conceptual as well as computational difficulties. Regions with 832

highly curved trajectories may be possible to handle with very fine resolutions, but may 833

pose difficulties at coarser resolutions. In both cases it is possible to handle such regions 834

using an automated procedure: cells are checked for being complex quadrilaterals or 835

having too small an area. Those satisfying this condition are deleted, and renewal 836

mappings from the cells before them to the nearest cells are generated. Any gaps in the 837

grid due to this can be handled using the prescribed method for creating fiducial bins. 838

In conclusion, we have successfully extended our procedure to dynamical systems 839

with limit cycles and complex dynamics such as canards. While we have to make some 840

compromises in the regions which pose significant analytic difficulty, these regions are 841

those in which neurons would not spend any significant amount of time. Hence, our 842

method would still be suitable for studying neural circuits of such populations. 843

Numerical Solution and Efficiency 844

We solve Eq. 12 by a forward Euler scheme. Since we interleave moving probability
mass through the grid with a numerical solution of Eq. 12, we solve Eq. 12 over a
period ∆t, which can be as short as 10−4 s for some neural models. This renders
sophisticated adaptive size solvers relatively inefficient. The matrices in Eq. 12 tend to
be sparse band matrices, and one advantage of the forward Euler scheme is that it is
embarrassingly parallel. For a single population in this we partition ∆t into neuler time
steps. For most simulations in this paper neuler = 10 is adequate, we will discuss an
exception below. In a forward Euler scheme Eq. 12 is discretized and a single step is
given by:

M(mapk(i, j), l + 1) = M(mapk(i, j), l) + ∆M,

with 845

∆M =
ν∆t

neuler

 ∑
(p,q)∈Ch(i,j)

αp,qM(mapk(p, q), l)−M(mapk(i, j), l)

 (22)

The current simulation time is tsimk∆t, where ∆t is the mesh time step. The current 846

map, which indicates where probability mass has moved under the influence of 847

endogenous neural dynamics is therefore labelled by mapk(i, j), which maps cell (i, j) to 848

a unique mass array index as per Eq. 9. Note that the mapping should not be applied 849

to the set Ch(i, j). Simulation starts at k = 0, l = 0. Each Euler step l is increased, 850

until l = neuler, upon which l is reset to 0 and k is increased by 1, until the desired end 851
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time is reached. The sets Ch(i, j) and coefficients αp,q remain constant throughout 852

simulation. 853
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Fig 15. A-B: Comparison of the default mesh for conductance based neurons to a
reduced mesh. Although coarser cells are visible in B, the density is not visibly affected,
in particular in the white areas, where the bulk of the density is present. C: Firing rates
are almost identical. D: Interaction between the C++ driver and the GPU registers,
Interaction between CPU and GPU in a CUDA-based simulation. During the
initialization, the mass array (red), the map array (green), the matrix elements (yellow)
are copied onto the GPU. During simulation only the map (green) is updated in C++
and copied to the GPU, and firing rates are calculated from the meshes on the GPU.
On the CPU the firing rates are processed by the network, and delays are applied where
applicable. Resulting firing rates are sent back to the GPU for processing the the next
simulation step. E: Run time factors for direct simulation, CUDA and C++
implementation (default and reduced mesh). F: memory use, NEST and CUDA
implementation.

Despite appearances, the right-hand side of Eq. 22 is of the form of a matrix vector 854

multiplication, where the matrix is very sparse (Fig. 15 A). The matrix elements are 855

numerical constants, and there is no dependence between rows, meaning that each row 856

can be evaluated independently of the others and therefore the problem is extremely 857

parallel: each row can be calculated in a separate thread when available. 858
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Larger networks can be simulated by vectorizing the network: vectors representing 859

the mass of individual populations are laid out in a single array representing the mass of 860

multiple populations. Connections from population i to population j then are 861

represented by block matrix elements, each consisting of one or more transition matrices 862

generated by the process described above. 863

We have created both a C++ and a CUDA implementation and evaluated them on 864

single populations, as well as networks of populations. For small networks, the running 865

times are not particularly onerous, with or without parallelization. For larger networks, 866

in the C++ implementation we evaluated a single block matrix per thread using 867

OpenMP. This means that in our implementation individual matrix vector calculations 868

are not parallel, but that several matrix vector calculations are performed 869

simultaneously. Since OpenMP offers a relatively small number of threads, this still 870

makes efficient use of resources. The parallelization model for CUDA is different: we 871

write a so-called kernel to evaluate Eq. 22 and launch a kernel for each block matrix. 872

CUDA’s loop unrolling automatically performs parallelization within the kernel, and by 873

launching kernels in different streams, inter kernel concurrency can be achieved. It is 874

then the question whether the large number of threads compensate for the inherently 875

slower GPU hardware. In Fig. 15 D we show how the GPU interacts with the C++ 876

driver. During initialization the mass array is set up on the GPU, as well as the 877

mapping, and the matrix elements. During a simulation run, the mass array mapping is 878

updated, and firing rates are exchanged, but other than for visualization purposes, the 879

mass array is not transferred, meaning lightweight communication between GPU and 880

CPU. 881

We find that the number of cells in a mesh determines the performance. In Fig. 15 882

we examine the conductance based neuron example again. If we use the original mesh, 883

without considering performance, we find that the method is slower than direct 884

simulation as performed by NEST by a factor of three (6s per population for NEST - 885

20s per population for the CUDA implementation). If we reduce the granularity of the 886

original mesh, we find that we can bring the size of the mesh down from 120k cells to 887

25k cells, with the density and firing rate predictions unaffected (Fig. 15 A vs B for 888

density, B being the coarser mesh which is only visible in the bigger cells on top, C for 889

firing rate). For the reduced mesh, the performance of the C++ implementation is 890

equal to that of NEST, where the CUDA implementation is a little bit slower (measured 891

on a Tesla P100). Both direct (NEST) simulation and C++ implementation use 892

parallelization with 16 threads for this comparison. The real time factors (real time 893

second divided by wall time of one simulated second) are shown in Fig. 15 E. A striking 894

difference is the memory use (Fig. 15 F), which for the CUDA implementation is orders 895

of magnitudes lower (300 MB for the largest network of 1000 populations, whereas a 100 896

population network with NEST already uses 10 GB). We conclude that the CUDA 897

implementation supports the simulation of large networks on a single PC equipped with 898

a GPGPU, whereas direct simulation requires a substantial cluster. 899

In the method we considered so far, a relatively large number of cells emerge around 900

stationary points due to the exponential shrinkage of state space around them. In 901

principle it is possible to group these cells together into larger ones, and to group them 902

into strips that would run at a lower speed compared to the basic time step of the mesh. 903

This would reduce the number of cells in the mesh considerably, while the basic 904

granularity of the mesh will not be affected much. Such resulting merged cells are no 905

longer quadrilateral and the method will have to be extended to be able to handle 906

non-convex cells, which will be one of the first priorities in further work. 907
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General Remarks 908

We have demonstrated a very general method to study noise in 2D dynamical systems 909

and applied them to various neural models and Tsodyks-Markram synapses. The state 910

space of the deterministic model must be represented by a grid. The requirement that a 911

grid be made is both a strength and a weakness: the state space relevant to the 912

simulation must be chosen judiciously before the simulation starts. But since it must be 913

constructed beforehand, integration can be done very accurately, using time steps that 914

are much smaller than typically used in Monte Carlo simulators. If general purpose 915

simulators are used with a default time step, and without adaptive methods that 916

monitor errors, they may not alert the user to problematic regions of state space. Our 917

method requires a careful layout of state space before simulation starts. We found that 918

the requirement of a grid forces visualization and thereby already creates an 919

understanding of the dynamics that can be expected. 920

When the state space cannot contain the simulation, this is clearly visible, either 921

through loss of mass, or by the accumulation of mass at the edge of the grid. This 922

proved useful in one instance, where a well known neural simulator produced a crash 923

(due to an instability of the particular neural model implementation, not the simulator 924

as such). Our method is very robust and stable, once a suitable grid is available. In 925

general, we find that grids can be taken quite coarse in state space, but that a relatively 926

small time step must be used for completely accurate results, such as comparison to 927

analytic results like gain curves. When numerical errors are acceptable, and only 928

qualitative agreement is required, much coarser grids can be used that require far less 929

simulation time. 930

Our method is not as efficient as effective 1D methods [15–17], but makes very few 931

assumptions. It handles time-dependent input without any restrictions. This is useful, 932

for example, when comparing against basis functions expansions [13, 14, 32]. These basis 933

functions are typically determined for constant input, and time-dependent input must 934

be treated as an adiabatic approximation. Our method does not require this. In short, 935

our method may serve as benchmark for faster methods. 936

Population density techniques are part of an emerging ecology of simulation 937

techniques, and it is important to consider their strength and weaknesses compared to 938

related approaches. Direct spiking neuron simulations are straightforward in small to 939

medium-sized networks, but hard to get right in large-scale simulations, where they are 940

resource intensive (they can have large memory requirements, as well as being CPU 941

intensive). The “missing spike” problem, and the need to keep track of spike 942

information and its exchange between the various processors involved are just examples 943

demonstrating that direct simulations are not straightforward. They have developed 944

into a discipline of their own [36]. Population density techniques are conceptually 945

simple, but unable to model pairwise correlations within a population, and the inclusion 946

of finite-size effects is not straightforward (see [14] for an attempt). In general, 947

population density techniques are not able to describe quenched network states, 948

although fully connected networks are amenable to such analyses [37,38]. Recently, a 949

number of studies have explored path integral approaches to calculate pairwise 950

correlations and to suggest a functional role for such correlations (e.g. [38–40]). Often, 951

these techniques use the diffusion approximation, or are restricted to remain close to 952

thermodynamic equilibrium. Two advantages of the technique described in this paper is 953

that the latter restrictions do not apply. Theoretically, population density equations 954

have been put on a rigorous mathematical footing [41], justifying its use for weakly 955

connected networks where the quenched state of the network is not important. These 956

papers also adds to a substantial body of observation that even for small networks 957

population density techniques predict the firing rate correctly (e.g. [6, 42] and many 958

others). So, when modeling firing rates is the main objective, and the network is such 959
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that the populations may be far from equilibrium, population density techniques are a 960

good candidate. They are also valuable in repeat experiments on single cells, as they 961

show what noise will do to otherwise identical neurons. 962

Modeling a complex system of real neurons probably requires a hybrid approach. 963

Mazzucato et al. [43] give an example of such an approach. They analyse the 964

dimensionality of neural data recorded by multielectrode array. The dimensionality is 965

estimated from pairwise correlations. They also produce a spiking network model, to 966

validate their explanation and use population density techniques to establish the 967

dynamical regime for their spiking network. 968

The study of 2D systems subject to noise is an important topic in its own right, 969

given that limit cycles require at least two dimensions. The current trend in 970

neuroscience towards 2D geometrical models reinforces this point. 971

An important prerequisite for the method to work is that the dynamical system can 972

be represented faithfully. We found that some systems have challenging regions of state 973

space: stationary points, whether stable or not, and limit cycles need careful handling 974

and a full cover of state space is not possible. However, we find that we can infer 975

motion of probability mass inside such regions from the immediate surroundings, the 976

limit cycle of the Fitzhugh-Nagumo system as a case in point: it emerges as a region 977

rather than as a curve from terminating the grid as it approaches the limit cycle. 978

There are interesting parallels between our method and a recently proposed method 979

for determining missing spikes in hybrid time-driven, event-driven spiking neuron 980

simulations [33]. Here, the authors consider the problem of missing spikes: the 981

possibility that a neuron is below threshold at the end of a simulation step, but has 982

crossed the threshold during the step. They solve this problem by determining whether 983

a neuron is inside a volume in state space between the threshold and the 984

backpropagated threshold. They find this easier than determining the actual point of 985

crossing, and their method is reminiscent of ours when we calculate the transition 986

matrix. They too consider a mapping like Eq. 6 which they are able to calculate 987

explicitly for current based neurons. They conclude that apart from the threshold and 988

the backpropagated threshold, the boundary is given by the vanishing tangent space of 989

the map, precisely the criterion we used numerically (area of cell - in the absence of 990

analytic solutions) to define boundaries of state space. 991

It is interesting to speculate about extending the method towards even higher 992

dimensions. At first sight, this seems unfeasible: a three dimensional grid might already 993

require millions of bins. It is not efficient to simulate systems with a size of the order 994

104 particles by a larger number of bins. It would also be considerably harder to 995

visualize the results. Nonetheless, probability tends to cluster in specific areas of state 996

space and we find large parts of state space effectively unoccupied. A dynamical 997

representation of the occupied part of state space would lead to a more scalable method. 998

Our simulation results have shown that we can simulate large networks consisting of 999

hundreds or thousands of populations. To make really large networks run more 1000

efficiently, we need smaller meshes and the best way to achieve that we now believe is to 1001

lump the large number of small cells that emerge near stationary points into larger ones, 1002

as described above. This will be our main focus for the near future. 1003
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Tables

membrane time constant τm 20 ms
reset potential Er -65 mV
reversal potential Erev -65 mV
equilibrium potential e Ee 0 V
synaptic time constant e τs 5 mV
threshold potential Vth -55 mV

Table 1. Constants taken from Apfaltrer et al. (2006), Appendix B.
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Quantity Value

Cm 281 pF
gl 30 nS
El -70.6 mV
VT -50.4 mV
∆T 2 mV
τw 144 ms
a 4 nS
b 0.0805 nA

Table 2. Parameters for the AdExp model as given in [25]
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