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ABSTRACT 

Among the superresolution microscopy techniques, the ones based on serially imaging sparse 

fluorescent particles enable the reconstruction of high-resolution images by localizing single 
molecules. Although challenging, single-molecule localization microscopy (SMLM) methods aim at 

listing the position of individual molecules leading a proper quantification of the stoichiometry and 
spatial organization of molecular actors. However, reaching the precision requested to localize 

accurately single molecules is mainly constrained by the signal-to-noise ratio (SNR) but also the density 
(𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), i.e., the number of fluorescent particles per µm² per frame. Of central interest, we establish 

here a comprehensive theoretical study relying on both SNR and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to delineate the achievable 

limits for accurate SMLM observations. We demonstrate that, for low-density hypothesis (i.e. one-

Gaussian fitting hypothesis), any fluorescent particle biases the localization of a particle of interest 
when they are distant by less than ≈ 600 nm. Unexpectedly, we also report that even dim fluorescent 

particles should be taken into account to ascertain unbiased localization of any surrounding particles. 
Therefore, increased 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 quickly deteriorates the localization precision, the image reconstruction 

and more generally the quantification accuracy. The first outcome is a standardized density-SNR space 
diagram to determine the achievable SMLM resolution expected with experimental data. Additionally, 
this study leads to the identification of the essential requirements for implementing UNLOC 

(UNsupervised particle LOCalization), an unsupervised and fast computing algorithm approaching the 
Cramér-Rao bound for particles at high-density per frame and without any prior on their intensity. 

UNLOC is available as an ImageJ plugin.  
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Cellular processes rely on the proper stoichiometry and coordinated spatial organization of molecular 
actors. In this regard, single-molecule localization microscopy (SMLM) provides reliable information on 

molecular distributions, interactions and biological processes by counting and localizing single 
fluorescent particles (1, 2). As such, by aiming at listing the position of single molecules (3-5), SMLM 

differs significantly from the superresolution microscopy techniques which generate reconstructed 
images based on density distribution of the fluorescent signals (6, 7). 

SMLM imaging is of low technical complexity but ensuring the robustness of the super-resolution 
observations requires a rather high attention for rigorous sample preparation, image recording and 

data analysis (2, 8). In a first attempt, SMLM imaging is best designed at describing the molecular 
organization in fixed biological samples to overcome impaired localization precision due to molecular 

diffusion during the camera exposure for any dynamic processes occurring in living cells (9). To a lesser 
extent, insufficient sample fixation alters for the same reason the localization precision and 
consequently, the final resolution of the reconstructed images (8, 10). SMLM imaging also requires the 

design of well-defined fluorescent labeling probes to preserve the localization precision (9, 11). This 
implies to ascertain the probe specificity, to minimize the steric constraint or to optimize the 

dark/fluorescent state ratio (12). Finally, the quality of SMLM imaging strongly relates to a robust data 
processing. 

Based on the theoretical principle governing the accurate localization (13-16), SMLM analyses were 
initially performed with algorithms fitting the point spread function (PSF) of imaged isolated particles 

(17). In essence, accurate localization with a one-Gaussian fitting hypothesis requires effective low-
density (LD) imaging conditions (i.e., low 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ; Fig. 1a, left panel). However, such conditions 

intrinsically undergo frequent experimental exceptions. Possible high local densities, even at a low 
density per frame, are encountered due to a non-homogeneous distribution of the particles or to the 

stochastic nature of SMLM methods. Moreover, complex variations of the background are very 
frequently observed both in space and time. Altogether, this fully justifies to quantify SMLM data with 

an accurate HD mode of analysis. 

A canonical scenario with two particles recapitulates the problem (Fig. 1a, middle panel). Postulating 
LD conditions on these data generates not only a lack of precision but also a bias regarding their 

localizations. The retrieval of accurate precision and unbiased localization data can be obtained by a 
two-Gaussian fit under a high-density (HD) hypothesis. When the two particles are too close to each 

other (Fig. 1a, right panel), the scenario becomes non-resolvable (NR). The HD hypothesis is no longer 
a working scenario, as shown by indistinguishable fitting residues (Fig. 1b). Thus, an accurate 

enumeration and localization of particles rely not only on the signal-to-noise ratio (SNR) but also on 
the density of particles per frame (𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). Other analytical approaches have been developed for HD 

SMLM data such as the ones based on compressed sensing (18, 19), Bayesian estimation (20, 21) or 
deconvolution (22) analyses. They provide the local density of the emitting particles, but without 

reaching the single-molecule localization precision obtained by the multi-Gaussian fitting methods (23-
25) (see also (26) for review). 
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Assessing accuracy and robustness for localization precision requests first to define theoretically the 
reliability of SMLM observations. By simulating realistic conditions, we investigate a theoretical 

canonical scenario with two particles on the localization precision. We characterize the bias on the 
localization precision based on an appropriate estimator and the Cramér-Rao bound (CRB). We 

demonstrate the impact of the SNR and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 on the localization precision. Our theoretical study 

prompted us to develop original tools to estimate and ensure accurate quantitative SMLM analyses: 

(i) a unique density-SNR space diagram that enables standardized evaluation of the localization 
accuracy expected from experimental data and (ii) UNLOC, a real parameter-free, unsupervised and 

fast computing algorithm as a plugin for ImageJ (27) especially useful for any inexperienced researchers 
requiring a rigorous SMLM quantification. 

 

MATERIALS AND METHODS 

THEORETICAL FRAMEWORK CONSIDERATIONS 

The theoretical statistical study is based on a general signal-dependent noise model of the intensity 𝑥𝑥𝑝𝑝 

at pixel 𝑝𝑝 = (𝑖𝑖, 𝑗𝑗) as a proper model matching the stochastic processes that occur during experimental 
acquisition of SMLM (Note S1, Eq. S1). Also, for the sake of generalization, we express the inter-particle 

distance 𝑑𝑑 by the characteristic dimension 𝑟𝑟0 of the PSF and the SNR in a logarithmic decibel scale 
(SNRdB = 10 log10 SNR). All derivations and analyses are detailed in Notes S1-5 and Table S1 for 

acronyms and symbols used in this study. 

PSF size – We hypothesize that the PSF exhibits a classical integrated Gaussian profile with a 

characteristic size r0 represented by the full width at half maximum (FWHM) of the peak according to: 

 FWHM = 2𝑟𝑟0(2 ln 2)1 2⁄ ≈ 2.35𝑟𝑟0. (1)  

For a comprehensive order of magnitude, the 𝑟𝑟0 value is equal to 130 nm for an optical pixel size of 
107 nm (𝑟𝑟0 = 1.25 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝). For this characteristic size, 86% of a single signal power is within 3 × 3 

pixels, with the power defined as ∑ �𝛼𝛼𝑔𝑔𝑝𝑝�
2

𝑝𝑝 , with 𝛼𝛼𝑔𝑔𝑝𝑝, the signal intensity at the pixel 𝑝𝑝. 

Definition of a single contrast parameter – A pertinent contrast parameter should describe the 
difficulty of the task, i.e., the expected precision, independently of the data to ascertain the same 

precision of particle localization for data acquired on different equipment. We chose the SNR as an 
efficient contrast parameter, which was calculated using the following equation assuming that  
∬𝑔𝑔2(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 = 1: 

SNR = 𝛼𝛼2 𝜎𝜎𝑚𝑚0
2� = (1 4𝜋𝜋𝑟𝑟02⁄ )�𝐼𝐼2 𝜎𝜎𝑚𝑚0

2� � = 𝜋𝜋𝑟𝑟02�𝐼𝐼𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝2 𝜎𝜎𝑚𝑚0
2� � (2)  

where 𝛼𝛼  is the amplitude of the signal, 𝜎𝜎𝑓𝑓0
2  the variance of the fluorescent background 𝑚𝑚0 , 𝐼𝐼  the 

intensity of a particle (in number of counts), 𝐼𝐼𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝 the peak signal intensity, and 𝑟𝑟0 expressed in pixel 

units. As compared to the classical contrast parameters defined by the sole signal intensity or by the 

ratio of the particle signal to the background level, the SNR alone recapitulates the expected achievable 
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precision (Fig. S1). The performance limits are fixed by the CRB, which, for a given density 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 

depends on (SNR ,𝑚𝑚0,𝐺𝐺), but is only recapitulated by the SNR: 

CRB�SNR ,𝑚𝑚0,𝐺𝐺;𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� ≈ 𝑓𝑓(SNR;𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) (3)  

with 𝐺𝐺 = 𝜎𝜎𝑝𝑝2 2𝑚𝑚𝑝𝑝� , the electron-multiplying (EM) gain which differs from the electron-multiplying 

charge-coupled device (EMCCD) gain sets experimentally. 

Signal-dependent noise model – An EMCCD or complementary metal-oxide semiconductor (CMOS) 
camera is designed for low-light imaging. However, regular experimental SMLM image acquisition 

deviates significantly from these conditions and covers a wide range of intensities, from a few hundred 
to thousands of photons in the background and signal areas (Note S1). Since the PSF corresponds to 
the averaged repartition of photons for spatially isolated punctate signals, the particle intensity 

contributes to the SNR and the quality shape of the detected peak. A precise particle localization 
implies that an appropriate SNR has been achieved and, hence, a sufficient photon flux recorded during 

the integration time. 

We consider a general signal-dependent noise model of the intensity 𝑥𝑥𝑝𝑝 at pixel 𝑝𝑝 = (𝑖𝑖, 𝑗𝑗) as a realistic 

model of the signal fluctuations that approximates these conditions: 

𝑥𝑥𝑝𝑝 =  𝒩𝒩�𝑚𝑚𝑝𝑝 ,𝜎𝜎𝑝𝑝2 = 2𝐺𝐺𝑚𝑚𝑝𝑝� (4)  

where 𝑚𝑚𝑝𝑝 is the averaged intensity for pixel 𝑝𝑝, and 𝜎𝜎𝑝𝑝 is its standard deviation. This equation has been 

corroborated by others (28). 

Choice of the MMSE as appropriate estimator – Compared to a maximum likelihood estimator (MLE), 

the use of a minimum mean square error (MMSE) estimator has received increasing interest (17, 29, 
30). Under LD conditions, the MMSE estimator corresponds to a simple filtering operation (Note S2). 

Under HD conditions, the two estimators show a similar mean square error (MSE) that is similar to the 
CRB, as well as a very limited bias in cases in which two particles P1 and P2 are present at variable 

distances or at variable SNRs but at a constant SNR difference (∆SNR ) (Fig. S2). However, the MLE is 
more biased than the MMSE estimator when they are compared under a defective LD hypothesis or 

for images with a non-homogeneous background (Figs. S3a, and S8, Note S5). Moreover, an MMSE 
estimator remains less complex than an MLE, which requires optimizing Eq. S25 and, consequently, a 
higher computational cost. 

GENERATION OF SYNTHETIC DATA 

All synthetic data were generated with Matlab (The MathWorks Inc., Natick, MA). Images must have 

met the conditions of a signal-dependent noise model, as defined in Eq. 4, to achieve a controlled 

scenario. The PSF of unitary power is defined by three parameters, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑟𝑟0 and 𝑤𝑤𝑛𝑛, where 𝑤𝑤𝑛𝑛 is the 

size of the window support. When it is requested, 𝑑𝑑  or 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  were set. Otherwise specified, the 

synthetic data were generated based on the following values: 𝑟𝑟0 = 1.25 pixels, 𝑚𝑚0 = 300, 𝐺𝐺 = 1, a 

pixel size of 107 nm and 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 = 25 𝑑𝑑𝑑𝑑. 
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UNLOC ALGORITHM 

Description – UNLOC provides a list of coordinates and associated parameters for each detected 

particle for a posteriori quantification and image reconstruction. The algorithm is based on the decision 
theory, which only requires the PFA value to be set without the initialization of any parameters relative 

to the data (SNR, particle density, or background level). UNLOC is an iterative algorithm that alternates 
an overestimation of the number of particles to obtain a minimal fitting residue with a general 

likelihood ratio test (GLRT) to suppress useless particles. UNLOC calculates the position errors based 
on the CRB for particles at high density per frame and without any prior on their intensity. The UNLOC 

principle is illustrated in Figs. 4 and S9 and the mathematical details are provided in Note S6.  

Performance evaluation – We evaluate UNLOC performances on (i) localization accuracy, (ii) 

inhomogeneous density distribution and (iii) computation time. 

Localization accuracy on synthetic data – A first chart assesses the limits for a simple case with two 
particles at different SNRs (from 20 to 30 dB) and variable inter-particle distances (from 0.5 to 6 𝑟𝑟0) 

(Fig. S11); the alphanumeric characters and 𝑟𝑟0 scales were generated under LD conditions to avoid any 
interference with the evaluated signals. The second chart reproduces the density-SNR space diagram 

with the alphanumeric character defined by an SNR and a local density ranging from 20 to 40 dB and 
0.1 to 5 part/µm²/frame, respectively. Briefly, each character is designed by dots in a 6 × 12 subpixel 

area with a subpixel size of 0.1 pixel. The local density is mimicked by the illumination rate of subpixels: 
the more dots of a given character are illuminated simultaneously, the higher is the local density.  

Inhomogeneous density distribution – Synthetic data mimicking clustered molecules by varying cluster 
and particle densities (3 to 10 clusters/µm² and 0.1 to 1 part/µm²/frame) are generated. Clusters of ≈ 

97 particles with a 100 nm diameter at 27 dB of SNR were randomly dispersed in a 10 × 10 µm image 
(i.e., 94 × 94 pixels), resulting in a variable total number of particles. The UNLOC results and ground 

truth data were analyzed using two clustering algorithms, a standard clustering algorithm, DBSCAN 
(31), and a dedicated algorithm for SMLM data, SR-Tesseler (32) (Table S2). 

Computation time – This relates to the hardware characteristics and data complexity in particle 
density/frame, SNR, number of pixels and frames. All synthetic and experimental data were computed 
on a Dell Precision T7910 with a 2 × 12 cores Intel® Xeon® processor (E5-2687W v4, 3 GHz) and 128 GB 

of RAM. 

Software package – The UNLOC ImageJ plugin, including a user’s manual and the scripts for the charts 

is freely available for academic and nonprofit use as supporting software package or at http://ciml-
e12.univ-mrs.fr/App.Net/mtt/ (including updated versions). 

SAMPLE PREPARATION, MICROSCOPY SETUP AND DATA ACQUISITION 

dSTORM images of Alexa FluorTM 647-phalloidin (Thermo Fisher Scientific)-labeled actin filaments in 
fixed COS-7 cells (ATCC CRL 1651) were prepared using the method reported by Xu et al. (33). For 

imaging, samples were mounted on a single-depression concave slide (VWR # 630-1611) in dSTORM 
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buffer (50 mM Tris-HCl, pH 8.5, 50 mM cysteamine and 50 mM NaCl in 18.2 MΩ.cm Milli-Q water) and 
sealed with Picodent Twinsil speed 22 (Picodent, Germany). 

Acquisitions were performed on a custom-built microscope with an excitation light path for total 
internal reflection fluorescence (TIRF) and wide field observations (Fig. S14 and Table S3). Samples 

were illuminated with a 647 nm laser at 4 kW.cm-2. Typically, ≈ 57,000 frames were acquired at an 
exposure time of 36 ms and an EMCCD gain of 100. The axial drift was corrected by the autofocus 

module. Data were analyzed by UNLOC in HD mode with a high spatial frequency variation of 
background, a reconnection process with one Off-state lifetime frame and an integrated Gaussian 

rendering process after drift correction by correlation and without data filtering. 

 

RESULTS AND DISCUSSION 

THEORETICAL STATISTICAL STUDY 

The SMLM analytical methods can be divided into two subgroups. A first one is primarily used for low-

density data (13-16, 34) and intends to nearly achieve the CRB performances using a MLE (29, 35). A 
second subgroup is specifically designed for high-density data set or fast computing; it reconstructs 

images without necessarily achieving the best detection performance or localization precision (18-22). 
Combining the benefits of these two subgroups should maintain fast processing for unbiased particle 
localizations by approaching the CRB under various SNR and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 conditions.  

We define the SNR as a pertinent contrast parameter (Fig. S1 and Note S1) and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as the number 

of fluorescent particles per µm² per frame. 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is linked to the inter-particle distance distribution 

(36) that is implicitly related to the probability 𝑝𝑝 of finding a single particle at a radius 𝑟𝑟 for randomly 
distributed particles, as determined using the following equation: 

 𝑝𝑝�𝑟𝑟,𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = exp(−𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜋𝜋 𝑟𝑟2). (1)  

A canonical scenario with two particles recapitulates the problem by identifying the intrinsic limits of 

the LD/HD and HD/NR transitions (Fig. 1) to design a heuristic adapted to divers experimental data.  

Here, we present a theoretical study using two particles, P1 and P2, of respective intensities 𝛼𝛼1 and 𝛼𝛼2, 

which are separated from each other by 𝑑𝑑,  the inter-particle distance expressed in 𝑟𝑟0 , the 
characteristic PSF dimension. 

Limit of the LD hypothesis – According to LD hypothesis, the localization precision is governed by a 

photon-counting analysis, regardless of the local particle density (13). Therefore, the omission of 
surrounding particles introduces a bias, 𝑖𝑖𝑏𝑏 , into the localization of particle P1. By considering a signal-

dependent noise model (28) (Note S1), 𝑖𝑖𝑏𝑏 may be solved for an MMSE estimator within an analysis 
square window of dimension 𝑤𝑤 as follows (Note S2): 

 𝑓𝑓MMSE �𝑖𝑖𝑏𝑏;𝑑𝑑,  𝑟𝑟0,
𝛼𝛼2
𝛼𝛼1

 � = � (𝑖𝑖 − 𝑖𝑖𝑏𝑏)
𝑖𝑖 ∈ 𝑤𝑤

exp �−
(𝑖𝑖 − 𝑖𝑖𝑏𝑏)2 + 𝑖𝑖2

2𝑟𝑟02
� �1 +

𝛼𝛼2
𝛼𝛼1

exp �−
𝑑𝑑(𝑑𝑑 − 2𝑖𝑖)

2𝑟𝑟02
�� = 0 . (2)  
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The LD/HD transition distance at which the bias 𝑖𝑖𝑏𝑏 becomes greater than the expected precision of the 
localization of P1 also relies on the intensity ratio between the two particles (Fig. 2a). This result is 

validated using synthetic data, where the P1 position is estimated with an MMSE estimator initialized 
at its true coordinates (Figs. 2c, S3). We set 𝑑𝑑𝐿𝐿𝐿𝐿 𝐻𝐻𝐿𝐿⁄ , the LD/HD transition distance, at a large dynamic 

intensity ratio ((𝛼𝛼2 𝛼𝛼1⁄ )dB = 22 dB ), a scenario that is conceivable based on experimental data 

(Fig. 2b). This transition occurs at approximately 5𝑟𝑟0 [i.e., ≈ 650 nm for a standard 𝑟𝑟0 ≈ 130 nm]. Thus, 
any particles spaced at a distance below this limit require an HD estimation. 

Limit of the HD hypothesis – Now, we must primarily consider HD conditions to determine the HD/NR 

transition, i.e., the distance from which an enumeration is no longer achievable (Note S3). We 
determine this limit by performing a likelihood ratio test (LRT) that yields the best probability of 

detection (PD) set at a probability of false alarm (PFA) (37). For a simple NR scenario (Fig. 1b), two 
particles separated by a short distance have an almost null PD at the usual PFA (10-4). Similar to LD 

cases, the enumeration error biases the localization of the other particles due to the erroneous fitting 
hypothesis. This detection error alters the localization of the nearest and more distant particles 

(Fig. S4a). Conversely, the detection of any dim particles enables unbiased localizations (Fig. S4b). Of 
note, both SNR and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 contribute to the assignment of a proper PD. Hence, the HD/NR transition 

𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (SNR)  must be set to given SNR and appropriate PD, e.g., 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (25 dB) = 1.23𝑟𝑟0 

[≈ 170 nm] at a weakly restrictive PFA (10-3) for 80% PD (Note S3, Fig. S6). Moreover, the nuisance 

effect propagates at long distances and depends on both the SNR and the geometry. Thus, 
minimization of the bias in the localization of bright particles implies that even the particles with a 

weak intensity must be taken into account in the initial detection step.  

LD, HD and NR subsets – Based on Eq. 1, which provides the probability of identifying isolated particles 

in a random distribution and at the inter-particle distances delineating the LD/HD and HD/NR 
transitions, we easily obtain the partition of the LD, HD and NR subsets as follow: 

 � 
 𝐿𝐿𝐷𝐷SNR% = exp(−𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜋𝜋 𝑑𝑑𝐿𝐿𝐿𝐿 𝐻𝐻𝐿𝐿⁄

2 ) ∗ 100
 𝑆𝑆𝑆𝑆SNR% = (1 − exp(−𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜋𝜋 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄

2 (SNR))) ∗ 100 
 𝐻𝐻𝐷𝐷SNR% = 100 − 𝐿𝐿𝐷𝐷%−𝑆𝑆𝑆𝑆%

 (3)  

Significantly, at a SNR of 25 dB, the NR subset rapidly increases with 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , to ≈ 10% at 

1 part/µm²/frame and up to ≈ 40% at 5 part/µm²/frame (Fig. 3a). This subset is quantifiable for a 
known scenario (simulated data) but is obviously not quantifiable for experimental data, leading to 

significant erroneous particle quantifications. Thus, we determine the densities/frame corresponding 
to the respective thresholds 𝑑𝑑𝐿𝐿𝐿𝐿 𝐻𝐻𝐿𝐿⁄  and 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (SNR)  at a suitable quantile 𝑄𝑄𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑓𝑓𝑠𝑠  set to 20%, 

which refers to the densities at which 20% of the particles have a 𝑑𝑑 value below these thresholds 

(Fig. S5a). 

Merged information in a single density-SNR space diagram – We generalize this canonical two-

particle study to the achievable limits for accurate enumeration and localization in realistic 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 

SNR ranges, and in the case of local homogeneous particle distribution. If the SNR predominantly 

determines the expected localization precision 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 under LD conditions, this postulate is no longer 
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valid under HD conditions where increased 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 decreases 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 (Fig. S5b). From local density, we 

identify three limits (Fig. S6, Note S3): 

(i) a precision limit when the error becomes greater than the expected localization precision. We would 
like to point out that calculating the CRB assuming known the signal intensity or at least a prior on its 

value has no impact on the localization precision for LD data. However, for HD data, the CRB have been 
calculated in previous studies without estimating the particle intensity (14, 38, 39), leading to an 

overestimation of the actual resolvable 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . In fact, we demonstrate that only a very precise 

knowledge of the particle intensity improves the localization precision but such requirement is actually 

unrealistic for experimental data (Note S4). Therefore, we calculate the CRB by jointly evaluating the 
position and intensity of the particles; 

(ii) a separation limit when the errors of the particle positions become larger than the distance 
separating them; 

(iii) a detection limit when, at a given PFA and reasonable PD, the number of particles can no longer be 
determined. 

Although these limits have the same order of magnitude at same SNR (Fig. S6), the detection limit is 

the effective limiting factor since, by no longer achieving accurate particle detection, the scene 
becomes non-resolvable. Therefore, we define the inter-particle distance limit 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (SNR)  for 

HD/NR transitions as the distance at which an optimal detector with known values for all parameters 

(positions, intensity, noise and background) has a PD of 80% at PFA = 10-3 (Figs. S5a, S6b). Moreover, 
based on the cumulative 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 distribution (Fig. S5b), we arbitrarily set a quantile 𝑄𝑄𝜎𝜎 to 80% to plot 

the precision isocurves: for a given 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 80% of particles have a 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 less or equal to the precision 

isocurve value. 

Finally, we merge the color-coded information for LD/HD/NR transition areas with the precision 
isocurves in a density-SNR space diagram (Fig. 3b). This diagram defines the experimental local 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

and SNR required to reach a given precision. For example, a 15 nm precision is achievable at 26 dB 
under effective LD conditions (𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 0.15 part/µm²/frame). At 1 part/µm²/frame, this precision 

requires data obtained at 30 dB. At a two-fold higher 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, only the particles with high SNR (≥ 40 dB) 

are localized with this precision. The SMLM performance also decreases when 𝑟𝑟0 must be estimated 

(e.g., wide field versus TIRF microscopies, Fig. S7). 

 

UNLOC – UNsupervised particle LOCalization 

UNLOC Principle – Our theoretical study allowed us to conceive UNLOC, an algorithm based on an 
unsupervised heuristic, while minimizing the computational cost and improving the analytical 

reliability of complex data (Note S6). Additionally, UNLOC is designed to achieve the best 
performances, as delineated here by the CRB, for any particles separated by a distance greater than 
𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (SNR) and without any prior on their intensity. 
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Although UNLOC accounts for spatiotemporal variations in the background, SNR and local particle 
density, it only requires the PSF size (𝑟𝑟0) of the microscope to build a list of particles. The algorithm is 

divided into three modules (Fig. S9a): (i) a detection/estimation module performed in an iterative 
process (Fig. 4) together with optimization of the number, position and intensity of the particles, and 

also the PSF size if requested (Fig. S9b); (ii) a reconnection module to minimize an overrepresentation 
of particles in the reconstructed image using statistical tracking of the particle history over the frames; 

(iii) an optional module for drift correction and classical image rendering methods. 

Detection/estimation – Two modes of detection/estimation are provided. A standard mode 

appropriate under effective LD conditions is similar to MTT (40). It is based on a GLRT at unknown 
background which is an efficient unsupervised detector that only depends on the PFA (41). 

Alternatively, the HD mode of UNLOC should be applied for any data with high local density/frame and 
complex background, a condition which occurs very frequently with experimental data. Preserving the 
GLRT robustness under HD conditions requires an estimation of the background mean and variance. 

This is done by filtering and interpolating the background between the regions of the frame without 
signals. 

The HD module establishes a list of particle localizations by the iterative addition/suppression of the 
number of particles (Figs. 4, S9b). It initially provides a robust estimate of the mean and variance of 

the background in a single frame or within a set of consecutive frames when a high density of particles 
and important variations are observed in the background between frames. Thus, the initial regions of 

interest (ROIref) comprising signals are detected with a GLRT at known background parameters and at 
a PFA of 10-6, a threshold which ascertains almost a PD of 100% for dim particle (SNR ≥ 18 dB) (37, 41, 

42). A list of particles is initially generated by assessing the maxima in each ROIref on the deconvoluted 
frame. ROIref are classified into two types of subgroup (43): one encompasses all isolated particles that 

only requires localization using a one-Gaussian fit, and the other encompasses all ROIref in which at 
least two particles are present at 𝑑𝑑 < 5𝑟𝑟0 . Since any dim particle can introduce a localization bias, 

these subgroups must contain any detected particles, regardless of their intensity. Each subgroup is 
further analyzed using an iterative process to identify new ROIs present within the residual fit of the 
initial ROIref. The list of additional particles identified according to their maxima is merged with the 

previous list. Next, a global fitting procedure performed using a GLRT suppresses supernumerary 
particles from the list. The enumeration procedure is executed conjointly with the optimization of 

particle position, intensity and PSF size.  

Reconnection – If the detection/estimation step is designed for both static (SMLM on fixed samples) 

and dynamic (single-particle tracking (SPT)) observations, the reconnection step applies solely to static 
observations within the intrinsic theoretical limits (see (40) for SPT dedicated algorithm). To avoid an 

overestimation of the molecule count, fluorescent signal over consecutive frames or over 
disconnected frames due to the reversible switch between the fluorescent and dark states should be 

reconnected (Note S6, paragraph SN 6.3). We define the statistical tracking of the particle history over 
the frames as a “trajectory”. Thus, live trajectories (i.e., trajectories identified in a restricted number 

of previous frames) are tested using the particles present in the current frame. We define 𝑆𝑆PD as a 
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threshold set by the expected probability for the reconnection domain and the variances of both the 
trajectory precision and the nearest particle. Moreover, a reverse test (particle to trajectory) validates 

the reconnection. 

Drift correction, data filtering and rendering – Drift correction is achieved by two optional methods: (i) 

automated tracking of fluorescent fiduciary markers (3) over the frames using a GLRT or (ii) image 
cross-correlation (44) in which subsequent resolved frames are correlated. Standard data filtering is 

implemented to remove outliers (e.g., any data with low precision in localization, intensity, SNR, ON-
state, etc.). Finally, five classical rendering modes (45) are implemented to reconstruct the SMLM 

image: (i) a binary mode that represents each localization as a white sub-pixel in the reconstructed 
image, (ii) an integrated binary mode in which the intensity values assigned to each sub-pixel 

correspond to the number of localizations within each pixel, (iii) a time mode encoded in a look-up 
table as a function of the first temporal appearance of the particle, (iv) a mode where each particle is 
represented by a Gaussian whose the variance reflects the localization precision and (v) an integrated 

Gaussian mode similar to the previous mode but accounting for the local density. 

UNLOC performances – Although the super-resolution algorithm evaluation mostly considers the final 

image resolution (30, 46, 47), we favor at benchmarking the localization precision as the primary goal 
ensuring accurate SMLM data. Classically, benchmarking metrics pair the ground truth of synthetic bio-

inspired data and the estimated particle localizations at a particular tolerance radius (26). If these 
metrics are pertinent under real LD conditions, they have unsolvable solutions at increased 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

(Fig. S10), with mismatches resulting from NR particles or inappropriate algorithm outputs. Usually, 
the tolerance radius is the same as the PSF FWHM value (26) and does not account for the localization 

precision. At a homogeneous 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓of 2 part/µm²/frame, 50% of the particles are located at a closer 

distance than this tolerance radius, providing inconsistent pairings. For this reason, the UNLOC 

performances are directly visualized on two charts (Fig. 5): one for assessing the limits for canonic two-
particle scene and the other for mimicking the density-SNR space diagram. The UNLOC analysis of the 

inter-particle distance chart explicitly clearly verifies the main conclusions of our theoretical study. In 
LD mode, a bias starts occurring for any particles distant from less than around 5𝑟𝑟0 , i.e., 𝑑𝑑𝐿𝐿𝐿𝐿 𝐻𝐻𝐿𝐿⁄ . 

Another bias results from ignoring any dim neighboring particles. Finally, in LD or HD mode, a counting 
error occurs when the inter-particle distance is below 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ (SNR). 

The UNLOC analysis of the alphanumeric density-SNR chart leads to immediately visualize that the 

localization precision is preserved along an isocurve of the alphanumeric character chart (Fig. 5b). 
Compared to the standard ThunderSTORM HD algorithm (25), UNLOC provides more reliable estimates 

on such synthetic data concerning the localization precision as well as achievable resolution (47) (Figs. 
S12, S13). Moreover, UNLOC differs from super-resolution algorithms based on local density 
distribution reconstruction such as SRRF (7). As illustrated by the image reconstruction of experimental 

data for actin filaments in fixed cells, UNLOC efficiently challenges the background and density 
variability throughout the stack of images in a range of SNR of 18 to 40 dB with a localization precision 

ranging from 60 to 10 nm (Figs. 6, S12).  
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Our theoretical study is intended for a homogeneous distribution for randomly distributed particles. 
However, experimental data deviate strongly from these ideal conditions. More generally, any 

biological study encounters possible high local densities, even at a low density per frame, and 
background variations, which fully justifies using an accurate HD mode of analysis. Such case is 

illustrated through the analysis of particles localized by UNLOC in LD versus HD mode for non-
homogeneous distributed data (e.g., molecular clustering) (Fig. 7). The results of the clustering analysis 

by two different methods (31, 32) are recapitulated in Table S2. A proper quantification of clusters 
depends on the accuracy of the localization precision, which depends on local density, i.e., the density 

surrounding the particle in a given frame of the image stack. Of interest, UNLOC can also serve as an 
efficient localization tool for single particle tracking and the result further analyzed with the MTT 

algorithm (40). 

Finally, the classification of subgroups during the detection/estimation step does not modify the result 
but reduces the computation time by independently analyzing each individual subgroup with the 

appropriate fitting model. As order of magnitude, UNLOC analyzes in HD mode the density-SNR space 
diagram chart in ≈ 11 min (i.e., ≈ 20 frames/s or ≈ 3,200 particles/s). For an experimental biological 

data set of ≈ 57,000 frames of 512 × 512 pixels with non-homogeneous background and high variability 
of local density/frame (Fig. 6), UNLOC performs the task in HD mode within ≈ 200 min (i.e., ≈ 5 

frames/s or ≈ 2,000 particles/s, for a total of ≈ 20 × 106 detected particles). 

 

CONCLUSION 

The strength of SMLM relates on a rigorous approach all along the experimental procedure, from the 

sample preparation to the data quantification. Here, we aim at assessing the accuracy and robustness 
of SMLM analysis by establishing a thorough theoretical study. We demonstrate that not only the SNR 

but also the local 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  strongly impact the real localization precision. More specifically, any 

neighboring particle strikingly biases the localization precision of a particle below an unexpected long 

inter-particle distance (≈ 600 nm). Also, even particles of weak SNR need to be detected since they 
contribute to ascertain unbiased localization of any neighboring particles. We identify inter-particle 

distance thresholds defining theoretically the working range of any localization-based algorithms 
leading to the definition of LD/HD/NR subsets, knowing the SNR-density values. In any case, non-
resolvable scenario arises with increased local density/frame at an inter-particle distance 𝑑𝑑𝐻𝐻𝐿𝐿 𝑁𝑁𝑁𝑁⁄ ≈
 170 nm, for two particles at 25 dB. Therefore, any NR scenario, which is by definition undeterminable 

with experimental data, impedes the localization precision, image representation, quantification and 
even the algorithm benchmarking performed with classical metrics. Moreover, we report that the 

knowledge of the particle intensity distribution does not improves the localization precision. Finally, 
our theoretical study clearly demonstrates that, compared to a MLE, an MMSE estimator is more 

robust and simplest to compute on high local density/frame data with complex background. 

Therefore, we provide new tools that would help to report accurate quantitative SMLM observations. 

The density-SNR space diagram established for a realistic range of 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and SNR enables 
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standardized evaluation of the localization accuracy. Then, we develop UNLOC, a flexible and efficient 
unsupervised algorithm for high-density data. UNLOC is based on a heuristic insuring an optimal 

localization precision and counting of particles by considering both the SNR and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. Finally, we 

also create synthetic data charts allowing blind benchmarking of any SMLM algorithms aiming 

specifically at providing a list of localizations of single molecules and not only a reconstructed image. 

Altogether, this work provides an understanding of the key features usually underestimated or 

incorrectly taken into account in SMLM analyses. 

 

SUPPORTING MATERIAL 

Fourteen figures, three tables, six notes and one software package accompany this paper. 

For referees, please use the temporary link below to download anonymously 

the Software package:  

https://filesender.renater.fr/?s=download&token=c679ccb6-b562-f543-0582-f0657de1b683 

This link is valid until February 15th, 2018. 

 

AUTHORS’ CONTRIBUTIONS 

N.B. and D.M. supervised the study and conceived the project. S.Ma., A.R., L.D., J.T. and N.B. developed 

the algorithms and performed the simulations; S.B., S.Ma. and S.Mo. designed the optical bench; R.F., 
M.C.B. and Y.H. performed experimental observations; and all authors contributed to the 

interpretation of the data. N.B., S.Ma. and D.M. wrote the manuscript. The authors declare no 
competing financial interests. 

 

ACKNOWLEDGMENTS 

We acknowledge Marc Allain, Sophie Brasselet, Hai-Tao He, Hervé Rigneault and Muriel Roche for their 
critical reading of the manuscript. We thank Christophe Leterrier for valuable discussions and Florian 

Levet for his advices on the SR-Tesseler analysis. This work was supported by institutional funding from 
the CNRS, Inserm, Aix-Marseille University and Centrale Marseille and program grants from the 

Research National Agency (ANR-10-BLAN-1214 to N.B. and D.M.), the French “Investissements 
d’Avenir” (ANR-11-IDEX-0001-02 A*MIDEX to N.B. and D.M., ANR-10-INBS-04 France BioImaging, ANR-
11-LABX-0054 Labex INFORM and ANR-14-CE09-0008-02 to D.M.), the Fondation pour la Recherche 

Médicale (FRM-DEQ-20090515412 to D.M.) and the Institut National du Cancer (C15005AS to D.M.). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/275313doi: bioRxiv preprint 

https://doi.org/10.1101/275313
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

REFERENCES 

1. van de Linde, S., S. Aufmkolk, C. Franke, T. Holm, T. Klein, A. Loschberger, S. Proppert, S. Wolter, 
and M. Sauer. 2013. Investigating cellular structures at the nanoscale with organic fluorophores. 
Chem Biol 20:8-18. 

2. Nicovich, P. R., D. M. Owen, and K. Gaus. 2017. Turning single-molecule localization microscopy 
into a quantitative bioanalytical tool. Nat Protoc 12:453-460. 

3. Rust, M. J., M. Bates, and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical 
reconstruction microscopy (STORM). Nat Methods 3:793-795. 

4. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. 
Davidson, J. Lippincott-Schwartz, and H. F. Hess. 2006. Imaging intracellular fluorescent proteins at 
nanometer resolution. Science 313:1642-1645. 

5. Sharonov, A., and R. M. Hochstrasser. 2006. Wide-field subdiffraction imaging by accumulated 
binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911-18916. 

6. Dertinger, T., R. Colyer, G. Iyer, S. Weiss, and J. Enderlein. 2009. Fast, background-free, 3D super-
resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106:22287-22292. 

7. Gustafsson, N., S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques. 2016. Fast live-
cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. 
Nat Commun 7:12471. 

8. Shivanandan, A., H. Deschout, M. Scarselli, and A. Radenovic. 2014. Challenges in quantitative 
single molecule localization microscopy. FEBS Lett 588:3595-3602. 

9. Deschout, H., F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. 
Braeckmans. 2014. Precisely and accurately localizing single emitters in fluorescence microscopy. 
Nat Methods 11:253-266. 

10. Tanaka, K. A., K. G. Suzuki, Y. M. Shirai, S. T. Shibutani, M. S. Miyahara, H. Tsuboi, M. Yahara, A. 
Yoshimura, S. Mayor, T. K. Fujiwara, and A. Kusumi. 2010. Membrane molecules mobile even after 
chemical fixation. Nat Methods 7:865-866. 

11. Bittel, A. M., A. Nickerson, I. S. Saldivar, N. J. Dolman, X. Nan, and S. L. Gibbs. 2016. Methodology 
for Quantitative Characterization of Fluorophore Photoswitching to Predict Superresolution 
Microscopy Image Quality. Sci Rep 6:29687. 

12. Lambert, T. J., and J. C. Waters. 2017. Navigating challenges in the application of superresolution 
microscopy. J Cell Biol 216:53-63. 

13. Thompson, R. E., D. R. Larson, and W. W. Webb. 2002. Precise Nanometer Localization Analysis for 
Individual Fluorescent Probes. Biophys J 82:2775-2783. 

14. Ober, R. J., S. Ram, and E. S. Ward. 2004. Localization Accuracy in Single-Molecule Microscopy. 
Biophys J 86:1185-1200. 

15. Mortensen, K. I., L. S. Churchman, J. A. Spudich, and H. Flyvbjerg. 2010. Optimized localization 
analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7:377-381. 

16. Rieger, B., and S. Stallinga. 2014. The lateral and axial localization uncertainty in super-resolution 
light microscopy. Chemphyschem 15:664-670. 

17. Abraham, A. V., S. Ram, J. Chao, E. S. Ward, and R. J. Ober. 2009. Quantitative study of single 
molecule location estimation techniques. Opt Express 17:23352-23373. 

18. Babcock, H. P., J. R. Moffitt, Y. Cao, and X. Zhuang. 2013. Fast compressed sensing analysis for 
super-resolution imaging using L1-homotopy. Opt Express 21:28583-28596. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/275313doi: bioRxiv preprint 

https://doi.org/10.1101/275313
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

19. Zhu, L., W. Zhang, D. Elnatan, and B. Huang. 2012. Faster STORM using compressed sensing. Nat 
Methods 9:721-723. 

20. Cox, S., E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. 
E. Jones, and R. Heintzmann. 2012. Bayesian localization microscopy reveals nanoscale podosome 
dynamics. Nat Methods 9:195-200. 

21. Manzo, C., T. S. van Zanten, S. Saha, J. A. Torreno-Pina, S. Mayor, and M. F. Garcia-Parajo. 2014. 
PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular 
organization of the cell membrane. Sci Rep 4:4354. 

22. Mukamel, E. A., H. Babcock, and X. Zhuang. 2012. Statistical deconvolution for superresolution 
fluorescence microscopy. Biophys J 102:2391-2400. 

23. Holden, S. J., S. Uphoff, and A. N. Kapanidis. 2011. DAOSTORM: an algorithm for high- density 
super-resolution microscopy. Nat Methods 8:279-280. 

24. Babcock, H., Y. M. Sigal, and X. Zhuang. 2012. A high-density 3D localization algorithm for stochastic 
optical reconstruction microscopy. Opt Nanoscopy 1:6. 

25. Ovesny, M., P. Krizek, J. Borkovec, Z. Svindrych, and G. M. Hagen. 2014. ThunderSTORM: a 
comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. 
Bioinformatics (Oxford, England) 30:2389-2390. 

26. Sage, D., H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser. 2015. Quantitative 
evaluation of software packages for single-molecule localization microscopy. Nat Methods 12:717-
724. 

27. Rasband, W. S. 1997-2016. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. 

28. Chao, J., E. S. Ward, and R. J. Ober. 2012. Fisher information matrix for branching processes with 
application to electron-multiplying charge-coupled devices. Multidimens Syst Signal Process 
23:349-379. 

29. Kay, S. M. 1993. Fundamentals of statistical signal processing: estimation theory. Prentice Hall, 
New Jersey. 

30. Small, A., and S. Stahlheber. 2014. Fluorophore localization algorithms for super-resolution 
microscopy. Nat Methods 11:267-279. 

31. Ester, M., H.-P. Kriegel, J. Sander, and X. Xu. 1996. A density-based algorithm for discovering 
clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference 
on Knowledge Discovery and Data mining. AAAI Press, Portland, Oregon. 226-231. 

32. Levet, F., E. Hosy, A. Kechkar, C. Butler, A. Beghin, D. Choquet, and J. B. Sibarita. 2015. SR-Tesseler: 
a method to segment and quantify localization-based super-resolution microscopy data. Nat 
Methods 12:1065-1071. 

33. Xu, K., H. P. Babcock, and X. Zhuang. 2012. Dual-objective STORM reveals three-dimensional 
filament organization in the actin cytoskeleton. Nat Methods 9:185-188. 

34. Chao, J., S. Ram, E. S. Ward, and R. J. Ober. 2013. Ultrahigh accuracy imaging modality for super-
localization microscopy. Nat Methods 10:335-338. 

35. Smith, S. T. 2005. Statistical resolution limits and the complexified Cramer-Rao bound. IEEE 
Transactions on Signal Processing 53:1597-1609. 

36. Teraguchi, S., and Y. Kumagai. 2016. Probabilistic Nearest Neighbor Estimation of Diffusion 
Constants from Single Molecular Measurement without Explicit Tracking. arXiv preprint 
arXiv:1601.00756. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/275313doi: bioRxiv preprint 

https://doi.org/10.1101/275313
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

37. Kay, S. M. 1998. Fundamentals of statistical signal processing: Detection Theory. Prentice Hall, New 
Jersey. 

38. Small, A. 2016. Multifluorophore localization as a percolation problem: limits to density and 
precision. J Opt Soc Am A Opt Image Sci Vis 33:B21-30. 

39. Sun, Y. 2013. Localization precision of stochastic optical localization nanoscopy using single frames. 
J Biomed Opt 18:111418. 

40. Serge, A., N. Bertaux, H. Rigneault, and D. Marguet. 2008. Dynamic multiple-target tracing to probe 
spatiotemporal cartography of cell membranes. Nat Methods 5:687-694. 

41. Pagé, V., F. Goudail, and P. Réfrégier. 1999. Improved robustness of target location in 
nonhomogeneous backgrounds by use of the maximum-likelihood ratio test location algorithm. 
Opt Lett 24:1383-1385. 

42. Poor, H. V. 1994. An Introduction to Signal Detection and Estimation. Springer-Verlag, New York. 

43. Stetson, P. B. 1987. Daophot - a Computer-Program for Crowded-Field Stellar Photometry. Publ 
Astron Soc Pac 99:191-222. 

44. Mlodzianoski, M. J., J. M. Schreiner, S. P. Callahan, K. Smolkova, A. Dlaskova, J. Santorova, and e. 
al. 2011. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Optics 
Express 19:15009-15019. 

45. Baddeley, D., M. B. Cannell, and C. Soeller. 2010. Visualization of Localization Microscopy Data. 
Microsc Microanal 16:64-72. 

46. Fitzgerald, J. E., J. Lu, and M. J. Schnitzer. 2012. Estimation theoretic measure of resolution for 
stochastic localization microscopy. Phys Rev Lett 109:048102. 

47. Nieuwenhuizen, R. P., K. A. Lidke, M. Bates, D. L. Puig, D. Grunwald, S. Stallinga, and B. Rieger. 2013. 
Measuring image resolution in optical nanoscopy. Nat Methods 10:557-562. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/275313doi: bioRxiv preprint 

https://doi.org/10.1101/275313
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

FIGURES 

 

Figure 1 │ Enumeration, precision and bias for single-molecule imaging. (a) Canonical scenarios for 

one (effective LD conditions) or two particles (HD and NR conditions) with the corresponding fits 
obtained using a one- or two-Gaussian hypothesis and the incidence of the enumeration and 

localization precision ± bias. (b) NR scenario analyzed using an LRT (PD ≈ 0 at PFA = 10-4 and PD = 0.2 
at PFA = 10-2), with indiscernible differences in the residues between the two hypotheses (see Note S3). 
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Figure 2 │ Theoretical limit of the LD hypothesis and its validation on synthetic data (a) Theoretical 
bias 𝑖𝑖𝑏𝑏  for P1  localization using an MMSE estimator under the LD hypothesis at different intensity 

ratios, 𝛼𝛼2/𝛼𝛼1  (𝑤𝑤 = 9 pixels , 𝑟𝑟0 = 1.25 pixels [≈ 130 nm]). (b) Synthetic data for two particles at 
different intensity ratios, 𝛼𝛼2/𝛼𝛼1.(c) Bias 𝑖𝑖𝑏𝑏 for P1 using an MMSE estimator on synthetic data (see also 

Fig. S1). Mean ± s.d., n = 250 images per 𝑑𝑑 value. 
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Figure 3 │ Theoretical 𝑫𝑫𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 and SNR limits. (a) Color-coded LD, HD and NR subsets as a function of 

𝐷𝐷 with ground truth thumbnails at different densities (SNR = 25 dB, 𝑟𝑟0 ≈ 130 nm and 10-4 PFA for the 
HD/NR transition). (b) Density-SNR space diagram for data at a known 𝑟𝑟0  combining the transition 

limits (color-coded) and precision accuracy (isocurves at 𝑄𝑄𝜎𝜎 = 80%). The thumbnails in (a) are located 
on the diagram. A: 87% of particles were localized with a 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 ≤ 17 nm. B: 80% of particles were 

localized with a 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅 ≤ 26 nm. C: 20% of particles are non-resolvable at 10-3 PFA. 
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Figure 4 │ Principle of UNLOC. Global heuristic of the UNLOC HD mode used for detection and 
enumeration. Regions of interest in the image containing potential particles are defined through a 

GLRT and a first list of particles is created (steps 2-3). A first multi-Gaussian fit is performed (step 4) 
and a new list of particles is created based on the residues (steps 5-6). Following the addition of 

potential particle steps, supernumerary particles are suppressed by an optimization loop of multi-
Gaussian fits, GLRT on residues to find the number of particles and their respective positions, sizes and 

intensities (steps 7-9). 
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Figure 5 │ Evaluation of the performance of UNLOC in analyzing synthetic data. (a) The inter-particle 
distance chart mimics a two-particle canonical scenario at different SNR ratios. Binary renderings of 

the LD and HD modes of UNLOC are encoded in red and blue, respectively. Black pixels correspond to 
equivalent results for the LD and HD modes. As expected, the bias for particle localization appears at 

≈ 5𝑟𝑟0, the LD/HD transition limit and is higher for the LD mode, as shown by the dispersion around the 
lines. The HD/NR transition limit is clearly dependent on the SNR as shown for the different SNR ratio 

conditions. (b) The alphanumeric character chart reproduces the density-SNR space diagram (see 
Materials and Methods). Three ground truth areas and their corresponding binary rendering UNLOC 

results are determined along the 80% quantile isocurves at a localization precision of 10 and 20 nm. At 
a constant value for the localization precision, the bias is evidenced by a blurring effect, caused by the 

variation of LD/HD/NR subset partition along an isocurve. Scale bars: 500 nm.   
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Figure 6 │ UNLOC analysis of dSTORM data. Alexa FluorTM 647-phalloidin staining of actin filaments in 

COS-7 cells. Upper panels: the background map is estimated and subtracted from the raw data before 
the detection/enumeration step. The circle size depicts the localization precision. Middle panel: 

integrated Gaussian reconstructed image from ≈ 57,000 frames of 512 × 512 pixels each. Bars: 10 µm 
(insets, 1 µm). Lower panel: dot plot of the localization precision 𝜎𝜎𝑁𝑁𝑅𝑅𝑅𝑅  and SNR distributions 

corresponding to the reconstructed image.  
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Figure 7 │ LD and HD modes of UNLOC analysis on non-homogeneous distribution. A synthetic stack 

of multiple frames mimics clustered ground truth positions with in green, a representative zoomed 
area of one frame (upper right). Lower panels: reconstructed image of the zoomed area analyzed in LD 

(red dots) or HD modes (blue dots) (see also Table S1). Bar: 1 µm (insets, 100 nm). 
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